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Robust detection of the smallest circulating cerebral microemboli is an efficient way of preventing strokes, which is second cause
of mortality worldwide. Transcranial Doppler ultrasound is widely considered the most convenient system for the detection of
microemboli. Themost common standard detection is achieved through the Doppler energy signal and depends on an empirically
set constant threshold. On the other hand, in the past few years, higher order statistics have been an extensive field of research as
they represent descriptive statistics that can be used to detect signal outliers. In this study, we propose new types of microembolic
detectors based on the windowed calculation of the third moment skewness and fourth moment kurtosis of the energy signal.
During energy embolus-free periods the distribution of the energy is not altered and the skewness and kurtosis signals do not
exhibit any peak values. In the presence of emboli, the energy distribution is distorted and the skewness and kurtosis signals exhibit
peaks, corresponding to the latter emboli. Applied on real signals, the detection of microemboli through the skewness and kurtosis
signals outperformed the detection through standard methods. The sensitivities and specificities reached 78% and 91% and 80%
and 90% for the skewness and kurtosis detectors, respectively.

1. Introduction

Sudden intensity increases in the Transcranial Doppler
(TCD) signal are majorly interpreted as signatures resulting
from cerebral emboli.The passage of cerebral emboli through
blood vessels feeding the brain could result in blockage of
these vessels and consequently lead to stroke, the second
cause of mortality worldwide. Embolic strokes constitute up
to 14% of all strokes [1]. Therefore, embolic strokes represent
a major death threat and thus the early detection of the
smallest microemboli is an important issue for which robust
solutionsmust be found.This early detectionwould be a basis
for early stroke diagnosis and thus avoiding its occurrence.
Nowadays, TCD is considered the most effective embolic
stroke diagnosis system.

Although the characteristics and physical nature of
embolic signals, in the TCD signal, have been well defined,
the task of detecting embolic and particularly smallmicroem-
bolic signals still poses a tough challenge. The gold standard

method of detecting the passage of emboli is the audible
detection of the sudden “chirp” or “moan” produced by
emboli as well as the visual detection of the time-frequency
representation (spectrogram) generated on the TCD screen.
Amain limitation of the gold standard is the inability to audi-
bly detect microembolic signals located at the systolic phase
due to temporal and frequency masking effects in audio files.

The standard signal processing method of detecting
embolic signals is based on calculating the energy from
the spectrogram and applying constant thresholds to pick
up the emboli which, according to Rayleigh theory [2],
backscatter ultrasound energy higher than that backscattered
by the surrounding blood. The major limitations in standard
techniques reside in the inability of detecting small microem-
bolic signals having lower intensities than the surrounding
background blood mainly at the systolic peak.

As a purpose to detect the smallest microemboli, many
research works have been carried out. We list some of the
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most punctual methods. Frequency filtering methods were
introduced in [3, 4].The study reported high detection sensi-
tivity and specificity rates. Subsequently, an online automated
embolic signal detection algorithm based on frequency fil-
tering was developed in [5, 6]. The latter system showed
high performances in terms of sensitivity and specificity for
particular cases (postcarotid endarterectomy). However, in
other conditions (atrial fibrillation) the system’s sensitivity
and specificity severely decreased.Moreover, the system’s per-
formance in the detection of low energymicroembolic signals
was arguably less efficient with much lower sensitivity and
specificity. Methods based on detection of sudden changes
were introduced in [7]. Nonparametric detection methods
mainly the Fourier, Wigner-Ville, and wavelet approaches
were compared to parametric autoregressive methods. The
new parametric methods were proven to be highly perfor-
mant and efficient in the detection of small microemboli.
However, the methods were tested on synthetic simulated
Doppler signals and never on a set of real signals. Another
highly productive wavelet-based system was established in
[8]. The system achieved a high combination of sensitivity
and specificity. However, the system’s rates decreased in the
case of low energymicroembolic signals. A remarkable offline
detection was proposed in [9]. The system had excellent
performance for emboli having high intensities relative to
background blood clutter. However, it is to be noticed that
the study did not take into consideration the detection of
weak embolic signals.The authors in [10] introduced another
highly achieving detection procedure based on the discrete
wavelet transform (DWT). DWT allowed major increases in
specificity and sensitivity. Nonetheless, a major deficiency
of the DWT implementation was the reduced frequency
resolution at low frequency scales, in which embolic signals
are mostly found. In [11], the authors proposed embolic
detection using the adaptive wavelet packet basis and neu-
rofuzzy classification. The adaptive wavelet packet basis was
used to make a sparse representation of Doppler ultrasound
blood flow signals. The method produced highly accurate
and robust performances. However when compared to other
methods only the sensitivity was taken into account and the
correlated specificity was not calculated.The study submitted
in [12] requested the use of Fractional Fourier Transform
rather than the short time Fourier transform, the standard
method of detection in TCD systems.The results showed that
discriminating parameters based on the Fractional Fourier
Transform help easier analysis and detection of embolic
signals. Despite its simplicity and acceptable results, this
methodwas not proven reliably decent for the detection of the
smallest microemboli.Themethod proposed in [13] achieved
very high sensitivity and specificity but large detection errors
occurred due to small gaseous emboli exhibiting small
reflected signals.

