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Human host encounters a wide array of parasites; however, the crucial aspect is the failure of the host immune system to clear these
parasites despite antigen recognition. In the recent past, a new immunological concept has emerged, which provides a framework to
better understand several aspects of host susceptibility to parasitic infection. It is widely believed that parasites are able to modulate
the magnitude of effector responses by inducing regulatory T cell (Tregs) population and several studies have investigated whether
this cell population plays a role in balancing protective immunity and pathogenesis during parasite infection. This review discusses
the several mechanism of Treg-mediated immunosuppression in the human host and focuses on the functional role of Tregs and
regulatory gene polymorphisms in infectious diseases.

1. Immunomodulation by Parasites

In this paper, we specify parasites as eukaryotic pathogens
that largely include protozoa and helminths and survive off
their host partly or completely for their life cycle. They
employ various strategies to evade against an effective host
innate immune system. Innate immunity rarely eliminates
parasites but can successfully inhibit growth while they
recruit antigen-specific T and B cells to differentiate into
effector cells that thwart the infection [1]. For an effective
parasite survival, evasion of adaptive immunity remains the
key [2]. In this scenario, parasites strike a balance with the
host immune system to increase their survival rate. This
balance is accomplished by complex alteration of the innate
and acquired immune response of the host where regulatory
T (Tregs) cells play an important role [3].

2. Regulatory T Cells

Understanding the complex cellular and molecular mecha-
nism that regulates the host immune response to parasitic
infections still remains a key issue in immunology. The crip-
pling effect of host immunity on onset of an infection is due
to the fact that parasites induce Tregs that in turn suppress
antiparasite effector cells [4]. The Tregs are a subset of T cells

that function to control immune responses. The primary
role of Tregs is active suppression of several pathological
and physiological immune responses in the host, thereby
contributing to the maintenance of immune homeostasis [5–
7]. Although Tregs are defined as T cells with suppressive
activity on immune responses, it had been documented that
regulatory T cell populations remain diverse [8]; a few of
them are induced in response to infectious challenge and
the others are considered as natural regulators [9]. Parasites
can ably manipulate natural Tregs by amending the T cell
immune response at the infection site to an extent that could
lessen the infection burden, thereby prevailing in the host
for a longer time frame [10]. The well-characterized Tregs
are CD4+CD25+ population and represent about 10% of
peripheral CD4+ T cells both in mice and humans [11].
Tregs are considered as negative regulators of T cell immune
response and these natural Tregs originate during thymic
development and appear first in the fetal circulation [12].
The suppressor activity is enriched in naturally occurring
Tregs such as CD4+CD25+ that plays a vital role in the
initiation and orchestration of immune responses [13, 14].
The CD4+CD25+ population reveals a high expression of
Foxp3 transcription factor which is vital for differentiation
and function of naturally occurring Treg cells [15] and for
programming the suppressor T cell function [16, 17]. Foxp3+
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Tregs play an essential role in controlling the voracity of
the response as they generally strike a balance that limits
potentially harmful immune-mediated pathology to the host
while still allowing sufficient immune pressure against the
pathogen [18].

3. Mechanism of Suppression

T-cell receptors remain the key to trigger suppressive func-
tion in both naturally occurring and induced Tregs [19].
The regulation of T cells is either by contact-dependent
regulation or by soluble factors such as immunosuppressive
cytokines. To date, no precise mechanism has been clearly
postulated to explain the suppressor function exhibited by
Tregs.

