
Seed-Based Biclustering of Gene Expression Data
Jiyuan An1*, Alan Wee-Chung Liew2, Colleen C. Nelson1

1 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia, 2 School of Information and Communication Technology, Gold

Coast Campus, Griffith University, Queensland, Australia

Abstract

Background: Accumulated biological research outcomes show that biological functions do not depend on individual genes,
but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across
experimental conditions. However, functionally related genes generally do not show coherent expression across all
conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that
have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies
coherent genes in an exhaustive, but efficient manner.

Methods: In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and
conditions as seeds to create candidate bicluster tables. The tables have two columns (a) a gene set, and (b) the conditions
on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of
dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar
conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions.
Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene
set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the
corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified
until the table becomes empty.

Conclusions: This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves
exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.
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Introduction

Gene expression level fluctuates across a set of conditions (or

time points). The mechanism of gene regulation is complex at the

molecular level; it is not a single gene, but many genes that

simultaneously interact with each other to perform a biological

function. Finding genes with similar behaviours in expression

across a set of time points or conditions is the first and essential

step. Microarray is a widely used technology to obtain gene

expression levels for cell lines or tissues. The mining of microarray

data constitutes an area of growing interest in the bioinformatics

field. Clustering is an effective method used in microarray data

analysis to reveal the mechanism of gene regulation for genetic

diseases. Clustered genes have similar expression fluctuation across

all conditions. However, since some diseases are only affected by a

subset of conditions, it becomes necessary to identify those gene

clusters that have a similar expression fluctuation across a specific

subset of conditions; rather than identifying genes that have similar

expression fluctuations across all experimental conditions. Biclus-

tering [1,2] describes the process by which a group of genes (rows)

coherent within a group of conditions (columns) is identified.

However, exhaustively evaluating all possible biclusters in a

dataset is an NP-hard problem [3,4,5], where the main challenge

lies in finding a way to efficiently select a subset of genes and

conditions that satisfy the criterion of coherencies, especially when

the numbers of genes and conditions/time points are large.

Aims
Microarray databiclustering generally involves the analysis of very

large datasets. Although many biclustering algorithms have been

proposed [1,2,6,7,8,9,10,11,12,13], there is still no efficient algo-

rithm that can deal with very large microarray datasets. In this paper,

a seed-based biclustering algorithm that identifies biclusters of

coherent genes in an exhaustive, but efficient, manner is proposed.

Although there are several types of bicluster [9], the focus of this

study is on the additive bicluster, which is the most common. An

additive bicluster is the set of genes that have similar expression

fluctuations in a subset of conditions. These genes could, for

example, be regulated by common transcription factors or other

chemical components, such as microRNA or other long non-

coding RNA. This research could provide an effective tool, which

would, for example, be used to assist biologists in the identification

of regulation factors for certain diseases.

Existing Algorithms
Cheng and Church [1] were the first to introduce biclustering

into gene expression data. They introduced H-Score as a measure
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of the degree of coherence of a bicluster. The H-Score represents

the variance of a particular subset of genes under a particular

subset of conditions or time points. The central idea is to find

biclusters whose H-score is less than a given threshold value d.

One of the main problems with the d-bicluster of Cheng and

Church is that a submatrix of a d-bicluster is not necessarily also a

d-bicluster, since the H-score is an averaged measurement of

coherence in a d-bicluster [14]. This results in a large number of

false positives in the algorithm. Moreover, it does not perform an

exhaustive search of all biclusters in the dataset.

Another family of biclustering algorithms is the geometric-based

bicluster [2,8,12]. In this case, every gene is represented as a point

in a high dimensional space. Biclusters are identified by finding

points located in a hyper-plane. These algorithms are time and

memory intensive for high dimensional data.

