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Direct imaging of single UvrD helicase
dynamics on long single-stranded DNA
Kyung Suk Lee1, Hamza Balci2, Haifeng Jia3, Timothy M. Lohman3 & Taekjip Ha1,4

Fluorescence imaging of single-protein dynamics on DNA has been largely limited to

double-stranded DNA or short single-stranded DNA. We have developed a hybrid approach

for observing single proteins moving on laterally stretched kilobase-sized ssDNA. Here we

probed the single-stranded DNA translocase activity of Escherichia coli UvrD by single

fluorophore tracking, while monitoring DNA unwinding activity with optical tweezers to

capture the entire sequence of protein binding, single-stranded DNA translocation

and multiple pathways of unwinding initiation. The results directly demonstrate that the

UvrD monomer is a highly processive single-stranded DNA translocase that is stopped by a

double-stranded DNA, whereas two monomers are required to unwind DNA to a detectable

degree. The single-stranded DNA translocation rate does not depend on the force applied

and displays a remarkable homogeneity, whereas the unwinding rate shows significant

heterogeneity. These findings demonstrate that UvrD assembly state regulates its DNA

helicase activity with functional implications for its stepping mechanism, and also reveal a

previously unappreciated complexity in the active species during unwinding.
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S
ingle-stranded DNA (ssDNA) is an intermediate in various
DNA metabolic processes, such as replication, repair and
recombination, wherein a multitude of proteins bind to

ssDNA and perform their functions in coordination with
each other. The ssDNA binding proteins, recombinase proteins
(RecA/Rad51) and DNA helicases/translocases are among the
proteins that have an important function in genome main-
tenance, and the dynamics of these proteins on ssDNA have been
studied at the single-protein level1. Although these assays have
revealed a wealth of information on the details of ssDNA–protein
interactions at the scale of tens of nucleotides2–6, there remains
an interest in the dynamics on longer length scales, as ssDNA in
the cell can be thousands of nucleotides long7,8. Thus, to better
emulate the physiological situation it would be advantageous to
study protein–DNA interactions at the single-protein level using
long ssDNA molecules.

Direct fluorescence imaging of proteins moving on long
double-stranded DNA (dsDNA) has been demonstrated by many
laboratories9–13. Yet, there has been no equivalent demonstration
for protein dynamics on long ssDNA, although fluorescence
imaging of proteins bound on ssDNA was recently reported14–16.
One of the technical difficulties, which might have impeded
imaging of proteins on ssDNA, is the high propensity for
forming intra- and intermolecular base pairing in ssDNA. In a
long ssDNA, numerous secondary structures can be formed by
internal base pairing17 unless the DNA is chemically denatured18.
Such secondary structures can influence interpretations of
experimental data obtained from the measurement of DNA
end-to-end distances upon which most single-molecule force
spectroscopy is based. Some of these secondary structures are
transient, displaying opening and closing dynamics19, which adds
unwanted noise to the measurement. On the other hand, hairpins
with long duplex stems are very stable and almost always are in
the closed state unless an unzipping force is applied20. Either
these structures should be completely unzipped by applying
high-enough forces or the formation of such structures should at
least be monitored. Therefore, the capacity of mechanical
manipulation is indispensable for analysing single-protein
dynamics on long ssDNA.

Here we combine total internal reflection fluorescence (TIRF)
microscopy with optical tweezers and unzip all secondary
structures within the ssDNA molecules by stretching.
The exponentially decaying excitation profile of the TIRF
microscopy selectively illuminates only the molecules within a
few hundred nanometres from the surface and this enables the
detection of single fluorophores with a high signal-to-noise ratio.
An optical trap applies force to DNA substrates tethered to the
surface and probes mechanical changes within the substrates.
Unlike in previous combinations of these two single-molecule
techniques21–24, we not only measure the intensity of individual
fluorophores but also perform particle tracking of single
fluorophore-labelled proteins25,26 moving along a linear ssDNA
track, stabilized with the aid of an optical trap.