3.1. Contact-Dependent Mechanism. Many different hypo-
theses have demonstrated how Tregs are regulated based on
the contact-dependent suppressive mechanism. However,
two specific mechanisms are reviewed here. One mechanism
is the interaction of T effector ligand CD80 and CD86 with
cytotoxic-T-lymphocyte-associated protein (CTLA-4). This
interaction triggers the transmission of immunosuppressive
signals on T effector cells thus inhibiting effector T-cell
function [20] (Figure 1(a)). CTLA-4 is expressed at high
levels on CD4+CD25+ Tregs, and there is substantial
evidence that CTLA-4 expressed by natural Tregs has a
key role in Treg-mediated suppression both in vivo and
in vitro [6, 21, 22]. In another model, the costimulatory
molecules CD80 and CD86 expressed in antigen-presenting
cells (APCs) interact with CTLA-4 leading to consequential
signalling and activation of IDO (indoleamine 2,3 dioxy-
genase) in dendritic cells (DCs), an enzyme responsible for
immune tolerance on effector T cells [23] (Figure 1(b)).
IDO catalyzes the conversion of tryptophan to kynurenine
that provides immunosuppressive effects in the local
environment of DCs by cytotoxicity or by de novo generation
of Tregs [8]. Studies have reported decreased activation
of T cells and T cell deletion in association with reduced
tryptophan concentration in cultures [23, 24]. Studies have
also demonstrated that human adaptive Tregs preferentially
expressed granzyme B and are capable of killing allogenic
tumour cells in a perforin-dependent manner [25]. In line
with these studies, it is demonstrated that both subtypes
CD4+CD25+ Tregs exhibit perforin-dependent cytotoxicity
against a variety of autologous target cells including CD4+,
CD8+, CD14+ monocytes and dendritic cells [26].

3.2. Immunosuppressive Cytokine Mediated. In contrast to
contact dependent suppressive mechanism, reports indicate
that cytokines such as IL-10 and transforming growth factor
(TGF-ß) are needed for in vitro mediating suppression
[27, 28]. Several in vivo studies have indicated the role
of immune suppressive cytokines in suppression. In this
model, Treg-dependent inhibition of tumor-specific CD8 T
cell-mediated cytotoxicity requires expression of the TGF-
ß receptor by CD8 cells thereby demonstrating a specific
role of TGF-ß signaling in the inhibition of cytotoxicity

independent of cellular proliferation [29] (Figure 1(c)).
The IL-10 cytokine hampers the antigen presenting ability
by downregulating the MHC class II and costimulatory
molecules on DCs thereby preventing the maturation and
activation of dendritic cells both in humans and in mice [30].
TGF-ß also downregulates the MHC class II expression and
costimulatory molecules on DCs [31].

In addition, in mouse models, a recent study had de-
monstrated that helminth parasites have evolved a novel
mechanism to directly expand Foxp3+ Tregs which may be a
key part of the parasite’s strategy to survive in the host for
a longer time [32]. On infection with intestinal helminth
H. polygyrus, an expansion of the Foxp3-expressing CD4+ T
cells was observed. The H. polygyrus excretory-secretory
antigen (HES) induced Tregs and was demonstrated to sup-
press in vitro effector cell proliferation. The hypothesis pro-
posed that HES ligated the transforming growth factor TGF-
ß receptor and promoted Smad2/3 phosphorylation. The
Foxp3 induction by HES was lost in dominant-negative
TGF-ßRII cells and was eliminated by the TGF-ß signaling
inhibitor [32].