Materials and Methods

Gene expressions can be illustrated as a profile whose vertical

axis shows the expression level and whose horizontal axis

represents conditions. Additive biclustered genes have similar

trends across a certain number of conditions. If the profiles are

displaced vertically by the appropriate amount, then all genes in a

bicluster would have similar value across the conditions, and the

additive biclustering problem becomes that of finding ‘‘biclusters

with constant values on columns’’ [9]. Hence, additive biclustering

is simplified to a process of finding the vertical-displacement-

length for each gene. For different biclusters, every gene has a

different vertical-displacement-length.

In this work, additive biclusters are identified based on ‘‘seeds’’.

All conditions in all genes are the potential seeds. All seeds are

exhaustively tested to find biclusters that meet the criteria given by

end-users. The following sections describe the details of this seed-

based biclustering algorithm.

Table 1 shows the notations for a given additive bicluster that

will be used in this paper.

The following sections describe the details of this seed-based

biclustering algorithm:

It is assumed that if a pair of genes ga and gb are listed in a

bicluster and t is one selected condition, there exists a constant C

such that:

max
ga,gb[G,t[S

DEgat{Egbt{CDvd ð1Þ

The constant C differs for different pairs of genes in a bicluster.

If one gene is fixed and an appropriate constant added to every

other gene in a bicluster, all genes in the bicluster would have

similar expression levels across a common subset of conditions. As

a result, the problem of finding additive biclusters becomes that of

finding a suitable constant C for every gene in a given bicluster.

In this work, biclusters are identified through the use of ‘‘seed’’

where a ‘‘seed’’ is the combination of a gene and a condition. The

gene and condition are called the seed gene and seed condition,

respectively. The constant C of a gene g is the distance between

gene g and the seed gene on the seed condition ss:

C~Egss{Egsss ð2Þ

This method exhaustively enumerates Eq. (2) at all conditions to

obtain the constant C that minimizes the maximum distance

between the two genes.

Figure 1 shows the enumeration of C at three conditions 1, 2,

and 3. If gene1 is selected as seed gene, then seed1, seed2, and

seed3 correspond to conditions 1, 2 and 3 respectively. If gene 2 is

set the constant value C for seed1, (i.e. C = C1), then gene 2 is

displaced as shown in Figure 1 (b). The distance for gene 2 with

respect to gene 1 in condition 2 and 3 are expressed as

d12 = C22C1 and d13 = C32C1, respectively. Analogously, the

distance for gene 2 for seed2 and seed3 can be expressed in

Figure 1 (c) and (d) respectively. The results shows clearly that

seed2 is the best seed for gene 1 and gene 2 in conditions 1, 2 and

3 because the smallest maximum distance between the two genes is

d21 (d21,d13 and d21,d31). If the threshold for coherence is d21,

the two genes are coherent in conditions 1 to 3. However, for

seed2 and seed3, the two genes are not found to be coherent in

other conditions. For the purpose of this study, the distance di,j

above is defined as the relative value. These relative values are used

to find which conditions are coherent with respect to the seed.

Figure 2(a) shows a very simple data set, which includes four

genes (gene 1, gene 2, gene 3 and gene 4). The expression levels of

the six conditions are shown on the vertical axis. The genes are not

coherent over all conditions. However, with condition 1, 3, 4 and

Table 1. Notation.

Egs Expression level of gene g in condition s

G Genes in an additive bicluster

S Selected conditions in a bicluster

T A condition or time point

gs The seed gene in a bicluster

ss The seed condition in a bicluster

D Maximum difference between genes in a bicluster

E User-defined max difference between genes and seed gene

E Threshold of relative expression level in a bicluster

t Threshold for filtering out un-interesting gene expression profile

min_gene User-defined minimum number of genes in a bicluster

min_coherent_condition User-defined minimum number of coherent conditions in a bicluster

doi:10.1371/journal.pone.0042431.t001
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6, the four genes have a coherent expression level as shown in

Figure 2(b). Figure 2(c) shows the relative expression levels for this

simple data set. With conditions 2 and 5, the relative expression

level is far from zero, while with the 1, 3, 4 and 6 conditions, the

relative expression level is zero, which means these four genes are

strongly coherent with conditions 1, 3, 4 and 6 as shown in

Figure 2(b).