To illustrate the capacity of our instrument, we examined the
ssDNA translocase and helicase activities of a superfamily 1
helicase, Escherichia coli UvrD. UvrD is a 30–50 DNA helicase
involved in many DNA metabolic processes, such as mismatch
repair27, nucleotide excision repair28 and replication of certain
plasmids29. The enzyme is also a 30–50 ssDNA translocase30–33,
and the translocase activity is presumably required for its role as
an anti-recombinase in which it displaces RecA protein filaments
from ssDNA34,35 to control potentially toxic recombination
intermediates6. UvrD monomer translocation along ssDNA is
highly processive, that is, the enzyme is estimated to translocate
more than a thousand nucleotides before dissociating from DNA,
although this estimate was based on ensemble kinetic studies

performed using ssDNA up to B100 nt long30,31. However, there
have been conflicting reports about the oligomeric state of the
active helicase in vitro, some claiming that a UvrD monomer can
function as a processive helicase36,37, whereas others indicate that
a monomer can translocate, yet a dimeric UvrD is required for
processive helicase activity30,35,38–40. Although single-molecule
force methods, such as magnetic tweezers, have revealed
valuable information on the helicase activity of UvrD41,42,
purely mechanical approaches cannot report on the ssDNA
translocase activity in real time, because translocation does not
change the overall length of DNA. Here the translocation of
UvrD over thousands of nucleotides was visualized, providing the
first demonstration of fluorescence imaging of single-protein
movement on long ssDNA. In our experiments, a translocating
monomeric UvrD stopped at a ssDNA/dsDNA junction,
unable to unwind the duplex ahead. Moreover, with the unique
capability of our instrument to probe both ssDNA translocase
and helicase activities, we observe that at least two UvrD
monomers are involved in DNA unwinding and can directly
visualize the two unwinding initiation pathways proposed
by a previous ensemble study39. Molecule-by-molecule analysis
of translocation and unwinding rates provide strong constraints
on the stepping mechanisms of UvrD during translocation
and unwinding.

Results
Preparation of long ssDNA constructs. In addition to
overcoming the issue of ssDNA forming secondary structures,
the preparation of pure, long ssDNA constructs with custom
modifications (usually required for single-molecule force
spectroscopy) poses additional technical challenges. Although
asymmetric PCR43 or terminal transferase reaction with
deoxyribonucleotides can produce long ssDNA44 with custom
modifications at the 50-end, the ssDNA product from these
methods is a mixture of different lengths or sequences. To get
higher-purity ssDNA constructs, dsDNA constructs can be
produced with all the required modifications using standard
PCR first, followed by subsequent removal of one strand from the
constructs, via either overstretching45, chemical or thermal
denaturation46, or exonuclease treatment47.

To avoid base-pairing interactions between different ssDNA
molecules, we immobilized the 5-kbp dsDNA (4,957 bpþ 1 nt)
constructs on the surface before removing one strand. Once they
are immobilized, spatial separation ensures that all the constructs
are single DNA molecules even after they become single stranded.
We used T7 exonuclease to digest one complementary strand
away from the dsDNA constructs on the surface in situ. The
dsDNA construct has a biotin label at the 50-end of the UvrD
tracking strand that is shielded by neutravidin binding, so only
the 50-end of the complementary strand is exposed to the 50–30

exonuclease. The reaction thus creates a partial duplex DNA with
a dsDNA region near the surface and a 30-ssDNA tail protruding
away from the surface (Fig. 1 and Supplementary Fig. S1).

For each DNA molecule, the lengths of both the 30-ssDNA tail
and duplex segment were estimated by fitting the force–extension
curve of the molecule to the theoretical polymer models of
ssDNA and dsDNA. We used the extensible worm-like chain
model and extensible freely jointed chain model for dsDNA and
ssDNA sections, respectively45,48. After 30 min of exonuclease
treatment, 70% of the molecules had a ssDNA region longer than
3,500 nucleotides (Supplementary Fig. S2).

