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Abstract

Motivation: In silico identification of linear B-cell epitopes represents an important step in the development of diagnos-
tic tests and vaccine candidates, by providing potential high-probability targets for experimental investigation. Current
predictive tools were developed under a generalist approach, training models with heterogeneous datasets to develop
predictors that can be deployed for a wide variety of pathogens. However, continuous advances in processing power
and the increasing amount of epitope data for a broad range of pathogens indicate that training organism or taxon-
specific models may become a feasible alternative, with unexplored potential gains in predictive performance.

Results: This article shows how organism-specific training of epitope prediction models can yield substantial per-
formance gains across several quality metrics when compared to models trained with heterogeneous and hybrid
data, and with a variety of widely used predictors from the literature. These results suggest a promising alternative
for the development of custom-tailored predictive models with high predictive power, which can be easily imple-
mented and deployed for the investigation of specific pathogens.

Availability and implementation: The data underlying this article, as well as the full reproducibility scripts, are avail-
able at https://github.com/fcampelo/OrgSpec-paper. The R package that implements the organism-specific pipeline
functions is available at https://github.com/fcampelo/epitopes.

Contact: f.campelo@aston.ac.uk

Supplementary information: Supplementary materials are available at Bioinformatics online.

1 Introduction

In humoral immunity, activated B-lymphocytes (B cells) produce
antibodies that bind with specific antigens, and are a key component
in vertebrate immune responses (Getzoff et al., 1988; Lodish et al.,
2000). The exact portion of an antigen that an antibody binds to is
known as an epitope or antigenic determinant (Paul, 2012).
Identifying B-cell epitopes is a crucial process for a number of medic-
al and immunological processes including: vaccine development,
therapeutic antibody production, disease prevention and diagnosis
(Dudek et al., 2010; Leinikki et al., 1993; Potocnakova et al., 2016).

B-cell epitopes are broadly classified into two groups: linear (or
continuous) epitopes, which represent contiguous stretches of amino
acid (AA) residues in an antigenic sequence; and conformational (or
discontinuous) epitopes, where the AA residues that constitute these
antigens are separated in the sequence and brought together by

folding (Kindt et al., 2007, Chap. 3). The methods used to predict B-
cell epitopes differ depending on the type of epitope being predicted.
Although the majority of B-cell epitopes are conformational (Van
Regenmortel, 1996; Lo et al., 2013), most epitope prediction meth-
ods are designed to predict linear epitopes (Alix, 1999; Blythe and
Flower, 2005; EL-Manzalawy et al., 2008; Kolaskar and
Tongaonkar, 1990; Larsen et al., 2006; Saha and Raghava, 2004,
2006; Singh et al., 2013; Yao et al., 2013). This is mainly due to a
relative scarcity of available data on antigen 3D structures, as well
as the high computational cost associated with predicting these
structures (Yang and Yu, 2009). On the other hand, linear B-cell
epitopes can be predicted from protein primary structure alone (AA
sequence data), which is more readily available. Linear epitopes are
also stable in a wide range of conditions, an interesting property for
the transportation and storage of potential peptide vaccines. On the
other hand, discontinuous epitopes can be disrupted by alterations
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in protein secondary/tertiary structure caused by a wide range of fac-
tors, such as variations in pH, salinity and temperature, by protein-
protein interactions and post-translational modifications, among
many others. In fact, linear epitopes were consistently more recog-
nized than conformational epitopes in the sera of rabbits immunized
with recombinant proteins and peptides (Forsström et al., 2015).
The impact of mutations is also likely to be more easily estimated
for linear epitopes, where most of the relevant changes are observed
in the antigenic region. Conformational epitopes, on the other hand,
can be affected by AA changes in other regions of the protein that re-
sult in conformational changes, which are harder to predict and
model (Pandurangan and Blundell, 2020).