Figure 3 shows a bicluster taken from the real data of yeast cell

cycle. The bicluster has seven genes: YCL061C, YMR078C,

YFL008W, YML060W, YMR305C, YDL011C and YPL057C.

The gene expression level (normalized by z-score) across all 17

time points is shown in Figure 3 (a). Several time points, such as 2

and 17, do not show coherent behaviour with the rest of the time

points. If the first gene (YCL061C) is selected as seed gene and the

first time point as seed condition, the relative expression values for

all genes across all time points is obtained as shown in Figure 3 (b).

Time points 2, 3, 14, 16 and 17 show a large deviation from zero.

If the error threshold of relative expression level is set to 0.35,

these five time points are removed. Figure 4 (b) shows the time

points where the relative values are less than 0.35, and the

corresponding absolute expression levels are shown in Figure 4 (a).

The genes are much more coherent in this subset of time points.

A seed gene gs is denoted as having gene expression level Egst
(t = 1,2,…,n), where t is a time point or condition. If time point, ss,

Figure 1. An example of finding suitable constant C that satisfies Eq (1). (a) Both gene1 and gene2 are measured by their expressed levels
on three conditions. The distances between gene1 and gene2 on conditions 1, 2, and 3 are represented by C1, C2, and C3 respectively. (b) d12 and d13

are the distances between gene1 and gene2 on conditions 2 and 3 in terms of seed1. (c) and (d) show the distances of the two genes in term of seed2
and seed3.
doi:10.1371/journal.pone.0042431.g001

Figure 2. A simple example of, (a) Expression level across all conditions. (b) Expression level in conditions (1, 3, 4, 6) (c) Relative expression
level across all conditions. Coherent conditions have small relative expression level, while non-coherent conditions have large relative expression
level.
doi:10.1371/journal.pone.0042431.g002
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is selected as a seed condition, for a given gene ga whose

expression level is Egat, the relative expression level E9gat for that

gene is given by:

E’gat~Egat{Egst{C

~Egat{Egst{(Egass{Egsss ) t~1 : n
ð3Þ

From Eq. (3), it is clear that all relative expression levels for a

seed gene are zero and all genes have a zero relative expression

level on the seed time point ss.

The consequences of removing non-coherent time points

according to the threshold value are illustrated in Figure 3 (b) to

Figure 4 (b).

Assuming that e is the threshold of relative expression level for

biclustering, then the maximum difference of relative expression

level among the genes in a bicluster is 2e. Since an exhaustive

enumeration of all combinations of genes and conditions as seeds

was performed, two genes, whose maximum difference of relative

expression level across a set of time points is less than 2e, would be

clustered into at least one bicluster.

The procedure of the proposed biclustering algorithm is as

follows:

(1) Pre-process the dataset by filtering out genes that do not show

significant variation across conditions or time points. If genes

do not show significant differential expression across condi-

tions, they are usually uninteresting and are generally omitted

from further analysis. In this study, each gene expression

profile is first normalized by z-score (such that the mean m = 0

and standard deviation s= 1). Then it is required that for a

gene to be included in biclustering analysis, it should satisfy

the threshold of: maximum expression difference across all conditions

.t where t= 3e.

(2) For each combination of gene and condition as seed, the

relative expression level is computed and a table constructed.

Figure 5(a) shows the table constructed for the seed gene

‘‘YAR007C’’ and the seed condition 1. In Figure 5 (a), the first

column represents gene. The second column shows conditions

where the distance of relative expression between the gene

and the seed gene is bigger than the threshold e chosen by the

users. In Figure 5(a), the gene YMR078C has ‘‘21’’ non-

coherent conditions, which indicates that all time points of

gene YMR078C have a similar relative expression level to the

seed gene YAR007C.

