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Abstract

Computational biology is an interdisciplinary field, and many computational biology research

projects involve distributed teams of scientists. To accomplish their work, these teams must

overcome both disciplinary and geographic barriers. Introducing new training paradigms is

one way to facilitate research progress in computational biology. Here, we describe a new

undergraduate program in biomolecular structure prediction and design in which students

conduct research at labs located at geographically-distributed institutions while remaining

connected through an online community. This 10-week summer program begins with one

week of training on computational biology methods development, transitions to eight weeks

of research, and culminates in one week at the Rosetta annual conference. To date, two

cohorts of students have participated, tackling research topics including vaccine design,

enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science,

RNA processing, hydrogen bond networks, and amyloid formation. Students in the program

report outcomes comparable to students who participate in similar in-person programs.

These outcomes include the development of a sense of community and increases in their

scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a

science research career. Furthermore, the program attracted students from diverse back-

grounds, which demonstrates the potential of this approach to broaden the participation of

young scientists from backgrounds traditionally underrepresented in computational biology.

Author summary

Computational biology research is frequently conducted by virtual teams: groups of scien-

tists in different locations that use shared resources and online communication tools

to collaborate on a problem. It is imperative that the next generation of computational

biologists can easily work in these interdisciplinary, distributed settings. However, most
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undergraduate research training programs are hosted by a single institution. In this

report, we describe a new summer undergraduate research program in which students

conduct biomolecular modeling research with the Rosetta software in research groups

around the world. The students each conducted their own research project in a univer-

sity-based group while collaborating with other students and members of the Rosetta

Commons at a distance using everyday tools such as Slack, Skype, GitHub, and Google

Hangouts. When compared with in-person summer research training programs, students

report similar or even improved outcomes, including the development of a sense of com-

munity and increases in their scientific self-efficacy, scientific identity, and science values.

Furthermore, our program attracts a diverse group of students and thus has the potential

to help broaden participation in computational biology.

This is a PLOS Computational Biology Education paper.

Introduction

Computational biology is an interdisciplinary field, and many computational biology research

projects are performed by distributed international teams of scientists. In the coming decade,

it will be imperative for computational biologists to collaborate within these virtual communi-

ties [1,2]. However, few undergraduate programs expose students to a distributed research

environment. Introducing new training paradigms is one way to facilitate research progress in

computational biology. In this work, we describe the Rosetta Research Experience for Under-

graduates (REU), a program in biomolecular structure prediction and design in which stu-

dents conduct research in a distributed environment. We detail the structure of the program

designed to expose students to a virtual community and describe student research experiences

from the first two cohorts.

Undergraduate research experiences are important avenues for recruiting and preparing

the next generation of scientists [3]. Hands-on lab experiences encourage creativity and expose

students to problem-solving frameworks [4]. Students who spend significant time in the lab

learn to perform new techniques, collect data, interpret findings, and formulate new research

questions [5,6]. Lab experiences can shape students’ perceptions about careers in research [7].

Through undergraduate research experiences, students gain access to professional mentors

who provide career support needed to retain a diverse group of students in science and engi-

neering. Undergraduate research can also serve as an introduction to fields such as computa-

tional biology, which are not well represented in undergraduate degree programs or courses,

especially at institutions that serve large proportions of students from underrepresented

backgrounds.

In the United States, REU sites are funded by the US National Science Foundation (NSF)

and serve as a major mechanism for involving undergraduates in science research. Most REU

sites offer 10-week summer programs designed to engage 8–10 undergraduates in meaningful

research [8] and to recruit students, especially those from underrepresented backgrounds, into

graduate education and research-related careers [9]. Students participate in hands-on lab or

field research experiences, complemented by journal clubs, sessions for writing and presenta-

tion peer review, and information sessions about graduate education and research-related

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005837 December 7, 2017 2 / 13

agreements between the University of Washington,

acting on behalf of the Rosetta Commons, Johns

Hopkins University may be entitled to a portion of

revenue received on licensing Rosetta software.

https://doi.org/10.1371/journal.pcbi.1005837


career options. In general, REU sites are hosted by a single department, program, center, or

institution.