Several experimental methods have been traditionally used for B-
cell epitope identification, including X-ray crystallography, peptide
microarrays, Western Blotting and enzyme-linked immunosorbent
assay (ELISA) (Arnold et al., 2018; Jespersen et al., 2019). These
methods are both time consuming and resource intensive, which led
to the development of computational methods for epitope prediction
that are commonly used as pre-screening tools for prioritizing targets
for experimental investigation. Early computational methods for
predicting linear epitopes were based on direct prediction of differ-
ent physiochemical properties of individual AA residues found to be
more represented in known epitopes, such as hydrophobicity, flexi-
bility, surface accessibility, charge and AA residue frequency (EL-
Manzalawy et al., 2008; Haste Andersen et al., 2006; Hopp and
Woods, 1981; Parker et al., 1986; Pellequer et al., 1991, 1993; Yang
and Yu, 2009). Numerical propensity scales are often created to rep-
resent physiochemical properties like these, and commonly used as
prediction methods (Alix, 1999; Pellequer et al., 1991; Pellequer and
Westhof, 1993) or as input features for machine learning (ML)
predictors.

Though propensity scales are still used for B-cell epitope predic-
tion, multiple works have shown that their use alone can result in
poor prediction performance (Blythe and Flower, 2005; Giacò et al.,
2012; Kulkarni-Kale et al., 2005; Pellequer et al., 1991;
Ponomarenko and Bourne, 2007). This perceived limitation in pre-
dictive power, coupled with increases both in computational resour-
ces and available protein sequence data, have led to the adoption of
ML models as the main methods for epitope prediction in recent
years (Supplementary File S1, Table S1-1). Several ML approaches
currently exist for epitope prediction: some are trained using 3D
structures, some using a combination of features from propensity
scales and many more. ML methods for epitope prediction tend to
outperform methods based solely on simple AA propensity scale cal-
culations (Sanchez-Trincado et al., 2017), although this is not al-
ways the case (Greenbaum et al., 2007; Sanchez-Trincado et al.,
2017).

To our knowledge all existing epitope prediction tools are based
on datasets containing labelled peptide sequences coming from a
wide variety of organisms (Supplementary File S1, Table S1-1). The
use of heterogeneous datasets is associated with a common goal of
developing general-purpose predictors that can be pre-trained and
used out-of-the-box, without requiring users to inform the source or-
ganism of the peptides submitted for classification. In fact, as recent-
ly as 2020, Collatz et al. (2020) suggest that having ‘a large variety
of known epitopes from evolutionarily distinct organisms in the
training set’ would be essential to achieve bias-free classification.
This is a reasonable assumption if one is aiming at developing gener-
alist, one-size-fits-all models; however, it may be unnecessary or
even counterproductive, if the new observations for which the model
is expected to generalize correspond only to a specific subset of all
possible observations.

Continuous advances in processing power and the increasing
amount of data for distinct pathogens suggest that organism- or
taxon-specific models may become a feasible alternative. Generating
predictors specifically trained for individual pathogens, rather than
having a single generalist model, would result in smaller but poten-
tially higher quality training sets, resulting in better predictive per-
formance of new epitopes for the target organism, and potentially
for its phylogenetically close relatives. Under this alternative ap-
proach of training bespoke models for distinct (groups of)

pathogens, the objective is to obtain predictors that generalize well
only to the target organism(s), rather than to the whole variety of
pathogens that may interact with a given host.

This work investigates the effects of using such organism-specific
datasets to train ML models for linear B-cell epitope prediction.
Proof-of-concept predictors are trained using organism-specific, het-
erogeneous and hybrid data, using data-rich pathogens representing
two of the major classes of parasitic organisms: nematodes and
viruses. The effects of these training sets on the generalization per-
formance of the models is quantified to test whether organism-
specific training can result in better predictors. The results obtained
for three test cases not only support this idea, but also show that
even relatively simple models trained on organism-specific data can
generally outperform current state-of-the-art predictors in terms of
several performance measures.