(3) Rows with common coherent conditions are identified in the

table and grouped together. In this step, all rows that have the

same non-coherent conditions are grouped together. The

second and third rows (YFL008W and YBR243C) are

combined as shown in Figure 5 (b). The table will then be

Figure 3. Gene expression level in absolute scale (a) and in relative scale (b). Vertical axis represents expression level normalized by z-score.
Horizontal axis represents conditions or time points (1–17).
doi:10.1371/journal.pone.0042431.g003

Figure 4. Gene expression level in absolute scale (a) and relative scale (b) after removing non-coherent time points.
doi:10.1371/journal.pone.0042431.g004
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sorted in ascending order of the number of non-coherent

conditions. If a row contains more than min_gene genes, it is

considered to be a bicluster and output to the result. This row

is then removed from the table. If not, this row is combined

into other rows in the table. An example of this latter case is

given in Figure 5 (b), where the first row YMR078C is

combined into other rows in the table, as shown in Figure 6.

(4) The above procedure is repeated for the subsequent rows.

Figure 7 shows how the rows YFL008W, YBR243C

andYMR078C are combined with other rows in the table.

Since each bicluster must have at least a minimum number of

coherent conditions, if a newly combined row has more than

(n – min coherent_condition) non-coherent conditions,

where n is the number of conditions in the dataset, then it will

not be appended into the table.

(5) After the above procedure is repeated for every combination

of genes and conditions, all biclusters are obtained.

(6) In order to validate the found biclusters, Gene Ontology (GO)

is used to test whether these biclusters share the same GO

term. This process is done in two phases. First, biclusters that

share the same seed gene are aggregated because these genes

have similar behaviour across certain conditions or time

points. In other words, the biclusters of genes that are

generated by the tables having the same seed gene are

combined. Second, a statistical test is used to evaluate the

aggregated genes to see whether they are enriched by one or

more GO terms. The cut-off P value is set to 0.05 in this work.

There are three parameters in the algorithm. The first

parameter e is the maximum relative expression distance on the

same time point between two genes in the same bicluster. All gene

expression levels are normalized by z-score. As a result, 68% of the

relative expression levels are within [21,1]. Based on the results of

this experiment, 0.35 (2e= 0.7) is considered to be a suitable cut-

off value of e for non-coherent time points.

The second parameter min_gene represents the minimum

number of genes in a bicluster. This parameter cannot be too

large, or actual coherent genes may be missed. Five was found to

be the most suitable value to use.

Figure 5. Table constructed for seed gene YAR007C and seed condition 1.
doi:10.1371/journal.pone.0042431.g005

Figure 6. Combined array table.
doi:10.1371/journal.pone.0042431.g006
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The third parameter is min_coherent_condition. This

parameter specifies the minimum number of coherent conditions

needed in a bicluster and usually depends on the type of

microarray data and the applications used.

A flow chat and pseudocode summarizing this algorithm can be

found in Figure S1 and Table S1 respectively.

Test of Statistical Significance of the Detected Biclusters
The normalization step is usually undertaken before microarray

data is analysed, to minimize the impact of different experimental

conditions. Since the microarray data can be considered to assume

a normal distribution [15], z-score is commonly used to normalize

microarray data [16]. The z-score can be calculated Eq. (4):

Zi~
ei{u

s
ð4Þ

u~

P
i~1:N

ei

N
ð5Þ

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N{1

X
i~1:N

ei{u)

s
ð6Þ

Where ei is a gene expression level, u and s are the mean and

standard deviation of the microarray data set respectively. N is the

total number of genes (or probes) in the microarray.