This REU structure is inherently limiting for computational biology because computational

biology research is performed by geographically-distributed teams of scientists with varied aca-

demic backgrounds ranging from mathematics and computer science to cellular and molecu-

lar biology. In addition, scientific projects depend on shared computing resources, data sets,

and codebases. To be successful in computational biology, students need to develop interdisci-

plinary research skills such as the ability to formulate integrative research questions and com-

municate with researchers in other fields [10]. These distinctions require rethinking how to

structure REUs to meet the unique needs and challenges of computational biology.

We created a new REU program within the Rosetta Commons, a group formed to enable

close collaboration between 52 (and growing) labs developing the Rosetta software suite for

biomolecular structure prediction and design. The Rosetta Commons labs are united by a set

of core challenges, including (1) sampling macromolecular conformational space, (2) improv-

ing energy functions, (3) utilizing advanced computing resources, (4) improving code organi-

zation and algorithm efficiency, and (5) disseminating the tools to academic and industry labs.

To tackle these challenges, community developers from a broad range of fields have contrib-

uted tens of thousands of revisions to the master version of Rosetta from their development

branches. Collaborating scientists have tackled a wide range of science and engineering

challenges, from RNA folding [11] to the refinement of structures using NMR data [12] to

designed proteins [13,14], interfaces [15–17], protein nanomaterials [18,19], mineral binders

[20], and antibodies [21,22]. The public has also engaged in Rosetta-mediated science through

the Berkeley Open Infrastructure for Network Computing (BOINC)-distributed computing

platform [23] and game-playing applications such as Foldit [24].

The Rosetta collaboration is an appropriate environment for a geographically-distributed

computational biology REU for two key reasons. First, the problem-solving approaches are

highly interdisciplinary. For instance, X-ray crystallography and NMR were originally devel-

oped in physics and chemistry, and sequencing and protein expression originated in biology.

Second, labs at different institutions are already connected by online communication tools.

In particular, the GitHub code-sharing platform [25], Slack team messaging [26], and an in-

house benchmarking server allow developers to work on a common source in their own

branch, request code review, tag collaborators, comment on developments, and easily share

their work.

In this report, we describe the implementation and evaluation of the Rosetta biomolecular

modeling REU, the first REU situated within a globally distributed scientific community. We

describe our strategies for recruiting a diverse cohort of students and explain the implementa-

tion of the three program phases: (1) one week of intensive, hands-on learning about computa-

tional methods development, (2) eight weeks of research at different Rosetta labs, and (3) one

week at the Rosetta annual conference. We discuss strategies we used to keep students con-

nected while they conducted their research. We describe early evaluations of the program and

student outcomes. Finally, we discuss the program goals as they align with grand challenges in

undergraduate science education, and we postulate next developments therein.

Student recruitment and selection

Recruiting a diverse cohort of students

A primary goal of the Rosetta REU was to attract and retain underrepresented groups in

computational science, chemistry, engineering, and the biosciences. We took a two-pronged

approach to recruit a diverse cohort. First, we promoted the program via email to several

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005837 December 7, 2017 3 / 13

https://doi.org/10.1371/journal.pcbi.1005837


organizations, including the Society of Women Engineers (SWE), Hispanic Association of

Colleges and Universities (HACU), the Society of Hispanic Professional Engineers (SHPE),

the National Society of Black Engineers (NSBE), and the American Indian Science and Engi-

neering Society (AISES). We reached out via email to local universities with diverse popula-

tions. We also partnered with diversity programs, including Minority Access to Research

Careers (MARC) and the Leadership Alliance, by asking them to distribute the program infor-

mation and recommend potential participants.