4. Tregs and Tropical Diseases

Tregs can reduce injurious host inflammatory and immune
responses through mechanisms of cell-to-cell contact,
inhibitory cytokines, and cytokine deprivation. This pre-
vents an overexuberant immune response with bystander
tissue damage during the host response to infections [33].
However, Tregs may also blunt Th2 responses such as IL-
5-dependent eosinophil activation required to kill parasites.
The interplay and balance among host Th1, Th2 and Tregs
responses is crucial in the defense against a parasitic
infection [34]. Some of the earliest studies emphasized that
natural Tregs help control the extent of immune-mediated
pathology. During malarial infection increased numbers
of CD4+CD25+Foxp3+ T cells have been found in both
human and murine malaria infection [35, 36]. Evidences
of the role of Tregs as suppressors of T-cell responses
in malaria was initially demonstrated in murine models,
where Tregs are known to be associated with increased or
delayed parasite growth [37, 38]. Higher Tregs numbers are
associated with increased parasite load and development of
human infection caused by P. falciparum [39, 40]. Given
these associations between severe disease and exacerbated
immune pathology, a number of studies have explored the
role of CD4+CD25hi Foxp3+CD127−/lo Tregs in determining
the outcome of malaria infection. In a study conducted
among Gambian children with severe, uncomplicated clin-
ical malaria and with healthy (controls), Tregs were unable
to control the inflammation during acute and severe P.
falciparum infections, suggesting that this component may be
rapidly overwhelmed by virulent infections [41]. Tregs may
be beneficial to the host in the later part of the infection—
when parasitemia is being cleared—by downregulating the
inflammatory response and thereby preventing immune-
mediated pathology [41]. On the other hand, if Tregs
mediate their suppressive effects too early, this could hamper
the responses required for initial control of parasitemia,
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Figure 1: Mechanism(s) of suppression: illustrates various molecular and cellular mechanisms to explain how Tregs can suppress host
immune responses. (a) In contact dependent mechanism the costimulatory molecules, namely, CD80/86, interact with CTLA-4 to trigger
immunosuppressive signals on T effector cells leading to subtle effector cell function. (b) In contact dependent mechanism, CD80/86
expressed in APC interact with CTLA-4 leading to consequential signalling and activation of IDO leading to immunosuppressive effects.
(c) The crosstalk of TGFß expressed in APC to TGFß II receptor leads to immunosuppressive cytokine-mediated suppressor function.

permitting unbridled parasite growth, which may also lead
to severe disease. It was also demonstrated that patients with
acute P. vivax infection presented a significant augmentation
of circulating Tregs producing anti-inflammatory (IL-10
and TGF-ß) as well as pro-inflammatory (IFN-γ, IL-17)
cytokines, which were further positively correlated with
circulating parasites [42]. Malaria-specific induction of Tregs
has been observed in a variety of experimental malaria
infections in mice [36, 43], but their role in preventing severe
malarial pathology is still unclear.

Tregs are widely believed to be involved in silencing
the immune response during chronic stages of any filarial

infection. Although patients with chronic Onchocerciasis
(river blindness) posses higher worms burden, they reveal
little/no signs of dermatitis. Studies have argued that Tr1 (a
subset of CD4+ T cells) induce a substantial increase in IL-
10, IL-5, and IFN-γ levels conferring an immunosuppressive
effect [44] in chronic onchocerciasis individuals, whereas
in animal models studies had demonstrated that a subtle
immune response is mediated by female worms [45, 46]
and is dependent on TGF-β and IL-10, two cytokines
closely implicated in the activity and induction of Tregs
[47–49]. In Litomosoides sigmodontis model, the infective
L3 stage induces the proliferation of CD4+Foxp3+ Tregs,
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which translates to an increased percentage of CD4+ T cell
population at the site of infection expressing Foxp3+ cells
within 7 days after infection [49]. The CD4+ regulatory T
cell population has also been found significantly higher in
several other filarial infections, including Brugia malayi [50],
the gastrointestinal nematode Heligmosomoides polygyrus
[51, 52], and the gut/muscle-dwelling nematode Trichinella
spiralis [53].

Chagas, a tropical disease caused by Trypanosoma cruzi is
known to cause cardiomyopathy, an inflammatory response
in the heart [54]. The occurrence of larger proportion of
Foxp3+ population has been demonstrated to control the
inflammatory responses in the heart during chagas disease
[55]. Therefore, Foxp3+ cells may be involved in a possible
mechanism to prevent exacerbation of the inflammatory
responses [54, 55]. A similar pattern of Tregs role was
established with African trypanosomiasis in a mouse mod-
els where naturally occurring Foxp3+ Tregs induce IL-10
production with subtle IFN-gamma response by CD4+ and
CD8+ effector T cells. In addition, Tregs also downregulate
classical activation of macrophages resulting in decreased
activity of TNF-alpha [56]. The Treg activity is believed to
decrease the tissue damage in the host cells suggesting a car-
dinal role for naturally occurring Tregs in the development
of a tolerant phenotype during African trypanosomiasis
[57].