Since the expression level is normalized by z-score, the

probability of a z-score value whose distance to a specific value

is smaller than 2e, is less than normcdf(e) 2 normcdf(2e), as

shown in the shaded part of Figure 8. p is denoted as the

probability of a z-score within the e distance to a given value.

pƒnormcdf(e){normcdf({e) ð7Þ

The p value of a gene that has at least the min_coherent_con-
dition to a seed gene can be represented as a Bernoulli trial:

p1~
Xn

i~ min coherent conditions

n

i

� �
pi(1{p)n{i ð8Þ

Where n is the total number of time points or conditions. For a

total of m genes in the study, a bicluster with at least min_gene
genes has the p value below.

p2~
Xm

i~gene min

m

i

� �
p1

i(1{p1)m{i ð9Þ

In this evaluation, min_coherent_condition was set to 12 and

min_gene was set to 5. For 2,884 genes and 17 time points in the

yeast cell cycle expression data, the p value to identify a bicluster

by chance with e= 0.35 is less than p2 = 0.00099648. Consequent-

ly, the detected biclusters in the yeast cell cycle dataset that satisfy

the three conditions, i.e. (1) maximum distance between any two

genes is less than e, (2) the number of conditions is larger than

min_coherent_condition and (3) the number of genes is larger

than min_gene, are statistically significant.

Relationship with H-score in d-biclustering
The d-biclustering algorithm of Cheng and Church [1] is a well-

known biclustering algorithm. For an microarray expression

matrix m6n, the H-score in d-biclustering is given by [1]:

H score~
1

m|n

X
i[I ,j[J

(aij{ai:{a:jza::)
2 ð10Þ

where I and J are a set of rows and columns respectively, such that

|I| = m, |J| = n, and aij is the expression value in row i and

Figure 7. Further combined array table.
doi:10.1371/journal.pone.0042431.g007

Figure 8. The probability of z-score within 2e to a specific
value.
doi:10.1371/journal.pone.0042431.g008
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column j, while ai. is the average expression level of row i, aj is the

average expression level of column j and a.. is the average

expression level of the whole matrix. To intuitively understand the

meaning of Eq. 10, the formula can be rewritten as shown in Eq.

11 and 12.

H score~
1

m|n

X
i[I ,j[J

S2
ij ð11Þ

Sij~
1

m|n

X
i0=i

X
j0=j

Diji0 j0

~
1

m|n

X
i0=i

X
j0=j

((aij{ai0 j){(aij0{ai0 j0 ))

ð12Þ

It was observed that H-score is the average of score Sij – that is

the average of the differences shown in Eq. 12. Figure 9 shows

these differences and clearly indicates that the shift of gene i9 does

not affect Diji9j9 and H-score. Therefore, H-score reflects the

coherence of an additive bicluster. If (i, j) are considered to be the

seed proposed in this method, the relative expression distance in

this method is identical to Diji9j9.

Implementation of Bicluster Identification Algorithm
The algorithm is implemented in Java computer language. The

computer platform is 3.33 GHz CPU and 4G RAM. The

operation system is Microsoft Windows XP.

Results

To evaluate this method, the algorithm was first applied to the

well-studied yeast cell cycle time course gene expression data,

which has 2,884 genes and 17 time points [17]. Since biclusters

that are generated by the same seed gene have the same expression

behaviour across most time points or conditions, biclusters that

were generated by the same seed gene were aggregated. For

simplicity, to the aggregated cluster was also referred as a bicluster,

although they may not have similar expression levels in some

conditions.

The accuracy of the identified biclusters and the execution time

cost was evaluated. The new algorithm was compared to two

existing methods: d-biclustering [1] and pClustering [14]. The

biclusters of d-biclustering were obtained from [17]. With regard

to pClustering, the executable code was downloaded from the

website in [18] and a range of three parameters (delta i.e.

clustering threshold, minimum number of column and minimum

number of row) are tested: delta = [5, 10, 20, 30, 40, 50] and

minimum number of columns = 10, and minimum number of

rows = [5, 20, 30, 40]. delta = 10 and minimum number of

rows = 20 were selected because the resultant biclusters are the

most similar in number to those identified and reported in [19]. In

the new method, min_gene was set to 5 and min_coherent_-
condition was set to 12. Several distances of relative expression

level were tested as shown in Table 2. With e= 0.35, the number

of identified biclusters was the most similar to that found in [19].