2 Materials and methods

Figure 1 summarizes the general organism-specific epitope predic-
tion pipeline. This section details the main methodological aspects of
the proposed tool.

2.1 Datasets
Specific datasets for each pathogen were generated based on the full
XML export of the Immune Epitope Data Base (IEDB) (Vita et al.,
2019) retrieved on 10 October 2020, and filtered according to the
following criteria:

• Only peptides marked as linear B-cell epitopes/non-epitopes of

length between 8 and 25 were selected. The filtering criteria used

to isolate peptides identified as linear B-cell entries were (i) those

with one or more Assays containing a ‘BCell’ field name (in the

Assay fields of the XML document); and (ii) those containing the

field ‘FragmentOfANaturalSequenceMolecule—LinearSequence’

in the EpitopeStructure field of the XML document. Peptides

marked as either ‘Exact Epitope’ and ‘Epitope-containing region’

in the EpitopeStructureDefines field were included. The upper

length limit was imposed to prevent overly long sequences

labelled as ‘Epitope-containing region’ from adding too much

noise to the training data, whereas the lower limit was set to pre-

vent excessive redundancy due to short windows (see below,

Section 2.1.1).
• Labels ‘Positive’, ‘Positive-High’, ‘Positive-Intermediate’ and

‘Positive-Low’ were grouped under the single label ‘Positive’.
• Observations with missing or inconsistent information related to

the protein information (protein ID or peptide position on the

protein) were removed.
• Protein information was retrieved from NCBI (NCBI Resource

Coordinators, 2015) and UniProt (UniProt Consortium, 2020)

based on the protein IDs available in the epitope data.

Observations with invalid protein IDs were removed.
• When different assays provided conflicting evidence for the class

(Positive vs. Negative) of a given peptide the class was deter-

mined by simple majority. Ties were removed from the training

sets and de-classed (reference class information set as unknown)

in the hold-out sets, so as not to influence the performance

calculation.

For each pathogen a number of distinct datasets were generated
as follows:

1. First, all examples related to the specific pathogen were extracted

based on the taxonomy ID information from the IEDB data.

This includes all taxonomically dependent IDs (related, e.g. to

subspecies or strains) as part of the data. Prior to any data

Organism-specific epitope prediction 4827

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab536#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab536#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab536#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab536#supplementary-data


exploration or modelling, a subset of the organism-specific data

consisting of approximately 25% of the available observations

were set aside as a validation (Hold-out) set, which was not seen

at any point during model construction. To minimize the chances

of data leakage (Kaufman et al., 2011) the splitting of the data-

sets was done at the protein level, based on protein ID as well as

sequence coverage and similarity. Proteins with similarity and/or

coverage greater than 80% were always placed within in the

same split.

2. The other sub-set, containing 75% of the labelled peptides

belonging to the specific pathogen, was used as the organism-

specific (OrgSpec) training set.

3. A second training dataset (Heterogeneous) was assembled by

random sampling of observations (grouped by taxonomy ID)

from the full IEDB, excluding any observations related to the

specific pathogen. The sampling routine included as many organ-

isms as required to assemble a class-balanced heterogeneous

training set containing between 2000 and 3000 labelled peptides

of each class (epitope/non-epitope).

4. Finally, a third training set (Hybrid) was assembled by combin-

ing the OrgSpec and Heterogeneous sets.

In all cases the Hybrid dataset was the largest one, followed by
Heterogeneous and then OrgSpec. This was set up in order to allow
us to investigate the hypothesis that trading sample size (which is
larger if one incorporates heterogeneous observations) by sample
relevance (represented by data that belongs to the organism of inter-
est, for which the models are being developed) would result in
improved performance.