In most articles previously introduced, the main limi-
tation lies in the fact that the information on which the
detection takes place is time-varyingwhile the threshold used
is constant. To match between the time-varying information
and the threshold, two solutions can be proposed. The first is
proposing a time-varying threshold as in [14, 15] thatmatches
the time-varying trend of the decision information. Second

is proposing a constant threshold that matches the decision
information for which the time-varying trend is removed.

In this work, the methods we proposed of matching
between a constant threshold and an energy free of its
time-varying trend are based on the use of high order
statistic (HOS) of windowed Doppler energy signal. We
tend to prove the skewness and kurtosis as two solid means
to detect microembolic signals when asymptomatic caroid
artery patients are monitored with a Holter TCD.

2. The Offline Microembolic Detection Unit

As previously mentioned, our objective is to perceive a
microemboli detector more sensitive and robust regarding
most standard detectors.

In this study, the typical offline signal processing unit is
decomposed into 3 units:

(i) Unit A, allocated for loading the wave file, 10-second
signal segmentation, short time Fourier transform
(STFT) calculation, and instantaneous energy calcu-
lation from the STFT

(ii) Unit B, allocated for standard energy detection on the
energy signal obtained in Unit A

(iii) Unit C, allocated for the new energy detection tech-
niques based on skewness and kurtosis calculation of
the energy signal obtained in Unit A

2.1. Unit A: Doppler Signal Extraction, STFT, and Instan-
taneous Energy Calculation. The different systems that we
want to test, depicted in Figure 1, share a common structure.
From the SD card plugged out from the Holter system and
plugged into the personal computer, the Doppler signal is
picked up and put in memory. From this Doppler digital
signal, the short time Fourier transform is calculated, first
to display the spectrogram and second to estimate instanta-
neously the Doppler energy. Calculations of the STFT and
the instantaneous energy are carried out repetitively on 10-
second segments extracted from the Doppler signal.

Most commercial TCD ultrasound systems are based on
the short time Fourier transform. The short time Fourier
transform is an adapted form of the Fourier transform that
analyzes only a small segment of the signal at a time, a
technique called windowing of the signal or also Windowed
Fourier Transform (WFT). Short time Fourier transform is
used when the Doppler signal within the analyzing window
is stationary. In reality, transforming data into the frequency
domain results in loss of time information. By applying the
Fourier transform of a signal, it is impossible to identify
when a particular event takes place. The STFT was thus
proposed to correct this deficiency. The STFT maps a signal
into a two-dimensional function of time and frequency. This
representation is known as the spectrogram.