To test the accuracy of the identified biclusters, the p value was

computed using the hypergeometric distribution to compare the

detected biclusters to 30 known clusters (or categories) of yeast

genes reported by Tavazoie et al. [19]. The correspondence plot

proposed by Tanay et al. [20] illustrates the random chance of

genes in the identified bicluster appearing in the putative gene

clusters of [19]. The chance is given by the p value computed

using Eq. 13.

P(z§z0)~
X

z§z0

y1

z

� �
n{y1

y2{z

� �
n

y2

� � ð13Þ

Where n is the total number of genes in the genome; y1 is the

number of genes in the putative cluster, y2 is the number of genes

in the identified bicluster, z0 is the number of overlapping genes in

the two clusters.

Figure 10 shows the correspondence plot for the yeast data, the

x-axis represents the p value of found biclusters and the y-axis

shows the percentages of found biclusters whose log (p values) are

smaller than the value in the x-axis. Since the number of putative

clusters in [19] is 30, for each identified bicluster, the smallest p

value was selected for the 30 calculated p values. The p values for

all identified clusters are sorted in ascending order as shown in

Figure 10. The same statistical evaluation was applied to the other

two existing algorithms (d -cluster and pCluster).

As the number of overlapping genes (number of z0) increase, the

p value of a bicluster decreases. An algorithm is considered better

if it has a higher percentage of biclusters with small p value.

Figure 10 shows the comparison of this new method with the two

existing methods. Most biclusters identified by the new method

have relatively smaller p values. Half of the identified biclusters

have p value less than 10215. The result of e= 0.35 has very good

overlap with the putative clusters.

For the stem cell data, which has 46 conditions and 21,605

genes and is generated by illumine version2.0, several gene sets

that were predicted to be regulated by the same microRNA were

identified [21]. For example, genes PIAS3, FCHSD2, MEF2D,

SORBS2, ATXN1, and TRIB2 have similar expression profiles

and have the same regulating miRNA miR-18a/b. These results

also suggest that genes ADAMTS6, LUZP2, PRKAB2, ATXN1,

CYFIP2, DCP2, and CCRN4L are regulated by miR-494. These
Figure 9. Intuitive illustration of H-score.
doi:10.1371/journal.pone.0042431.g009

Table 2. The number of biclusters in our comparative study.

method Our method d-cluster pcluster

e = 0.15 e = 0.35 e = 0.5

#cluster 28 102 14 100 132

doi:10.1371/journal.pone.0042431.t002

Seed-Based Biclustering of Gene Expression Data
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genes have similar expression profiles across 46 adult stem cell

lines.

To evaluate the biological significance of the biclusters in terms

of GO (gene ontology), the GO terms that were associated with the

highest number of genes in the biclusters were identified. The p

value was used to measure significance. Figure 11 shows a

biologically significant bicluster of the yeast cell cycle data, which

has 17 genes that are associated with GO:0000166 (nucleotide

binding): YPL209C, YPL153C, YOL090W, YDL164C,

YDR097C, YDR507C, YCL024W, YNL102W, YLR032W,

YJL187C, YMR078C, YFL008W, YER170W, YJL074C,

YGR152C, YLR383W, YER095W. The p value is 1.4E204.

A cell cycle consists of four distinct phases: G1(preparation), S

(synthesis), G2(interphase), M(mitosis). As shown in Table 3, phase

G1 and G2 are the stage of cell growing. Phase S is for DNA

replication. Phase M is the last phase to complete cell division.

Figure 11 shows that the 17 genes related to nucleotide binding

are highly expressed in the S (DNA Synthesis) phase. In the M

phase, these genes return to their initial expression levels.