The datasets that we assembled for each pathogen allowed us to:
(i) investigate the generalization performance of our models to the
prediction of new epitopes in proteins belonging to the specific
organisms for which they were trained, by examining the predictive
performance for distinct proteins that were set aside as the
organism-specific Hold-out; (ii) investigate the effect of using only
organism-specific data on predictive performance, by contrasting
models developed using the OrgSpec, Hybrid and Heterogeneous
datasets (since all pre-processing, feature development and classifica-
tion models were the same for all cases, any systematic differences in
performance can be attributable to the pre-selection of training
data); (iii) compare the performance of organism-specific models

Fig. 1. Top: Organism-specific epitope prediction pipeline. Publicly available data is retrieved from IEDB (Vita et al., 2019), NCBI (NCBI Resource Coordinators, 2015) and

UniProt (UniProt Consortium, 2020) to compose an organism-specific dataset. 845 simple features are calculated for each AA, based on the local neighbourhood of every pos-

ition extracted using a 15-AA sliding window representation with a step size of one (bottom). The data is then split at the protein level, based on protein ID and similarity, into

a training set (used for model development) and a hold-out set (used to estimate the generalization performance of the models). The epitopes R package, which implements the

main elements of this pipeline, is available at https://fcampelo.github.io/epitopes
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against usual approaches in the literature. This last point was the
main motivating factor for using a hold-out approach rather than
cross-validation for model assessment, as it allowed us to estimate
the generalization performance of all predictors on the same data ra-
ther than using reported performance values from the literature,
which were obtained on distinct datasets or using different testing
protocols.

2.1.1 Data representation

Each dataset was set up as a fixed-width windowed representation.
A sliding window of length 15 with a step size of one was run over
each peptide. The choice of length 15 was based on the smallest pep-
tide length of interest, namely 8. The rationale was to use the longest
possible window such that strictly more than half the AAs covered
would belong to a labelled peptide, which translates as a window of
length ‘min=2� 1, with ‘min representing the shortest labelled peptide
in the training sets. Based on this windowed representation the fol-
lowing features were calculated:

• Percent composition of the sequence in terms of each individual

AA type (20 features), each dipeptide combination (400 features),

each conjoint triad (Shen et al., 2007; Wang et al., 2017) (343

features) and each of nine AA types: Tiny, Small, Aliphatic,

Aromatic, Non-Polar, Polar, Charged, Basic and Acidic (9

features).
• AA descriptors, averaged over the window: Cruciani properties,

Kidera factors, Z scales, FASGAI indices, T scales, VHSE scales,

ProtFP descriptors, ST Scales, BLOSUM indices and MS-WHIM

scores (Osorio et al., 2015) (66 features).
• Total molecular weight of the window (1 feature).
• Total number of Carbon, Hydrogen, Nitrogen, Oxygen and

Sulphur atoms in the sequence (5 features).
• Entropy of the distribution of AA residues in the sequence (1

feature).

2.1.2 Target pathogens used

The following organisms were used to investigate the efficiency of
organism-specific training:

• Onchocerca volvulus (taxonomy ID: 6282), a roundworm

(Nematoda) which is the causative agent of Onchocerciasis, a

leading cause of blindness worldwide (World Health

Organization, 2019) with over 37 million people estimated to be

infected, mostly in Africa and Latin America (Basá~nez et al.,

2006; Osei-Atweneboana et al., 2007).
• Epstein-Barr Virus (taxonomy ID: 10376), a double-stranded

DNA virus of the Herpesviridae family that is the causative agent

of infectious mononucleosis and a pathogen linked to many

human neoplastic diseases (Rezk et al., 2018).
• Hepatitis C Virus (taxonomy ID: 11102), a positive-sense single-

stranded RNA virus of the family Flaviviridae which causes

Hepatitis C and is associated with the development of certain

cancers (Ferri, 2015).