Second, we reached out to attendees at two affinity group conferences. For the last three

years, we have sent a delegation of two faculty plus 6 to 10 female scientists from multiple

Rosetta labs to the Grace Hopper Celebration of Women in Computing. The two faculty led

a Student Opportunity Lab round-table to present “Computational Molecular Biophysics:

Design Your Future.” In addition, the delegation hosted a booth at the career exposition with

demonstrations and information. At this event, we collected over 40 resumes annually and

eventually recruited three students through this outreach. We recently replicated this effort

with an initiative to minority students by attending the Annual Biomedical Research Confer-

ence for Minority Students (ABRCMS). At the conference, we collected between 40 and 60

resumes and followed up with these students, encouraging them to apply for the program via

email, eventually enrolling one program participant.

Application and student selection

The program was open to all undergraduate science, mathematics, and engineering students

who had not graduated before the summer session. To apply, students submitted an online

application that included a personal statement, summary of research and computing experi-

ence, resume, transcript, lab assignment preferences, and contacts for three reference letters.

In the personal statement, students were asked to explain why they are interested in the REU

program and how the projects fit with their interests and talents. The experience statement

required students to summarize their academic achievements, special skills, academic honors,

and other creative work.

We sought both computer science majors with no previous biology experience and life sci-

ence majors with wet lab experience but limited computational background. Previous experi-

ence was not required but preferred, to increase the likelihood of student success in the

program. The applications were evaluated by a panel of two professors and two graduate stu-

dents. The criteria for evaluating applications are detailed in S1 File. After selection, we con-

tacted students to confirm their interest, and then we asked the student and the assigned

faculty to meet via Skype to discuss project ideas and again confirm their interest in working

together.

Structure of the research experience

Week 1: Rosetta Boot Camp

To provide students with a foundation in computational methods development, we initiated

the program with one week of hands-on practice at Rosetta Boot Camp [27]. Rosetta Boot

Camp is an in-person workshop designed to teach software development skills and Rosetta3

library [28] concepts to new graduate students and postdoctoral fellows. We adapted this

workshop for undergraduates by emphasizing skills not taught in traditional courses yet neces-

sary to begin research. We also structured the boot camp to achieve a 4:1 student-to-teacher

ratio and to promote collaboration between students. A set of detailed learning objectives is

listed in S1 File.
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To achieve the learning objectives, students participated in a combination of lecture and

lab activities. First, interactive lectures were used to introduce concepts (Table 1). Then, stu-

dents collaboratively worked on two types of activities (Table 2). The first set focused on

skills needed to write, test, debug, and version-control code. The second set (marked by an

asterisk in Table 2) walked students through the creation of a complex conformational sam-

pling protocol. In the first lab, they wrote an application to perturb and minimize a structure

using core Rosetta modules. In subsequent labs, they refined this protocol to more carefully

control how perturbation propagated through the structure, dividing structures by second-

ary structure elements, and eventually incorporating the cyclic-coordinate-descent (CCD)

loop-closure algorithm [29] to improve the likelihood that perturbations would result in

low-energy conformations. They connected their protocol to the job-distributor machinery

in Rosetta and to RosettaScripts: two parts of Rosetta that many students would work with

during their internships (Fig 1).

The workshop was led by a primary instructor and two student teaching assistants,

including alumni of the program and a student volunteer from the Rosetta community. Stu-

dents prepared by completing readings and short C++ homework assignments. During the

week, students worked in groups on the lab activities to encourage sharing of complementary

knowledge. This was crucial because both cohorts comprised students with diverse academic

backgrounds. Finally, we assessed the students’ progress through code review, short-answer

concept tests, and assignment completion.

Table 1. Overview of Rosetta Boot Camp lecture topics.