Figure 10. Correspondence plot for the Yeast cell cycle expression data.
doi:10.1371/journal.pone.0042431.g010

Figure 11. The significance of a bicluster in terms of GO terms.
doi:10.1371/journal.pone.0042431.g011
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Figure 12 shows that in one identified bicluster, there are 17

genes YBL027W, YBR181C, YBR191W, YBR189W, YBL090W,

YBL092W, YDR418W, YPL143W, YML063W, YPL081W,

YLR029C, YOR167C, YLR441C, YLR167W, YDL130W,

YOR369C, and YDR494W annotated to GO:0003735 (structural

constituent of ribosome). From the expression profiles shown in

Figure 12, and in G1 of the second round of cell cycles, these genes

are up-regulated sharply because in G (preparation) phase, cells

need ribosomes to generate a large number of ribosomal proteins

for cell differentiation. This is consistent with the result of [22]

which found that a large number of ribosome synthesis factors are

up-regulated before cell goes into cell cycle. All the identified

biclusters and their associated biological functions are listed in the

appendix file Material S1.

Evaluation of Computation Performance
This method exhaustively enumerates all genes as seed genes.

The computation complexity depends on two components: the

number of seeds and the computation time for each seed, i.e.

T = n6t, where T is the total time, n is the number of seeds and t is

the computation time for each seed. As described in step 1 of

‘‘Materials and Method’’ section, a gene is filtered out when the

difference between its maximum and minimum expression values

is smaller than t= 3e. The greater t, the more genes are removed

from the seed gene list because they do not show enough

fluctuation to be included in further analysis, so n becomes smaller.

However, larger e increases the similarity tolerance between two

gene expression profiles. A larger e causes the number of genes

that are similar to a seed to increase, which results in more

distance calculations between genes and the seed gene. The

increased number of distance calculations leads to a larger t. For

low dimensional data, n is the dominating factor. For the yeast cell

time course data (17-d), the computation time cost reduces when e
is increased from 0.15 to 0.5, which results in t increasing from

0.45 to 1.5. The decrease in the number of seed genes more than

offsets the increase in the number of genes that satisfy the similarity

tolerance to a seed gene. Consequently, reducing the number of

seeds reduces the total time T. However, for very high dimension

data (46-d), T is dominated by t from the distance computation.

Hence, increasing e actually increases the total computation time

T. Below are listed some empirical results showing computation

time costs.

The existing method, pCluster, was run in cygwin platform. The

new method was tested (with different e value) against the pCluster

method on both the yeast cell cycle dataset and the human adult

stem cell dataset. Table 4 shows the results. Note that, due to the

Table 3. Functions in cell cycle.

Phase G1 S G2 M

Biological functions Cells increase in size DNA replication Cells grow to be ready to
enter M phase

Stop growth and ready to
complete cell division

doi:10.1371/journal.pone.0042431.t003

Figure 12. Another significant bicluster in terms of GO.
doi:10.1371/journal.pone.0042431.g012
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high dimension and the large number of genes in the human adult

stem cell dataset, pCluster yielded a ‘‘memory exception’’ error

and failed to run.

Since the expression data is normalized by z-score, the different

data sets are expected to have similar computation complexity.

The main cost of computation and memory space depends on the

number of rows in the table in step (2). The bigger the table is, the

higher the complexity of space and computation. The complexity

of the algorithm was analyzed in terms of threshold distance,

minimum number of genes, and minimum number of conditions

in the biclusters.

The number of rows in the table was counted in terms of the

number of dissimilar conditions: that is, if the number of minimum

coherent conditions is 12 and the original expression data has 17

conditions, the number of possible dissimilar conditions should be

0, 1, 2, 3, 4, and 5. Therefore, the number of rows were counted in

0-, 1-, 2-, 3-, 4-, 5- dissimilar conditions. Figure 13 shows the

number of rows in the table for the yeast cell cycle data set.