The main criterion used to select these pathogens was the avail-
ability of a large volume of validated positive and negative observa-
tions in the IEDB, to allow the use of the strict validation strategy
outlined above (based on the use of a 25% hold-out set) while keep-
ing enough data for model development. To that end we extracted
the ten organism IDs with the greatest number of valid entries in the
IEDB (after the filtering described in Section 2.1), and selected those
that (i) had a reasonable balance between the positive and negative
examples (this removed entries with heavily imbalanced class distri-
butions, IDs 353153, 1314, 5833, 1392); and (ii) represented a
pathogen of interest (this removed entries related to allergens or

potential self-epitopes, IDs 9606, 9913 and 3818). The test patho-
gens selected based on these criteria were a multi cellular parasite,
an RNA virus and a DNA virus, which allowed us to evaluate how
our pathogen-specific tools perform when evaluating distinct classes
of parasitic organisms. Supplementary File S1, Table S1-2 docu-
ments the dataset sizes extracted for each organism.

The results obtained for these pathogens were used to assess the
performance gains of models trained with organism-specific data,
and to compare their performance against existing predictors. The
specific results obtained for O.volvulus are explored in greater detail
in Section 3.1, to illustrate some particular aspects of the proposed
approach. A fourth pathogen, the bacterium Streptococcus
Pyogenes, was also investigated for the sake of completeness, al-
though it did not fulfil the selection criteria outlined above. The spe-
cific data pre-processing, modelling and results obtained for this
bacterium are described in Supplementary File S2.

2.2 Modelling
All training sets were used to develop Random Forest (RF) predic-
tors (Breiman, 2001). This work used the RF implementation from
R package ranger (R Core Team, 2020; Wright and Ziegler, 2017)
version 0.12.1, under standard hyper-parameter values.Experiments
with hyper-parameter tuning and feature selection did not result in
relevant improvements in performance. All exploratory modelling
experiments are documented in Supplementary File S5.

The final output of our predictive pipeline consists of a predicted
probability for each position on each protein queried, which is con-
verted to a binary prediction by thresholding at the level 0.5 (no tun-
ing was performed for the threshold value). From these AA-wise
predictions, arbitrary-length predicted epitopes are extracted. To re-
duce prediction noise, positive regions shorter than 8-AAs long were
filtered out from the output of the random forest.

2.3 Performance assessment and comparison
Several performance indicators were calculated to provide compar-
ability with different references in the literature, and to explore dis-
tinct aspects of the predictive behaviour of the models. More
specifically, we assessed and compared model performance using the
Positive Predictive Value (PPV), Negative Predictive Value (NPV),
Sensitivity (SENS), Accuracy (ACC), Area Under the ROC Curve
(AUC) (Tan et al., 2005) and Matthews Correlation Coefficient
(MCC) (Chicco and Jurman, 2020). The detailed mathematical def-
inition and interpretation of each of these measures is provided in
Supplementary File S5.

All performance values reported in the Results section refer to
out-of-sample prediction, i.e. observed performance on the Hold-out
set extracted for each individual pathogen. Since this data is not
used at any point in model development, the performance values
reported are considered as representing a good estimation of the gen-
eralization performance of the proposed models for these organisms.

Performance was calculated based on peptide-wise correct classi-
fications. Following standard practice, a classification was consid-
ered as correct whenever a model predicted the right class for strictly
more than half the residues in a labelled peptide. Bootstrap (Davison
and Hinkley, 2013) was used to calculate standard errors of estima-
tion for each performance measure, as well as to derive P-values for
the comparison of mean performance between our reference imple-
mentation (trained with OrgSpec) and all other comparison methods
(999 bootstrap resamples were used in all cases). The resulting P-val-
ues were corrected for multiple hypothesis testing (MHT) using the
Holm correction (Holm, 1979), which provides strict control of the
Family-wise error rate (FWER) for each family of hypotheses. All
comparisons were done at the joint a? ¼ 0:05 significance level.