Visualization of ssDNA translocase activity of E. coli UvrD. We
measured ATP-driven translocation of E. coli UvrD along ssDNA.
A schematic of the experimental set-up is shown in Fig. 1a.
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The long 30-ssDNA tail of the DNA is the tracking strand on
which the enzyme translocates in a 30–50 direction30, and the
DNA is stretched by the optical trap. This scheme projects the
enzyme motion along the strand onto a straight line. The angle
between the stretched DNA construct and the surface is
calculated as the arctangent of the height of a trapped bead
(660 nm) to the lateral displacement of the trap centre from the
50-end of DNA construct. Using this angle, we converted the
distance projected on the surface to that of the stretched DNA
construct, but this correction was less than 3% in most cases.

For fluorescence imaging, UvrD was labelled with a single Cy3
molecule at residue 100 using a single cysteine mutant with 95%
efficiency without compromising the enzyme’s function, as
reported previously49. Figure 2 presents a kymogram,
which visualizes the time course of the fluorescence image at a
glance. The kymogram shows the translocation activity along the

30-ssDNA tail. UvrD monomers bind to a DNA molecule
sequentially and translocate from the top (30-end) to the
bottom (50-end), as expected for a 30–50 ssDNA translocase
(Supplementary Movie 1). Fluorescence emission intensity
increases as UvrD approaches the 50-end on the surface due to
the increase in the excitation intensity in the TIR configuration.
Fluorescence emission intensity decreases exponentially with the
estimated height from the surface (Fig. 2c). By fitting the curve to
an exponential decay, we estimated the penetration depth of the
evanescent field excitation to be 150±30 nm.

Each translocating UvrD displayed a uniform velocity and the
trajectories of different molecules in the kymogram are parallel,
suggesting only a small variance in their speed of motion. The
uniform brightness of moving fluorescent spots and a single-step
photobleaching indicated that the translocating species is a UvrD
monomer. We fitted fluorescence images to two-dimensional
(2D) Gaussian functions (Supplementary Fig. S3) and obtained
the position and intensity trajectories of UvrD molecules
(Supplementary Fig. S4). For each translocation event, the
position trajectory was fitted to a straight line to acquire
the average translocation rate, and events that show more than
one photobleaching step were discarded to limit the analysis to
monomers of UvrD. At 1 mM ATP and 13.5 pN of force applied
to the DNA, the enzymes translocated with a mean rate of
193 nt s� 1 and s.d. of 22 nt s� 1 (Fig. 3a). We also determined the
distance translocated by the enzyme before abrupt disappearance
of the fluorescence signal due either to photobleaching or enzyme
dissociation from the DNA. By analysing the number of UvrD
molecules still bound to DNA after translocating a given distance,
we determined the apparent ssDNA translocation processivity to
be 1,260±60 nt (Fig. 3b). However, the translocation distance
may be underestimated due to the finite size of the illumination
volume as well as fluorophore photobleaching. Dependence of the
UvrD translocation rate on the tension applied to the DNA
was minimal between 8 pN and 20 pN (Fig. 3c). Although a
force-independent translocation rate was previously inferred via
indirect methods for UvrD and other helicases41,50,51, our data
represent the first direct demonstration of force independence of
a helicase translocation on ssDNA.

UvrD monomers stall at a ss/ds DNA junction. Whether DNA
unwinding can be carried out by a UvrD monomer has been the
subject of some discussion. Transient kinetic ensemble studies
have concluded that a dimeric UvrD species is needed for
unwinding in vitro30,35,38,39,42,52, whereas others have concluded
that a UvrD monomer is the unwinding species36,37. With our
method, we can directly address this question by simply
observing the enzyme as it encounters an ssDNA/dsDNA
junction during ssDNA translocation.