Day Lecture Topic Learning Objectives

Monday Introduction to computational protein structure prediction and design - -

Introduction to the C++ programming language 1.a.i, 1.a.ii

Tuesday Utility, numeric, basic, and core Rosetta3 libraries 2.a.i, 2.a.ii, 2.a.iii

Core Rosetta3 libraries 2.a.i, 2.a.ii, 2.a.iii

Wednesday Writing protocols in RosettaScripts 2.e.i, 2.e.ii, 2.e.iii. 2.e.iv, 3.e.i, 3.e.ii, 3.e.iii, 3.e.iv, 3.e.v

Const correctness in C++ 2.d.iv, 2.d.v

Thursday Common Rosetta modeling protocols 2.c.i, 2.c.ii, 2.c.iii, 2.c.iv, 2.c.v, 2.c.vi, 2.c.vii

Controlling flexibility during modeling 3.f.ii.4

Friday Adding code to Rosetta 3.f.i, 3.f.ii, 3.f.iii, 3.f.iv, 3.f.v, 3.f.vi, 3.f.vii, 3.f.viii, 2.b.i, 2.b.ii, 2.b.iii

https://doi.org/10.1371/journal.pcbi.1005837.t001

Table 2. Overview of Rosetta Boot Camp lab activities.

Day Lab Activities Learning Objectives

Monday Version control and branching with Git 1.c.i, 1.c.ii, 1.c.iii, 1.c.iv, 1.c.v, 1.c.vi, 1.c.vii

Writing your first Rosetta C++ modeling protocol* 2.d.i, 2.d.ii, 2.d.iii, 2.e, 2.f.i, 2.f.ii.1, 2.f.ii.2, 3.c, 3.a.i, 3.a.iii, 3.a.v

Tuesday Writing unit tests for C++ classes 3.a.ii, 3.a.iv, 3.b.i, 3.b.ii. 3.b.iii, 3.b.iv, 3.b.v, 3.b.vi

Kinematic control with the FoldTree* 2.f.ii.3, 3.d

Wednesday Writing a protocol in RosettaScripts 3.e.i, 3.e.ii, 3.e.iii, 3.e.iv, 3.e.v

Packaging protocols in a Mover subclass* 1.d.i, 1.d.ii, 1.d.iii, 1.d.iv

Thursday Unix primer and scripting with bash, sed, and awk 1.a.iii, 3.d

Loop modeling with CCD* 2.f.ii.4

Friday Extra time to complete remaining labs - -

*Each lab builds on the previous lab marked with an asterisk toward development of a complex modeling protocol.

https://doi.org/10.1371/journal.pcbi.1005837.t002
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Weeks 2–9: Research in labs

Over the next eight weeks, each student conducted a research project in one of the 52 Rosetta

Commons labs, typically under the supervision of a senior graduate or postdoctoral researcher

in the lab. The students remained connected with each other and other participating research

groups through several channels discussed below.

Main Rosetta developer channels. The students joined several platforms typically used

for collaboration within the Rosetta Commons. First, students joined the Rosetta Slack team to

directly ask developers about code design, debugging strategies, and scientific approaches in

real time. In addition, students joined the Rosetta GitHub team to participate in online code

reviews and track contributions to the codebase. Finally, students were given access to our cus-

tom benchmark server, which enables us to test code changes.

Virtual journal clubs. To connect the cohort scientifically, we held a virtual journal club

each week. The meeting occurred via Zoom video conference so that all participating students

and two faculty members were connected. Two students presented each week, such that each

student presented twice during the summer. For the first presentation, students were asked to

explain a paper published by their host lab. The assignment provided students with the oppor-

tunity to learn the science of their host lab in detail and share it with their program peers. For

the second presentation, students chose a paper from the wider literature. Each faculty mem-

ber cohosted one or two of the journal clubs during the summer (typically not the same week

their mentee presented). The faculty members facilitated the discussion, ensuring that each

student participated, encouraging in-depth understanding, ensuring that questions were

answered, and facilitating broader brainstorming about the potential impacts and future direc-

tions of the work.