Five well-known B-cell epitope predictors providing easy-to-use
online interfaces were used to obtain a comparison baseline:
BepiPred 2.0 (Jespersen et al., 2017), SVMTriP (Yao et al., 2012),
LBtope (Singh et al., 2013), ABCpred (Saha and Raghava, 2006)
and iBCE-EL (Manavalan et al., 2018). These models were used to
predict epitopes in the same Hold-out sets as our models, based on
the default configurations of their respective online tools.
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3 Results and discussion

Organism-specific training improves performance of linear B-cell

epitope prediction
As detailed in Section 2.3, the performance of the organism-

specific Random Forest models (RF-OrgSpec) was compared with (i)
the same Random Forest model trained using heterogeneous and hy-
brid data, to investigate the effect on performance of the data selec-
tion strategy; and (ii) a number of well-known predictors, to provide
a comparison against currently used approaches. In all cases the per-
formance was calculated based on the hold-out set that was isolated
for each pathogen, which was not used at any point in model devel-
opment. Random Forests are ensemble learning methods that consist
of the aggregation of several weaker decision tree (DT) models, with
an output based on the combined output of the underlying DTs.
Random forests present a good balance between computational cost
and performance, and are robust and flexible to work with different
data types and scales, which justifies their use in a variety of applica-
tion domains including several epitope prediction methods
(Jespersen et al., 2017; Saravanan and Gautham, 2015). Preliminary
comparative testing suggested Random Forests and Gradient
Boosting models as having better performance than multi-layer per-
ceptron neural networks and kNN classifiers, and RF was chosen
for this work due to presenting lower computational costs in relation
to Gradient Boosting.

Figure 2 summarizes the results obtained for the organisms
described in Section 2.1.2. The strong positive effect of training
models with organism-specific data was observed in all datasets. A
clear performance ordering RF-OrgSpec > RF-Hybrid > RF-Heter
can be observed across all pathogens, on all performance indices
used. The corrected P-values indicate that the observed differences
are in most cases statistically significant at the joint 0.05 significance
level. This pattern corroborates the initial hypothesis that training
models on organism-specific data yields improved predictive per-
formance, even when compared with models that contain the same
organism-specific data combined with examples from other
organisms.

Additional analyses also confirm that performance gains of
organism-specific prediction are observed for the pathogen for
which the model is originally trained, but not when trying to predict
epitopes for other organisms. Figure S3-1 in Supplementary File S3
contrasts the observed performance of OrgSpec models on the hold-
out set of their specific organism with that obtained when predicting
epitopes for other pathogens. These results clearly illustrate that the
excellent gains in organism-specific performance (Fig. 2) come at the
cost of a reduced ability to detect patterns in proteins coming from
other pathogens, which further corroborates our underlying hypoth-
esis that organism-specific training allows models to learn patterns
that may be idiosyncratic to the target pathogen.

Organism-specific models exhibit better performance than exist-

ing generalist models
Contrasting the observed performance values of the RF-OrgSpec

models with the selected predictors in Figure 2, it is again clear that
even the standard Random Forest model used in this work (without
hyper-parameter tuning or threshold adjustment) was able to signifi-
cantly outperform all baseline models on most performance meas-
ures. The only predictor that presents performance values
comparable to RF-OrgSpec is LBtope in the case of the hepatitis C
virus. This can, however, be partly explained by the fact that part of
the hold-out examples used to assess the performance of the models
is present in the training data of LBtope (9.59% of the Hep C hold-
out sequences are present in the LBtope training dataset). There is
also significant presence of our hold-out Hep C examples in the
training data BepiPred-2.0 (16.3%) and iBCE-EL (8.6%). Other pre-
dictors are not substantially affected, and this is not observed in the
case of the other pathogens tested. Supplementary File S1, Table S1-
3 provides the performance values of all predictors on all test organ-
isms, including performance values calculated using only the unseen
sequences (not part of the training set) for the case of the hepatitis C
virus.