The STFT frequency estimator with a sliding window can
be formally written as follows:

𝑆 (𝑡, 𝑓) = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫ 𝑥 (𝜏) 𝑤
∗ (𝑡 − 𝜏) exp−𝑗2𝜋𝑓𝑡𝑑𝜏󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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Figure 1: A typical embolus detection system including standard detection and our new detection procedure. Unit A includes extracting 10 s
digital Doppler signal sequences from the SD card extracted from the Holter system, calculating the short time Fourier transform, and lastly
calculating the instantaneous energy from STFT estimators. Unit B represents the detection achieved using standard methods while Unit C
represents the new detection procedure we have developed based on skewness and kurtosis calculation.

where 𝑥(𝑡) is the analyzed Doppler signal, 𝑤(𝑡) is a sliding
window, and ∗ stands for complex conjugation.

When using the STFT to process embolic signals, it
is of great importance that the STFT parameters are opti-
mized. The three processing parameters are the window size,
the window type, and the overlap ratio. Despite the fact
that setting the parameters significantly affects the embolus
detection system based on STFT calculations, little work on
the effect of the different parameters has been reported. A
fundamental work was reported in [16]. The authors evalu-
ated the effect of varying the three parameters on embolic
signal temporal and frequency resolutions, time of embolic
signal onset, and the power of the embolus at the frequency
with maximum power relative to the average power of the
background intensity. Based on [16] and after a preliminary
stage of experimental optimization of the STFT parameters,
the STFT in this study is performed using a 14.6-millisecond
Hamming window with an overlap of 65%.

The instantaneous energy at a fixed time 𝑡 can be obtained
from STFT frequency estimators in (1) by

𝑒 (𝑡) = ∫ 𝑆 (𝑡, 𝑓) 𝑑𝑓. (2)

Note that the energy returned by a microembolus would
be greater than that returned by billions of red blood cells
(RBCs), since a microembolus is often larger than RBCs.
Hence, the backscattered energy would function as a solid

indicator from which the presence of embolic and microem-
bolic signatures could be detected. This justifies why most
detectors are chosen to be mainly based on energy criteria.

2.2. Unit B: Standard Microembolic Detection. The standard
detection methods, to which we compare the new proposed
methods, are based on a direct detection of the embolic
signatures in the energy signal. An empirical threshold
is commonly used. This constant threshold can be fixed
empirically by the trained user for the entire examination. It
is patient-, operator-, and device-dependent. This threshold
is set above the maximal background energy of the Doppler
signal when no embolus is present [17], that is, the systolic
peak. The microembolic standard detection based on a
constant threshold is represented in Figure 2(a).

The main limitation of using such method resides in
comparing the energy which is time-varying, to a constant
threshold. To match between the time-varying trend of the
energy and the threshold, two solutions can be proposed:
either a time-varying threshold as in [14, 15, 18] that matches
the time-varying trend of the decision information or a
constant threshold that matches the energy while removing
the time-varying trend.

2.3. Unit C: Skewness and Kurtosis Based Microembolic Detec-
tion. As previously mentioned, it is a threshold-oriented
detection. As shown in Figure 2 weak embolic events are
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Figure 2: (a)TheDoppler energy signal. An empirical threshold is applied to obtain themicroembolic standard detection. (b) Skewness signal
calculated from the windowed energy signal. A data-based threshold is applied to complete the microembolic detection. The mean value of
the skewness signal is 0.7. (c) Kurtosis signal calculated from the windowed energy signal. A data-based threshold is applied to complete the
microembolic detection. The mean value of the kurtosis signal is 3.2. Moreover, we choose in (b) and (c) three time positions: 𝑡1 = 0.72 s
during which an embolus is present and 𝑡2 = 4.7 s and 𝑡3 = 8.8 s when no embolus is present. We detect, in the case of absence of embolus,
𝑆(𝑡2) ≈ 𝑆(𝑡3) ≈ 0.7 and𝐾(𝑡2) ≈ 𝐾(𝑡3) ≈ 3.2, while in the presence of embolus we detect 𝑆(𝑡1) = 2.8 ̸= 𝑆(𝑡3) ≈ 0.7 and𝐾(𝑡1) = 11 ̸= 𝐾(𝑡3) ≈ 3.2.