Writing and presentation skill development. Written and oral communication skills are

critical for science and engineering research. To maximize scientific exchange in the cohort,

we held peer critiques of writing during the summer. During week five, students wrote a two-

Fig 1. Overview of the “Build your own Rosetta protocol” lab. During the evenings, students worked on a lab activity designed to guide

them through the process of writing a Rosetta protocol that takes advantage of different sampling strategies. On Day 1, students outlined a

basic Rosetta executable that perturbed structures and then recovered from the perturbation using side-chain packing and whole-structure

minimization. On Day 2, students used the FoldTree to restrict the propagation of structural perturbations by partitioning the structure by its

secondary structure. On Day 3, students wrapped their protocol in a Mover class that could be hooked into the job distribution system and

our XML-based scripting language, RosettaScripts. On Day 4, students applied the CCD method to close loops opened by their

perturbations. Day 5 was unstructured time for students to complete their labs. CCD, cyclic-coordinate-descent.

https://doi.org/10.1371/journal.pcbi.1005837.g001
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page proposal describing their summer research following the format of the NSF Graduate

Research Fellowship application [30]. In addition, students drafted scientific posters for the

Rosetta conference in week nine. For both activities, students were paired up across different

labs to exchange proposals for critiquing, and they also received feedback from their host lab

mentors.

On-site partnerships with local REU cohorts. To enable students to build a local net-

work of peers and more experienced scientists, we formed partnerships with summer pro-

grams at all participating institutions. Many of these programs included social activities (e.g.,

brown bag lunches, picnics, outings to museums), professional development (e.g., networking

sessions, discussions on relevant topics such as graduate education, work–life balance, career

options), mock interviews with PhD admissions directors, and lunch seminars with visitors

from academia and industry.

Week 10: The annual Rosetta conference (“RosettaCon”)

Each summer, the Rosetta Commons members convene to discuss the newest science to

emerge from the collaboration. This meeting is held in Washington state and involves about

250 people from the 52 Rosetta labs, plus invited speakers. The first two days are held on the

University of Washington campus and are meant to facilitate discussion on software and

ongoing technical challenges. The following three days occur at the Sleeping Lady Conference

Center in Leavenworth, Washington, and consist of scientific presentations, small group dis-

cussion, posters, and leadership and team meetings.

Students attended the full conference, which allowed them to reconnect with one another

in person, network with other researchers at the conference, and learn about the wider field of

computational biology. Each student presented a poster of their research accomplishments

and received feedback on their work. Finally, we held a debriefing session for the cohort in

which we solicited feedback about the program.

Results

Description of the first two cohorts

We hosted eight interns during the summer of 2015 and eight interns during the summer of

2016 in 14 different Rosetta Commons labs. We also educated a diverse cohort of students:

across both cohorts, 63% of students were female, 13% were African American, and 13% were

Hispanic. The students conducted a diverse set of scientific projects described in Table 3.

Student research achievements

Rosetta REU students have already shared their work with the scientific community in the

format of formal presentations and publications. All students shared the outcomes of their sci-

entific projects at the Rosetta conference. Two students have presented their work at other sci-

entific meetings, and one student is an author on a conference paper [31,32]. In addition, two

students contributed code to the main Rosetta repository; their contributions are already being

distributed to end users. These scientific deliverables demonstrate that students can conduct

high-level research projects in the eight-week time span.

Informally, we observed that the interns helped to advance the research of the host lab. For

example, one intern used a newly developed framework for modeling protein glycosylation

[33] to create models of antibody constant regions with different mutations and glycosylations

that affect binding to antibody receptors and immune stimulation [31]; this work continues in

the host lab and has enabled new collaborations with experimental labs. Another intern
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examined the computer–human interface for the protein-folding game FoldIt [24] to measure

how three-star rating systems affect game player persistence [32]. One student designed co-

assembling multicomponent protein crystals, and the host lab invited him back for a second

summer to continue the research.

Student career progress

Most of the students who participated in the REU program are now pursuing careers in sci-

ence. Of the twelve alumni who have completed their BS degree, six students are now PhD

candidates in fields ranging from chemical engineering to computer science and molecular

biology. Two are working in the pharmaceutical industry, one is working in an academic

research lab, and one is working as a high school mathematics teacher. One is currently apply-

ing to medical school, and three from the 2016 cohort are currently applying to graduate

school (as of fall 2017).