3.1 Example: O.volvulus results
The predictions obtained for the O.volvulus data were selected to il-
lustrate the organism-specific results in more detail. Figure S3-2 in
Supplementary File S3 (right panel) shows the ROC curves obtained
for all predictors on the O.volvulus hold-out data, clearly indicating
that the organism-specific model does indeed result in substantial
performance gains. The RF-OrgSpec model presented very good ro-
bustness to different threshold values (AUC ¼ 0.83). RF-Hybrid,
which also included organism-specific data as part of its training set,
displayed reasonably good performance as well (AUC ¼ 0.75).

Figures S3-3 and S3-4 (Supplementary File S3) illustrate the tar-
get regions predicted by the organism-specific pipeline for the 22
hold-out proteins of the O.volvulus data, using the default threshold
value of 0.5 ( Fig. S3-5 to S3-11 in Supplementary File S3 illustrate
the corresponding results for the other pathogens tested). This illus-
trates not only the excellent concordance of the RF-OrgSpec predic-
tions with the known labels on the hold-out proteins, but also a
number of newly identified potential epitopes that may exist in those
proteins. The peptides output by the O.volvulus model with an aver-
age probability of over 0.75 are listed in Supplementary File S1,
Table S1-5.

These results show how the higher overall performance of
organism-specific models, when compared with state-of-the-art pre-
dictors, can be invaluable to advance the detection and selection of
diagnostic targets and vaccine candidates for infectious diseases. In
particular, the higher PPV values (see Fig. 2) indicate that predicted
targets have a good chance to be indeed antigenic, improving the ef-
ficiency of epitope discovery processes based on the proposed
organism-specific models. This could be a consequence of idiosyn-
cratic patterns of epitopes in different species that would be
neglected by generalist predictors. For this reason, organism-specific
models may be especially relevant for types of pathogens that are
usually under-represented in generic epitope training data bases.

3.2 Discussion
The results described in this section indicate a clear improvement in
performance resulting from the use of organism-specific models,
when compared to generalist predictors trained on heterogeneous,
or even hybrid, data. While an in-depth exploration of the underly-
ing causes of these differences in performance is outside the scope of
this work, there are some potential, non-mutually exclusive hypothe-
ses that could be raised.

An examination of the relevance of distinct features and feature
groups is provided in Supplementary File S6. There are interesting
general insights that can be derived from that exploration in terms
of which feature groups contribute the most to the predictive ability
of both OrgSpec and Heterogeneous models (Supplementary File S6,
Fig. S6-1 to S6-3), such as the disproportionately large prevalence of
AA descriptors-type features among the most relevant, of the appar-
ent irrelevance of dipeptide frequencies or Conjoint Triads for the
linear B-cell epitope problem as modelled here. However, it is poten-
tially more valuable in the context of this particular work to focus
on features that appear more consistently as relevant for OrgSpec
models than Heterogeneous ones. As suggested in Supplementary
File S6 (Supplementary Fig. S6-4–6), feature BLOSUM1 (Georgiev,
2009) is clearly one that stands out in terms of being very relevant in
general, and particularly so for the organism-specific models. This
feature is very strongly correlated with hydrophobicity, with r2 ¼
0:94 according to (Georgiev, 2009). For the windowed data repre-
sentation used in this work, it measures the average hydrophobicity
of the 15-AA neighbourhood of a given position on the protein.
Hydrophobicity/hydrophilicity are directly related to epitope accessi-
bility in the protein structure. Hydrophilic polar regions are usually
observed in the protein surface, been constantly exposed to antibod-
ies, whereas hydrophobic regions often interact either with each
other in the protein core or with other cellular components, and are
not readily accessible to the serologic immune response (Hopp and
Woods, 1981). Other features that seem to appear consistently
amongst the most relevant ones (although not as prominently as
BLOSUM1), e.g. ProtFP1, Z1, VHSE8 and F5 (see Supplementary
File S6, Fig. S6-6) are composite scales based on algebraic
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Fig. 2. Performance estimates and standard errors of different predictors on the hold-out data of the test organisms. The values near each estimate are MHT-corrected P-values