impossible to detect with a constant threshold. One way
to overcome this issue is to remove the time-varying trend
in the instantaneous Doppler energy. To prove that high
order statistics such as the skewness and the kurtosis are
suitable candidates to overcome this limitation, consider a
Doppler signal free of microembolic events and assume that
the statistical distribution remains unchanged whatever the
time position is even if the mean 𝜇𝑖(𝑡) and the variance
𝜎𝑖2(𝑡) vary with time. Suppose there exists two Gaussian
random variables 𝑋(𝑡2) = 𝑁(𝜇1(𝑡2), 𝜎1(𝑡2)) and 𝑋(𝑡3) =𝑁(𝜇2(𝑡3), 𝜎2(𝑡3)). It can be shown for the skewness 𝑆 that
𝑆(𝑡2) = 𝑆(𝑋(𝑡2)) = 𝑆(𝑋(𝑡3)) = 0 and for the kurtosis 𝐾
that 𝐾(𝑡2) = 𝐾(𝑋(𝑡2)) = 𝐾(𝑋(𝑡3)) = 3. In this example the
skewness and the kurtosis are stationary since 𝑆(𝑡) = 0 and
𝐾(𝑡) = 3 for all 𝑡. This outcome can be verified whatever the
distribution form while it remains unchanged over all time
values. The only change occurs in the value of the skewness
and the kurtosis but not in their stationarity. Consequently,
when a microembolic event occurs at a time position 𝑡1, the
distribution changes. The direct consequence is 𝑆(𝑡1) ̸= 𝑆(𝑡2)
and𝐾(𝑡1) ̸= 𝐾(𝑡2).

Therefore, we can propose a new detector based on
calculating the skewness and kurtosis from the energy signal.
The calculations are performed using a sliding window 𝑔(𝑡)
where the optimal window length and overlap ratio are set
during a training phase (see Results section).

The skewness is the third-order standardized moment.
When calculated instantaneously (by the sliding window) on
the energy it is given by the following equation:

𝑆 (𝑡) = 𝐸 [𝑒 (𝑡) − 𝜇𝑒 (𝑡)]
3

𝜎𝑒 (𝑡)3
. (3)

The kurtosis is the fourth-order standardized moment.
When calculated instantaneously on the energy it is given by
the following equation:

𝐾 (𝑡) = 𝐸 [𝑒 (𝑡) − 𝜇𝑒 (𝑡)]
4

𝜎𝑒 (𝑡)4
, (4)

where 𝜇𝑒(𝑡) and 𝜎𝑒(𝑡) are the instantaneous mean and stan-
dard deviation of the energy while 𝐸[] denotes the expected
value.
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Figure 3: (a) Robot probe and (b) Holter Transcranial Doppler System (TCD-X, Atys Medical, Soucieu en Jarrest, France).

The microembolic detection based on the skewness and
kurtosis signals is represented in Figures 2(b) and 2(c).

In order to complete the detection on the skewness
and kurtosis signals, a threshold has to be set in order to
pick up the peak signals. We decided to establish a data-
based threshold for the skewness and kurtosis signals from
their respective means 𝜇𝑠 and 𝜇𝑘 and respective standard
deviations 𝜎𝑠 and 𝜎𝑘. This threshold is defined as 𝜆𝑠 =𝜇𝑠 + 𝑚𝜎𝑠 for skewness and 𝜆𝑘 = 𝜇𝑘 + 𝑚𝜎𝑘 for kurtosis,
where 𝑚 is a parameter whose value is adjusted using an
optimization training phase in a manner that increases the
system’s sensitivity and specificity (refer to Results section).
The thresholds are represented in Figures 2(b) and 2(c).

3. The Holter System and the Protocol

TCD is a noninvasive, nonionizing, inexpensive, portable,
and safe technique, which renders it as a convenient tool
for the detection of cerebral microemboli. Long time probe
positioning and the short effective examination duration
are the main limitations of traditional TCD systems. The
Transcranial Holter (TCD-X, Atys Medical, Soucieu en Jar-
rest, France) shown in Figure 3 allows prolonged patient
monitoring (higher than 5 hours) with the patient no longer
attached to a TCD and does not need to be laying on a bed
but rather can be monitored under naturalistic conditions.
TheHolter is equipped with a robotized automatic probe that
helps find the best TCD signal and tracks it automatically
during the whole recording.