Figure 13 (a) shows the maximum number of rows in the table

according to the number of dissimilar conditions in terms of

distance. Figure 13(b) shows the average number of rows, which is

the total number of rows of tables in the whole data set divided by

the number of tables or seeds. When the number of dissimilar

conditions is four, the table size reaches its maximum. However, in

this case, the maximum number of rows in the table is only 3,370,

which means our algorithm can be easily be run using a personal

computer. From Figure 13(b), it is clear that the average number

of rows in the tables was very small, which shows that finding

biclusters using the new method does not demand a high cost in

time and memory.

Figure 14 shows the size of tables in terms of the minimum

number of coherent conditions in each bicluster. Since the yeast

cell cycle data has 17 time points, and if the minimum number of

coherent conditions is 14, the dissimilar conditions can be 0, 1, 2

and 3. The lower the number of minimum coherent conditions,

the more rows the table will have. If the minimum number of

coherent conditions in a bicluster is 10, the maximum number of

rows in the table is around 8,000, but the average number of rows

is only three, confirming that this algorithm can easily run on a

personal computer.

Discussion

Biclustering has been widely researched for many years.

However, most biclustering methods are based on heuristic search,

which means that the detected biclusters are not optimum.

Heuristic search ensures that the biclusters are found in a

reasonable time. In this study, all biclusters were exhaustively

identified without compromising on quality. The unpromising

gene combinations were filtered out at early stage. As a result, the

time and space cost of this new method compares favorably to

other existing methods.

When the threshold of relative expression level e is increased,

the table used to store all candidate gene combinations is expected

to increase in size. However, as e increases, more candidate genes

will have been filtered out in the pre-processing stage, since the

threshold t for filtering out uninteresting gene expression profiles

depends on the relative expression level e (where t is set to: t= 3e).
The net result is that the table remains a reasonable size, despite

an increase in e.
In this method, biclusters with more coherent conditions are

output first. The biclusters that have fewer coherent conditions are

output later. Therefore, it is possible to stop the algorithm at a

specific time to get most, if not all, biclusters. For a large

microarray data, if one wants to get good biclusters quickly, a time

Table 4. Comparison of time cost.

Time(minutes)

dataset pCluster Our method

e = 0.15 (t = 0.45) e = 0.35 (t = 1.05) e = 0.5 (t = 1.5)

Yeast cell cycle (17-d) 0.4333 0.62291664 0.41456667 0.09375

Stem cell (46-d) N/A 8.586217 11.880575 22.16925

doi:10.1371/journal.pone.0042431.t004

Figure 13. Size of table in terms of distance of relative expression level.
doi:10.1371/journal.pone.0042431.g013
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threshold can be set such that only the biclusters that have more

coherent conditions are detected.

Conclusion
This work proposes a new seed-algorithm that performs

exhaustive searching of additive biclusters in a large dataset. The

central idea of this algorithm is to use all combinations of genes

and time points as seeds and create a candidate bicluster table for

each seed. The rows in the table are recursively combined. Those

rows with more coherent conditions are combined first, and, by

doing so, the most potential biclusters are identified and unrelated

rows are filtered out at early stage. Although many tables can

potentially be created by considering all combinations, most of the

tables are very small and have negligible impact on the total search

time. In our algorithm, the expression data is normalized by z-

score before biclustering. The normalization not only provides a

statistical basis for finding significant biclusters, but also reduces

the search space (or rows) in the tables. The biclusters detected by

this algorithm have better statistical significance than the existing

methods. Moreover, the biological significance of the detected

biclusters has been biologically confirmed to include genes that

have similar expression fluctuation in different cell differentiation

stages in the yeast cell cycle dataset.
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Figure S1 Flowchart of the algorithm.
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Table S1 Pseudocode of identifying bi-cluster.
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Material S1 In this electronic material S1 we list all
biclusters identified by our method.

(XLSX)
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