Although the majority of translocating UvrD displayed
uniform motion along a straight line, some enzymes stopped
translocation and stayed at a certain position (hereafter termed a
‘stall’) (Fig. 4a). When more than one stall event was observed on
the same DNA, they occurred at the same location, and no other
molecules translocated past that position. We suggest that the
stall is caused by a structural blockade on the DNA, specifically
the ssDNA/dsDNA junction. As the DNA construct consists of a
dsDNA segment on the surface side and a long ssDNA 30-tail on
the other, UvrD molecules will encounter an ssDNA/dsDNA
junction while moving along the tracking strand. If a UvrD
monomer cannot unwind DNA, its forward progress will be
prevented by the duplex junction and a stall would result, as we
observed. To test this hypothesis, we plotted the distance between
the stall position and the 50-end of the tracking strand,
determined via fluorescence imaging, against the length of the
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dsDNA segment for each DNA determined from a force–
extension curve (Fig. 4c). We found a strong linear dependence
with a slope of 1, implying that the stall location coincides with
the ssDNA/dsDNA junction, supporting our interpretation that
UvrD monomer translocation is blocked by the DNA double
helix. To further test our interpretation, we designed another
experiment such that we can determine the location of the
ssDNA/dsDNA junction directly. An additional ssDNA/
dsDNA junction was created by annealing a fluorescently
labelled complementary oligodeoxynucleotide to the tracking
strand, thus the position of the ssDNA/dsDNA junction can be
determined by the fluorescence of the oligodeoxynucleotide
(Fig. 4d). In Fig. 4e,f, a translocating UvrD monomer
encounters the duplex region (indicated by the stationary Cy3
fluorescence) and stalls there until it photobleaches or dissociates.
It is evident that the stalling position coincides with the stationary
Cy3 fluorophore position. The distribution of the difference
between stalling position and Cy3 position, presented in Fig. 4g,
displays a sharp distribution around zero with an s.d. of 16 nm,
indicating that stalling happens at the ssDNA/dsDNA junction.

Moreover, a stalled UvrD at the junction did not unwind the
DNA substrates to any detectable degree, as we did not observe
any change in the end-to-end distance of the DNA in the force-
based signal from the optical tweezers (our detection limit of
DNA unwinding through force is about 25 bp, Supplementary

Fig. S5b). When a dsDNA molecule under tensions higher than
B6 pN is unwound, the end-to-end distance of the DNA
increases because the extension per unit nucleotide is longer for
ssDNA than for dsDNA53. As the optical trap position is fixed in
our experiment, we expect to see a decrease in tension for the
DNA molecules undergoing unwinding, but such tension changes
were not observed. We cannot rule out the occurrence of
unwinding events shorter than 25 bp that cannot be detected
by this instrument. Ensemble kinetic experiments also do not
detect UvrD monomer-catalysed unwinding of dsDNA as short
as 18 bp30,38.

Visualization of unwinding initiation pathways. We could still
observe, albeit rarely, unwinding of the dsDNA segments even at
the low UvrD concentrations we had to use to resolve single
UvrD molecules (100–200 pM). For each unwinding event, we
could monitor the position of UvrD molecules (via fluorophore
tracking) and the number of UvrD monomers in the same
fluorescent spot (via fluorescence intensity and photobleaching
step counting) as they bind to the ssDNA segment, translocate
down to the ssDNA/dsDNA junction, unwind the dsDNA
segment and dissociate from the DNA end. In addition, by using
optical tweezers we monitored the unwinding activity. The
versatility of the method allowed us to observe directly the
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whole process of unwinding initiation and to distinguish two
different pathways proposed previously based on ensemble
kinetic studies39.

Figure 5 (Supplementary Movie 2) shows an example set of
data in which one UvrD monomer translocates in the 30–50

direction along the ssDNA section and stalls at the ssDNA/
dsDNA junction. After 15 s, another UvrD monomer from the
solution binds as is apparent from the sudden increase in
fluorescence intensity by a factor of two. Simultaneously, within
our measurement uncertainty of 0.3 s, unwinding is initiated as
reported by a gradual decrease in tension and by the movement of
the UvrD molecules towards the surface at a significantly reduced
speed compared with the translocation speed on the ssDNA tail
(67 bp s� 1, threefold slower than the ssDNA translocation). This
is consistent with ensemble-transient kinetic measurements in
which DNA unwinding by UvrD is known to be slower by
threefold compared with ssDNA translocation30. Thus, a stalled
UvrD monomer at the ssDNA/dsDNA junction is joined by a
second UvrD monomer and unwinding is initiated. The second
UvrD monomer can also bind to the ssDNA tail, translocate to
the junction and join the stalled UvrD to initiate unwinding
(Supplementary Fig. S6). Recruitment of a second UvrD to a
stalled UvrD, either directly from solution or via ssDNA
translocation, represents the first of the two pathways of DNA
unwinding initiation proposed previously39.