The immune response against T. gondii, an intracellular
parasite and the etiological agent of toxoplasmosis, has
been largely characterized and demonstrated that cellular
immunity plays a vital role in controlling infections [58].
Of which, Tregs were demonstrated to modulate the pro-
tective immune response against T. gondii, thereby driving a
powerful Th1 immune response [59, 60]. Also, it is believed
that the absence of Tregs in toxoplasmosis may induce an
uncontrolled inflammatory response [60].

Foxp3-expressing Tregs have been implicated in parasite-
driven inhibition of host immunity during chronic infection
[32]. One of the major effects of chronic helminth infections
is induction of T-cell hypo responsiveness [61]. The mech-
anisms involved have been thought to be multiple and the
involvement of natural and inducible Tregs in down regulat-
ing effector T cell responses upon chronic infection has been
proposed [62]. The cytokines IL-10 and TGF-ß have been
associated with down regulation, indicating that regulatory
populations are activated during infection. The importance
of IL-10 as a crucial mediator of regulation in parasite infec-
tions has been well recognized both in humans and murine
[63–65]. In human filariasis, heavily infected individuals
have high IL-10 levels and IL-10 messenger RNA production
which was inversely correlated with T cell proliferation
[34, 66]. Similarly infection in experimental Schistosoma
mansoni was shown to be associated with immunoregulatory
mechanisms, including Treg that may help control morbidity
and dampen resistance to reinfection. Treg responses control
both Th1 and Th2 responses in an IL-10 independent
manner [67, 68] and are associated with regulation of
granuloma formation in chronic infections [69]. In a study
conducted among patients infected with S. mansoni in Kenya,
it was revealed that few patients had higher proportions

of CD3+/CD4+/CD25high Tregs that subsequently decreased
after treatment with praziquantel. The study concluded that
not all Schistosoma mansoni-infected individuals develop
high percentages of circulating Tregs. The effective treatment
decreases the proportion of Tregs and their phenotypes,
possibly because of the removal of constant exposure to
antigens from intravascular, egg-producing adult worms
[70]. In a NOD mice model, treatment with S. mansoni egg
antigen (SEA) was shown to upregulate TGF-ß on T cells and
Th2 cells resulting in the expansion of Foxp3+ that remain
crucial in determining the SEA-mediated diabetes outcome
[71]. Also, hsp60 peptide (SJMHE1) of S. japonicum induces
CD4+CD25+Foxp3+ Tregs both in vivo and in vitro resulting
in subsequent release of IL-10 and TGF-ß [72].

Nematode infections have been shown to induce regu-
latory cell expansion in both mice and humans [73]. In a
study conducted in Lima, Peru, among human T lymphocyte
virus (HTLV-1) patients with or without Strongyloides infec-
tion, increased proportions of CD4+CD25+Foxp3+ Tregs
were observed in patients with S. stercoralis and HTLV-1
coinfection in comparison to normal controls [33]. Further-
more, those with increased proportions of CD25+FoxP3+

cells had decreased antigen driven production of IL-5 and
lower eosinophil counts. This reduced response is inversely
correlated with the proportion of CD4 cells, which are
CD4+CD25+FoxP3+, suggesting a role for these cells in
blunting antigen-driven protective responses.

Visceral Leishmaniasis (VL) represents a parasitic disease
that has been shown not to induce expansion of natural
Tregs. In a study conducted among patients presenting with
symptoms of Kala-azar, frequencies of Foxp3+ cells in patient
with VL before and after treatment did not increase, neither
were they elevated when compared to endemic controls. It
was therefore concluded that active VL is not associated
with increased frequencies of peripheral Foxp3 Treg or
accumulation at the site of infection [74]. While active VL
does not induce expansion of Treg, it has been shown in
animal models that Treg is directly responsible for its re-
activation [75]. During the primary infection, L. major can
disseminate to other tissues within the body which may
persist after parasite reduction and healing [76, 77]. These
persistent parasites are associated with the establishment of
strong immunity against reinfection, a state that is referred
to as concomitant immunity [75, 78, 79]. Tregs have been
found abundantly at these reinfection sites while it reduces
at the site of initial infection confirming its importance
in reactivation of VL infection. Significant increase in IL-
10 production by dermal and LN CD4+ T cells has been
shown during the reactivation process confirming a role
of IL-10 mediated Leishmaniasis both in susceptible and
resistant individuals [80, 81]. In macaque (Macaca mulatta)
model, L. braziliensis strain that produces self-healing dermal
lesions was used to characterize the systemic and local cell-
mediated immune responses that led to controlled growth
of granulomas in the infected host. Resolution of infection
was observed to be dependent on concomitant recruitment
of interleukin- (IL-)-10-producing CD4+CD25+ regulatory
T (Treg) cells that suppress the effector T-cell-mediated
inflammatory response [82].
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5. Regulatory Gene Polymorphisms