Evaluation of virtual cohort structure

To evaluate our virtual REU model, we surveyed both cohorts of students at the end of each

summer about their sense of community, scientific self-efficacy, scientific identity, and the

extent to which their personal values aligned with scientific values [34–36]. These outcomes

are indicators of the students’ integration into their scientific community and predictors of

their likelihood to continue in science research–related career paths, especially for students

Table 3. Intern projects from the summer 2015 and summer 2016 cohorts.

Cohort Project Principal

Investigator

Institution Location

2015 Redesigning HIV broadly neutralizing antibody PGT 121 to maintain stability

and increase binding potency

Bill Schief Scripps Research Institute La Jolla, CA

2015 Encoding covariation into re-design of PDZ domains: Is sequence tolerance

context-independent?

Tanja Kortemme University of California at

San Francisco

San Francisco,

CA

2015 Quantification of local contact densities at protein-small molecule and protein-

protein interfaces

Justin Siegel University of California at

Davis

Davis, CA

2015 Stepwise redesign: Application for designing atomic resolution RNA Rhiju Das Stanford University Stanford, CA

2015 Marburg virus antibody modeling using comparative modeling Jens Meiler Vanderbilt University Nashville, TN

2015 Carbohydrate and protein effects on antibody-receptor binding Jeffrey Gray Johns Hopkins University Baltimore, MD

2015 Scoring sequence for modeled folding conformation in InteractiveROSETTA

using a Hidden Markov Model based on sequence-structure motifs

Chris Bystroff Rensaleer Polytechnic

Institute

Troy, NY

2015 Analyzing the molecular interactions of the α-GID/α4β2 receptor complex: An

evaluation for drug design

Richard Bonneau New York University New York, NY

2016 Iteratively building hydrogen bond networks at protein-protein interfaces Brian Kuhlman University of North

Carolina at Chapel Hill

Chapel Hill, NC

2016 Ligand Holes: Screening for better fitting ligands John Karanicolas University of Kansas Lawrence, KS

2016 Improving player onboarding in citizen science games with three-star systems Seth Cooper Northeastern University Boston, MA

2016 Computational design of auto-inhibited chemotherapeutic enzyme using

Rosetta

Sagar Khare Rutgers University New

Brunswick, NJ

2016 Structure-based prediction of non-histone human deacetylase (HDAC) 2

substrates

Ora Schueler-

Furman

Hebrew University Jerusalem,

Israel

2016 Modeling cancerous mutations in CCCTC binding factor “Core” Richard Bonneau New York University New York, NY

2016 Predicting glycoforms of Mucin 1 in cancer cells and identifying their binding

forms

Jeffrey Gray Johns Hopkins University Baltimore, MD

2016 Computational design of co-assembling multi-component protein crystals in the

F222 space group

David Baker University of Washington Seattle, WA

https://doi.org/10.1371/journal.pcbi.1005837.t003
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from backgrounds traditionally underrepresented in the sciences [35]. We compared the

responses of our students with responses from students in two in-person, computational life

science REU programs.

Post-program survey data (Fig 2) show that both cohorts matched the “sense of commu-

nity” of other programs. Interview comments reinforce the strong community even across dis-

tributed virtually-linked labs (see S1 File). Similarly, the data revealed that our program

matched outcomes for scientific self-efficacy, scientific identity, scientific values alignment,

and their intentions to pursue a science research–related career.

Discussion

In this report, we presented a summer research experience that involves undergraduates in dis-

tributed computational biology research. We also attracted a diverse cohort, demonstrating

the potential of this approach to broaden participation by students from traditionally under-

represented backgrounds. After the first two cohorts, we pooled our experiences to identify

strengths and weaknesses in the program. Here, we elaborate on these takeaways and recom-

mend directions for improvement.

Introducing students to an interdisciplinary field at boot camp

A primary challenge of our program was teaching students with varied academic back-

grounds. Most undergraduate science programs do not include quantitative courses beyond

prerequisite calculus [37]. Furthermore, computational biology degree programs are still

new [38] and seldom available at institutions that primarily serve students from underrepre-

sented backgrounds. Therefore, we anticipated that students would vary in their preparation

to do computational work.