A database obtained from the Centre Hospitalier
Régional Universitaire (CHRU) de Lille (2 Avenue Oscar
Lambret, 59000 Lille, France) is used. Informed consent for

Holter monitoring was obtained from all monitored patients.
The recordings were acquired from the middle cerebral
artery of the patients. The ultrasonic wave frequency was
1.5MHz, the pulse repetition frequency (PRF) was 6.4 kHz,
and the ultrasound power was 50mW/cm2.

After the clinical examination, an analogous conversion is
performed on theDoppler digital signal and then theDoppler
signal is sent to a loudspeaker. From the audible Doppler
signal and from the spectrogram displayed on a screen, we
detect and count manually the number of microembolic
events in order to constitute our gold standard of detection.
The gold standard is subject to interagreement between
three experts of our laboratory. Then, the positions in time
of audibly and visually agreed-on microembolic events are
noted. This gold standard is used to assess the results of
the different detectors used and validate their performances.
Although the gold standard detections obtained from experts
and nonexperts might be the same as stated in [19], the
experience of the latter experts was useful to distinguish
between microembolic signals and artifact signals discussed
next. We should also point out that listening to the audio
files is made at the normal playing speed and another time at
half the normal speed which allows us to detect microemboli
previously inaudible due to the well-known temporal and
frequency masking effects in audio files.

4. Results

The different detectors are tested through algorithms we
developed using the numerical calculation software Matlab
(Mathworks, Natick, MA, USA). Our database is composed
of 18 recorded signals divided into two categories. The first
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Table 1: Training phase results of the optimal thresholds that best maximize the sensitivity and specificity for the standard energy detector
and skewness and kurtosis based detectors.

Optimal threshold that maximizes the sensitivity and specificity Sensitivity (%) Specificity (%)
Standard energy detector 5 dB 67% 58%
Skewness detector 𝜆𝑠 = 𝜇𝑠 + 4𝜎𝑠 76% 91%
Kurtosis detector 𝜆𝑘 = 𝜇𝑘 + 5𝜎𝑘 77% 91%

Table 2: Results (sensitivity and specificity) for the standard energy detector and the new detectors based on skewness and kurtosis
calculations of the Doppler energy signal.

Detector type True positive False positive Sensitivity (%) Specificity (%)
Gold standard detections = 136
Standard detection 88 58 65 60
Skewness detection 106 10 78 91
Kurtosis detection 109 12 80 90

is the training phase (8 signals) dedicated to determining the
best settings of the detectors used. The second is the testing
phase (10 signals) dedicated to assessing the performances of
the detectors used under the optimal settings determined in
the training phase.

Two parameters are used to evaluate the detectors:

(i) Sensitivity (or Detection Rate) calculated as the num-
ber of true positive detections/the number of gold
standard detections. True positive detection refers to
the detection of an embolus recorded in the gold
standard.

(ii) Specificity calculated as 1 − False Alarm Rate (FAR)
the latter being the number of false positive detec-
tions/the total number of detections. False positive
detection refers to the detection of an embolus not
recorded in the gold standard or in other words an
embolus which has not crossed the sample volume.

4.1. Training Phase Results. Since the threshold applied on the
energy signal to achieve the standard detection is empirically
set through the choice of the user, different microembolic
detections could be obtained. To overcome this we initialize
a training phase to preset the best empirical threshold to
be used in the testing phase. 3 to 9 dB values are used.
Table 1 shows the empirical threshold that best maximizes the
sensitivity and specificity.