Parasites exert a selection pressure on their hosts and are
accountable for driving diversity within gene families and
immune gene polymorphisms in a host population. The
pathogen driven selection on immune genes can potentially
alter the primed sequence and can direct to substantial
changes in gene expression [1]. A number of loci were known
to be associated to Treg activity. Genes such as IL-2, IL-4,
IL-10, IL-13, STAT-4, STAT-6, GITR, TLRs, and Foxp3 are
established as key players in regulating Tregs [1]. The inves-
tigation of human polymorphisms in loci associated with
Treg activity may underlie both susceptibility to infection
and level of Treg expression. Many of these polymorphisms
evolved and are maintained in a human population exposed
to infectious diseases. Genotype associations may predict
likely susceptibility and allow identification of subjects at
the risk of developing the disease and may be subjected to
therapeutic treatment.

Investigation of human polymorphisms in immune
relevant genes has been used to determine the level of
Treg expression and thereby the extent of susceptibility
to parasitic infection [10]. The single-nucleotide polymor-
phisms (SNPs) in the promoter region of the genes such
as STAT6, Foxp3, and TNFRSF18 were well characterized
for their functional role [4, 10, 83]. One gene of interest
that plays a key role in the function of Tregs is the IL-10
gene locus. In populations exposed to Leishmania braziliensis
in Bahia, Brazil, genetic analysis of the IL-10-819C/T SNP
polymorphism, located in the IL-10 promoter, showed that
the C allele increased the risk of lesions. The IL-10-819 C/C
genotype was associated with higher levels of IL-10 than
C/T and T/T genotypes demonstrating a vital role for IL-
10 in skin lesions in humans infected with L. braziliensis
[84]. Also, IL-10 promoter polymorphism was recently
shown to influence nonspecific total IgE levels, but not
schistosomiasis-specific immunity [85]. In chagas disease
low IL-10 expression was associated with cardiac function
and it was demonstrated that the polymorphic allele, which
correlates with lower expression of IL-10, was associated with
the development of chagas disease cardiomyopathy. IL-10
gene polymorphism and IL-10 expression are important in
determining susceptibility to chagasic cardiomyopathy [86].
Also, in malaria infection it was shown that common IL-
10 promoter haplotypes condition susceptibility to severe
malaria anemia and functional changes in circulating IL-
10, TNF-alpha, and IL-12 levels in children with falciparum
malaria [87]. In a study among subjects infected with urinary
schistosomiasis in Mali, an association was found between
STAT6 (rs324013) gene polymorphism and infection level in
subjects under 20 years while the same study did not observe
any association with IL-4 and IL4R polymorphism [88]. IL-
13 promoter polymorphism has also been associated with
urinary schistosomiasis [89].

6. Conclusion

In summary, the field of infectious disease immunology is
at an exciting intersection with new concepts in regulation

of immune responsiveness. Despite extensive studies, there
is still much that remains unclear about the mechanism and
activities of Treg. A more comprehensive understanding of
the mechanisms and gene-expression pathways that underlie
the Treg activities will be essential if new therapeutic
strategies are to be developed. The ability of the Treg cells
to control many facets of the immune response makes them
an interesting model to study possible immune-modulatory
intervention.
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