At boot camp, we prepared to support students with a high instructor-to-student ratio

(1:4). We also arranged the students around a conference table intended to facilitate collabora-

tion while working on lab activities. One hurdle was teaching the Unix command line because

half of the students had no prior experience. This knowledge is critical because most molecular

modeling programs are controlled from the command line. Initially, we tried to pair students

with and without experience. However, we found that the more experienced student felt held

back. In the future, we plan to include more Unix preparation in the homework preceding

boot camp. We also hope to integrate strategies that encourage patience when working in

teams with mixed backgrounds.

Fig 2. Comparison between the Rosetta REU and two other life science REU programs. We surveyed students at the completion of

the program on four outcomes: sense of community, scientific self-efficacy, scientific identity, and values alignment. Here, these data are

compared to the survey results of two other life sciences REU programs. REU, Research Experience for Undergraduates.

https://doi.org/10.1371/journal.pcbi.1005837.g002
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For future work, we also plan to further develop the boot camp learning objectives (see S1

File). Undergraduate boot camp was derived from a workshop intended for new graduate stu-

dents and postdoctoral fellows. Thus, the week is packed with technical details about C++ lan-

guage features and the mathematics underlying Rosetta algorithms. However, we postulate

that skills required for an eight-week internship may differ. For instance, students are more

likely to apply the tools and analyze results rather than develop new protocols from scratch.

Furthermore, undergraduates may benefit from developing more transferable skills. In the

future, we plan to revisit the objectives and potentially rebalance toward more general compu-

tational biology skills rather than those specific to Rosetta.

Encouraging students to leverage collaboration tools

The Rosetta REU program is a “proof of principle” example that undergraduates can perform

research in a distributed setting. We found that students made strong connections within the

cohort that matured into an internal collaboration network during the eight-week research

period. A few students even contributed code and commented on ongoing projects via the

GitHub [25] code-sharing platform. All these findings are reinforced by survey reports that

students experienced a strong sense of community.

Forming strong bonds between students is a top priority of the program. As the program

continues, we are aiming to help mentors better guide and connect with their students during

the eight-week research period by drawing more from evidence-based mentoring practices

[39–41], and we want students to leverage weak ties [42] in the Rosetta community. Students

were given access to several collaboration tools, including the Slack [26] channel and developer

mailing lists. However, we observed that the students used these tools sparingly. In scientific

communities, weak ties are critical because reaching out of one’s inner network increases the

probability that knowledge transfers are more novel. One possibility of encouraging students

would be to scaffold using community resources during boot camp rather than introducing

them at the end. This way, students can begin using the tools under instructor guidance, gain

confidence, and then apply them.

Attract and retain underrepresented groups in computational sciences

Another goal of the Rosetta REU program was to foster an inclusive culture. Diversity is criti-

cal to the creativity and productivity of teams [43]; however, recruiting a diverse cohort

remains a challenge, especially in computer science and mathematics [44]. To address this

goal, we attended affinity conferences and reached out to affinity groups, thereby adding more

applications to our pool. Sending student and faculty representatives to these conferences also

allowed our students and faculty to learn strategies to confront the confidence gap [45] and

unconscious bias [46]. Overall, this also increases awareness of these issues not only within our

small group but also amongst the larger Rosetta community.

We postulate that the diversity of the REU cohort also contributed to the strong sense of

community. In addition, our recruiting efforts at Grace Hopper and ABRCMS strengthened

our community of women in the Rosetta Commons, and by rotating the attending faculty,

more received education and awareness of gender issues in the field. Upon returning to the

labs, these conference delegates have sparked other diversity efforts, including broader confer-

ence activities, Lean In Circles [47], and monitoring of conference speaker diversity. In the

future, we will continue to engage in affinity conferences and take home new practices for fos-

tering and encouraging diversity and inclusiveness in virtual cohorts and the Rosetta commu-

nity overall.
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