When the concentration of UvrD is increased to 1 nM, we
observe a second unwinding initiation pathway (Fig. 6). Multiple

UvrD molecules translocate on the substrate together as a single
spot until arriving at the ssDNA/dsDNA junction. They consist of
at least two UvrD monomers, because the fluorescence intensity
decreases in two steps and the original intensity is about twofold
higher than the intensity of a UvrD monomer (Fig. 6). They do
not stall at the junction, but instead proceed to unwind the duplex
substrate, although at a much slower rate relative to translocation
(14 bp s� 1 for the event in Fig. 6). Dissociation of the enzyme
from the unwound dsDNA leads to a sudden decrease in
fluorescence intensity and a concurrent increase in tension in the
force-time trajectory due to immediate rezipping of duplex DNA.
Unlike the narrow distribution of the translocation rates, the
unwinding rate displays a broad distribution with a mean of
70 bp s� 1 and an s.d. of 31 bp s� 1, respectively (32 unwinding
events, Supplementary Fig. S7).

Discussion
We have demonstrated direct fluorescence imaging of protein
dynamics on long ssDNA using E. coli UvrD helicase/translocase.
We were able to probe the whole series of events for UvrD
interaction with a DNA substrate, including binding, ssDNA
translocation, DNA unwinding (helicase activity) and dissociation
at a single-protein resolution.

To measure the ssDNA translocation rate and processivity of
UvrD monomers, we used very low concentrations of UvrD.
At 100–200 pM concentrations, the majority of UvrD molecules

D
is

ta
nc

e 
fr

om
 5

′-e
nd

 (
nm

)

0 1,000 2,000
0

1,000

2,000

 y = x

Ld
sD

N
A

 (
bp

)

Stalling position (bp)

Ld
sD

N
A

40 60 80 100 120 140 160

0

500

1,000

1,500

2,000

Time (s)

1,000 bp

1,000 nt

5

0
–40 –20 0 20 40–60 60

(Stalling position–
Cy3 position) (nm)

C
ou

nt

50 60 70 80 90

3′

5′

C
y3

-la
be

lle
d 

50
 m

er

D
is

ta
nc

e 
fr

om
 5

′-e
nd

 (
nm

)

0

500

1,000

1,500

D
is

ta
nc

e 
fr

om
 5

′-e
nd

 (
nm

)

0

500

1,000

1,500

35 40 45 50

Time (s)Time (s)

Figure 4 | UvrD translocation is blocked by dsDNA. (a) A kymogram showing stalling of UvrD. There is a certain location on a DNA where UvrD stops

its translocation and stalls (green arrows). The stalling position is close to the white dashed line, which indicates the position of ssDNA/dsDNA

junction (the length of duplex segment estimated from fitting the force–extension curve to the model). Scale bars correspond to the length of 1,000 nt

(ssDNA) and 1,000 bp (dsDNA), respectively. (b) A partial duplex DNA construct used in the experiment is shown here. The length of duplex segment is

estimated by fitting the force–extension curve to a polymer model. (c) The correlation between the length of duplex segment (the position of the junction)

and the distance of the stalling position from the 50-end of the tracking strand in the DNA constructs. The error bar represents the standard error.