for the comparison of mean performance against RF-OrgSpec. Estimates are colour-coded for the result of significance tests at the a� ¼ 0:05 significance level (green for signifi-

cantly worse than RF-OrgSpec, red for significantly better, blue for non-statistically significant differences). The P-values were truncated at < 0.01 and > 0.9 due to loss in pre-

cision of bootstrap estimates at extreme values. Raw (uncorrected) P-values are reported in Supplementary File S1, Table S1-4
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transformations of underlying physicochemical properties, and lack
the same direct interpretability as BLOSUM1, which prevents the
derivation of biochemical hypotheses.

Another aspect that may suggest an explanation for the
increased performance of organism-specific models is a possible
difference in the spatial distribution of epitopes in the feature
space, conditional on the pathogen. To explore the

neighbourhood structure of the data, we have employed t-SNE
projections (Van der Maaten and Hinton, 2008) to investigate
whether data coming from distinct pathogens present different
clustering or neighbourhood structures in terms of positive/nega-
tive observations.

Figure 3 illustrates the estimated density of observations on the
2D t-SNE projection of the data, stratified by pathogen and class.

Fig. 3. Estimated probability density of epitope and non-epitope observations in the t-SNE projection. Notice the clear distinct regions of high density of positive/negative obser-

vations, which occupy different portions of the feature space. This figure clearly illustrates how epitopes (positive observations) of different pathogens tend to occur in very dis-

tinct regions of the space of features. More importantly, regions that present a high density of positive examples for one pathogen can simultaneously have high numbers of

negative observations for another—see, e.g. how the top-left portion of the negative examples of EBV and HepC coincide with a corresponding high-density regions of positive

O.volvulus points. Models trained on combined (heterogeneous) data would not be able to explore these patterns, and would likely fail to detect promising regions, which may

explain the increased performance of the organism-specific models when compared against generalist ones trained on heterogeneous data
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The V1-V2 coordinates are consistent across the different panels,

and the figure clearly shows how the density of positive and negative

examples not only varies depending on the pathogen, but also how

regions with a high density of positive examples for one organism
can simultaneously contain high densities of negative examples for

others. This type of pattern can help explain the success of

organism-specific training from a data mining perspective (albeit not
necessarily from a biological one): generalist models trained on het-

erogeneous data would not be able to pick up these organism-

specific patterns, as they would appear as having a more mixed com-

bination of positive and negative examples if the data from multiple
pathogens were combined into a single training set. This could in ef-

fect prevent those models from detecting regions of the feature space

that were potentially rich in epitopes of a specific pathogen, resulting

in decreased predictive performance.

4 Conclusions

In this article, we investigated the use of organism-specific data for

improving the performance of linear B-cell epitope prediction.
Organism-specific Random Forest models developed for three dis-

tinct pathogens (Epstein-Barr virus, Hepatitis C virus and the round-

worm O.volvulus) yielded significant performance gains when

compared with similar models trained using heterogeneous and hy-
brid datasets, across several relevant performance indicators. These

results suggest that pre-selecting the most relevant data and training

bespoke models for specific pathogens is preferable to the common

strategy of increasing and diversifying the training set.
Performance comparisons also indicate that this organism-

specific modelling strategy is able to provide results that are at least

as good as, and in several cases better than, several common predic-

tors from the literature, despite the fact that (i) the predictors trained
in this study were relatively simple proof-of-concept models, without

specific refinements; and (ii) only basic features, calculated from the

AA sequence alone, were employed, without any sophisticated fea-

ture engineering performed. We expect that further refinements to
organism-specific predictors, such as model improvements or the use

of more informative features, may result in even higher predictive

performance. While these results do not obviate the utility of gener-

alist predictors—which are still very relevant in the investigation of
pathogens for which little or no specific data is available—they cer-

tainly suggest a powerful and easily generalizable new approach for

researchers working with relatively data-abundant organisms.
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