Moreover, since the skewness and kurtosis calculations
are performed using a sliding window 𝑔(𝑡) on the energy
signal, an experimental test on the training phase signals is
initialized to determine the optimal length of thewindow𝑔(𝑡)
and the optimal overlap ratio. The optimal temporal window
length is 7.3milliseconds and the optimal overlap used is 95%.
Also, using these settings we test in the training phase the best
data-based threshold 𝜆𝑠 = 𝜇𝑠 + 𝑚𝜎𝑠 and 𝜆𝑘 = 𝜇𝑘 + 𝑚𝜎𝑘 for
the skewness and kurtosis signals, respectively. Values of 𝑚
ranging between 3 and 7 are tested. Table 1 shows the data-
based threshold for the skewness and kurtosis signals that
best maximizes the sensitivity and specificity.

4.2. Testing Phase Results. Table 2 represents the testing
phase results for the three different energy detectors. For
the standard energy detector with empirical threshold, the
sensitivity is 65% and the specificity is 60%. For the energy
detector based on skewness calculation the sensitivity is 78%
and the specificity is 91%. For the energy detector based on
kurtosis calculation the sensitivity is 80% and the specificity
is 90%.

The results presented show that the new detectors are
able to significantly increase the specificity compared to
standard detection (more than 30%). Moreover, the sensi-
tivity achieved by the new detectors is increased by 13%
for the skewness detector and 15% for the kurtosis detector
compared to that achieved by standard detectors. These
results assert the accuracy and superiority of the detection
based on skewness and kurtosis calculation of the Doppler
energy signal over the standard detection applied directly on
the Doppler energy signal.

5. Discussion

The results obtained were clear. The methods based on HOS
overpassed by far the standard method based on the second-
order statistics. The reason explaining such superiority lies
in the HOS sensitivity in modifying the distribution form.
Knowing that the occurrence of a microembolus superim-
posed on the Doppler energy signal imposes changes in the
distribution of this signal, we propose to use the skewness
and kurtosis as new tools for microembolus detection.
During embolus-free periods the Doppler energy signals’
distribution is fixed and its skewness and kurtosis are never
altered. They do not show any variations. However, in the
presence of a microembolus superimposed on the energy
signal, the skewness and kurtosis signals are altered and
the embolus is attributed with a peak whose peakedness
level is higher than all the other points of the signal. This
detection can outperform standard methods. After being
tested on a set of real signals, the skewness and kurtosis based
detection offered significant improvements including very
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high specificity reaching up to 91% and 90%, respectively,
compared to 60% achieved by the standard method. In
addition, the sensitivity is increased from 65% for standard
methods to 78% and 80% for skewness and kurtosis based
detectors, respectively.

Consequently, we can affirm that skewness and kurtosis
can offer a robust and more reliable detection than standard
detection methods and thus can be considered as new
techniques for enhancing microembolic detection systems.

In view of the fact that we have proposed 2 detectors,
one based on skewness detection and the other on kurtosis
detection, it is convenient to give note that the two detectors
perform very similarly and yield very close results. The only
difference that could be observed is that the kurtosis signal
displays small fluctuations around the embolic peak detected
while the skewness signal fluctuatesmore strongly around the
embolic peaks. This provides the kurtosis detection with a
small advantage in terms of the detection thresholdwhich can
be more easily and robustly set.

6. Conclusion

In this research study, we propose two detectors based on
the calculation of the skewness and kurtosis of the Doppler
energy signal, as a tool for an enhanced cerebral microem-
bolus detection. Compared to the standard detector where
the detection is performed directly on the energy signal, the
skewness and kurtosis based detectors allow increasing of
both the sensitivity and the specificity.

This study emphasizes that standard microembolic
energy detectors with empirical threshold still pose serious
difficulties for the robust detection of microemboli. It also
shows that detectors incorporating detection based on skew-
ness and kurtosis calculation from the energy allow a much
advanced detection of microemboli, precursors of coming
large emboli with strong stroke risks.Thus using these simple
and straightforward detectors would be an additional facility
boosting the efforts to reduce the occurrence of strokes.

The upcoming step would be attempting to increase the
overall performance of the techniques particularly in terms
of sensitivity and validating the developed algorithms on a
larger database. Moreover, we are on course of including,
in the whole detection system, automatic artifact rejection
techniques rather than using manual techniques.
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