The scatter plot follows the identity relation (y¼ x, R2¼0.95), which suggests that the stalling occurs at the ssDNA/dsDNA junction. (d) Another

experiment designed to measure the location of ssDNA/dsDNA junction more directly. An additional ssDNA/dsDNA junction is created by annealing a

fluorophore-labelled oligonucleotide to the tracking strand. We doubly labelled the oligonucleotide by way of precaution against fluorophore

photobleaching. (e) A kymogram of a translocating UvrD monomer, eventually blocked by the presence of duplex region created by a complementary

oligonucleotide annealed to the tracking strand. At B52 s, one of the two fluorophores on the complementary oligonucleotide photobleaches, but the

remaining Cy3 fluorophore marks the location of duplex region until the end of the kymogram. (f) Another kymogram showing UvrD stalling events.

Here as well, translocation stops at the position of Cy3 fluorescence. (g) The distribution of the difference between stalling position and Cy3 position

(the position of ssDNA/dsDNA junction) for 17 stalling events.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2882 ARTICLE

NATURE COMMUNICATIONS | 4:1878 | DOI: 10.1038/ncomms2882 | www.nature.com/naturecommunications 5

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


observed are monomers, as the fraction of UvrD dimers in
solution is well below 0.1%54. Direct measurement yielded a
UvrD monomer ssDNA translocation rate of 193 (±2) nt s� 1,
which coincides with the values determined from ensemble
experiments on oliogodeoxythymidylates30–32 under similar
conditions (10 mM Tris–HCl (pH 8.3), 20 mM NaCl, 20% (v/v)
glycerol, 1 mM ATP:Mg2þ at 25 �C). These ensemble
experiments estimated the processivity of ssDNA translocase
activity of UvrD to be 769 nt in the presence of a heparin trap31

and 2,400 (±600) nt in the absence of a competing trap30, which
are much longer than the length of ssDNA molecules (10–124 nt)
used, whereas in our experiments individual translocation events
as long as thousands of nucleotides were directly observed
(Fig. 3b). Although our measured value of the ssDNA
translocation processivity, 1,260 (±60) nt, is likely to be an
underestimation, it falls between the two previous measurements.
The ssDNA translocase activity of a UvrD monomer is
so processive that even 4,000 nt is not long enough to eliminate
an effect of the finite size of ssDNA molecules on the processivity
estimate.

Ensemble-transient kinetics studies have yielded information
on a multitude of kinetic properties of the ssDNA translocase
activity and DNA unwinding activity of UvrD, including the
kinetic step size30–33,52,55. However, the kinetic step size
estimation can be complicated by the presence of static disorder
(persistent heterogeneity) that can result in significant molecule-
to-molecule differences in the translocation rates within the
ensemble population6,33. For example, the kinetic ssDNA
translocation step size of E. coli PcrA, a SF1 helicase and
ssDNA translocase that shares extensive structural and sequence
similarity with E. coli UvrD, was determined to be 1 nt in
single-molecule experiments6, whereas ensemble assays estimated

it to be 4–5 nt56. The overestimation in the latter experiments
was attributed to persistent heterogeneity observed in the
translocation rate of single PcrA molecules6. To assess the
molecular heterogeneity of UvrD, we examined the distribution
of the rates of multiple UvrD molecules that translocated on
the same DNA, to exclude DNA-to-DNA variation (Fig. 7).
The distribution displayed a small dispersion, as the coefficient of
variation was 10%, which was smaller than the 22% observed for
the translocation rate of PcrA6. Therefore, the B4 nt kinetic step
size estimated for UvD monomer translocation and the resulting
proposal of a non-uniform stepping mechanism31,33 cannot be
attributed to molecular heterogeneity.

In contrast to the ssDNA translocation rates of the UvrD
monomer, the distribution of unwinding rates for the dimeric
UvrD helicase under 13.5 pN applied tension was broad with
mean and s.d. of 70 bp s� 1 and 31 bp s� 1, respectively. The rate
agrees well with the ensemble DNA unwinding rate measurement
of 68 (±9) bp s� 1 (ref. 38), but differs significantly from the 248
(±74) bp s� 1 rate reported from a magnetic tweezers experiment
at 35 pN41. In fact, as discussed previously30 the unwinding rate
from the latter is closer to the ssDNA translocation rate measured
here and previously30, suggesting that the ssDNA translocase
activity alone might be enough to unwind dsDNA if high tension
is applied on the tracking DNA strand. Another magnetic
tweezers experiment42 reported that UvrD unwinding rates
decreased with an increase of force applied in the direction of
strand separation and the unwinding rate at zero force was
60 (±7) bp s� 1. The rate at zero force is relevant to our case
wherein tension is not applied in the unzipping direction, and is
in agreement with our measurement within error. A previous
ensemble kinetic study on DNA unwinding by UvrD estimated
4–5 bp of kinetic step size55. Because of the heterogeneity in
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unwinding rate between single DNA molecules, which can inflate
the estimated kinetic step size6, it is possible that the true kinetic
step size is lower than 4–5 bp. A single DNA unwinding analysis
of UvrD also estimated the kinetic step size to be about 4–5 bp,
but their analysis based on variance analysis as used in ensemble

kinetic studies can also be influenced by persistent molecular
heterogeneity41. Direct measurements of unwinding step size
using high-resolution single-molecule assays57–59 are needed to
address the issue of the step size during DNA unwinding.
The large contrast between the homogenous ssDNA translocation
rate and the inhomogeneous DNA unwinding rate is unexpected.
The homogeneous ssDNA translocation rate of single UvrD
molecules show that there is little heterogeneity in the activities of
single proteins. Nevertheless, when more than one UvrD protein
collaborates to unwind dsDNA, there is a large heterogeneity in
the unwinding rate, suggesting that DNA unwinding is not always
done by a single species in a single active conformation.

We also observed that UvrD monomer translocation stops
upon encountering a ssDNA/dsDNA junction and does not
proceed further. The fact that translocating UvrD monomers do
not make a transition to unwinding duplex DNA but stop at the
junction indicate that the translocase and helicase activities of
UvrD are separable and that both activities may be used
selectively for different processes in vivo35. These results also
highlight the fact that UvrD self-assembly regulates its helicase
activity in vitro35, as UvrD monomers stalled at the junction
never initiate unwinding on their own, even after long pauses.

Ensemble-transient kinetic studies39 have suggested that there
are two pathways leading to the formation of the active UvrD
helicase–DNA complex. Here we directly visualized these two
pathways for initiation of DNA unwinding at the single-molecule
level. In the first pathway, a translocating UvrD monomer,
blocked by the ssDNA/dsDNA junction, stalls and pauses until
another UvrD molecule is recruited to the junction to activate
helicase activity and unwind duplex DNA. In the second, two or
more UvrD monomers translocate together along ssDNA at the
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same translocation speed of monomers until they encounter the
ssDNA/dsDNA junction and then proceed to unwind dsDNA.
The observation of simultaneous translocation of two monomers
of UvrD as a single unit (Supplementary Fig. S8) provides
evidence for the existence of a translocating dimeric species
of UvrD, rather than two independent monomers.

Our method can be straightforwardly extended to multi-colour
excitation and detection, to RNA substrates and to single-
molecule FRET analysis. With such improvements, this method
may be used to study the coordination of many proteins
interacting on the same ss and ds DNA or RNA.

Methods
Instrument design details. Figure 1b shows the optical layout of the experimental
set-up. The instrument is built based on an inverted microscope (Olympus IX71),
with slight modification to mount a condenser and a dichroic mirror (D3) more
stably. A sample is held horizontally on top of a XYZ piezo-nanostage (Mad City
Labs) mounted on a manual stage (Semprex) with two micrometres in the x and y
axis, which is fixed on top of the microscope. An oil-immersion objective lens
(� 100/1.40, Olympus) is used for objective-type TIRF microscopy and optical
trapping. Only the vicinity of the coverglass—water interface of the sample
chamber is excited by 532-nm diode-pumped solid state laser (Spectra Physics) for
fluorescence excitation, and fluorescence emission is imaged onto an EMCCD
(electron-multiplying charge-coupled device) camera (Andor iXon) and is recorded
at the frame rate of 20 Hz. At the centre of the fluorescence imaging area, an optical
trap is formed a using collimated 1,064-nm Nd-YAG laser (Spectra Physics).
Antidigoxigenin-coated polystyrene beads (Spherotech; 880 nm in diameter) are
used for optical trapping. The focus of the trapping laser is adjusted to make the
bottom of a trapped bead very close to the surface of the sample chamber
(o250 nm from the coverslip) to ensure that the majority of DNA stretched by the
trap is placed within the penetration depth of fluorescence excitation. Scattered
laser light from a trapped bead is collected by condenser lens and imaged onto a
quadrant photodiode detector (Pacific Sensors). More details on the instrument
design, calibration and operation are available in Supplementary Methods.

Preparation of DNA constructs. The dsDNA (4,957 bp) constructs were syn-
thesized by using PCR, using a biontinylated primer and a regular primer
(Supplementary Fig. S1a). The PCR product encompassed the sequence (19,360,
24,316) from bacteriophage l DNA (New England Biolabs). Purified PCR products
were incubated with terminal transferase (New England Biolabs) and digoxigenin-
11-dideoxyUTP (Roche Applied Science) to label 30-ends of the PCR product with
a single digoxigenin-modified digoxigenin-11-dideoxyUTP (Supplementary
Fig. S1b) to attach this end to antidigoxigenin-coated beads. After the 5-kbp
dsDNA (4,957 bpþ 1 nt) constructs are immobilized on the surface, T7 exonu-
clease (New England Biolabs) is injected into the chamber (Supplementary Fig.
S1c). Because of the biotin–neutravidin coupling on the 50-end of one strand, the
only available initiation site is the 50-end of the complementary strand, thus, only
the latter strand is selectively digested (Supplementary Fig. S1d). After the reaction,
a partial duplex with long 30-ssDNA tail (Supplementary Fig. S1e) or a fully ss
(Supplementary Fig. S1f) DNA construct is generated. The length of the duplex
region can be controlled by the incubation time of the exonuclease reaction.
Finally, the antidigoxigenin-coated beads are added to the chamber to attach the
beads to the 30-end of the undigested strand of DNA constructs. (In principle, the
beads can attach to digoxigenin on the 30-end of the digested strand, too. However,
with the digoxigenin on the strand being so close to the surface, it seems that it is
very unlikely: we did not have the problem.) A different DNA construct was used
in the UvrD stalling experiments presented in Fig. 4d–g. Two dsDNA PCR pro-
ducts (6,841 bp and 1,170 bp) are synthesized from the sequence (33,498, 40,338)
and (12,176, 13,345) of bacteriophage l DNA. The longer product has a biotin at
one end, whereas the shorter product is phosphorylated on one end and digox-
igenin-labelled on the other. The two products are ligated using T4 DNA ligase
(New England Biolabs). After the construct is immobilized on the surface, the
longer product part is digested using T7 exonuclease to provide long ssDNA track
for UvrD translocation, whereas the shorter product part serves as a dsDNA handle
that is attached to a trapped bead. A complementary oligonucleotide (50-/Cy3/GCC
GGA ACA GTA CGA CGA AAA GCC GCA GGT ACA GCA GGT AGC GCA
GAT CA/Cy3/-30) is annealed to the tracking ssDNA.

Polymer modelling. To estimate the length of dsDNA stem and the ssDNA tail in
DNA substrates, we fit the force–extension relation of the substrate to standard
theoretical model of DNA. The extension of the substrate is treated as the sum of
the extension from its dsDNA and ssDNA segment53. For the dsDNA segment, we
used the extensible worm-like chain model with a persistence length of 53 nm, a
stretch modulus of 1,200 pN and a contour length of one dsDNA base pair of
0.34 nm48. For the ssDNA segment, we used the extensible freely jointed chain
model with a persistence length of 0.75 nm, a stretch modulus of 800 pN and a
contour length of one ssDNA nucleotide of 0.59 nm45.

Experimental solution conditions. All UvrD experiments were performed in
20 mM Tris–HCl (pH 8.3), 10 mM NaCl and 5 mM MgCl2 at 24 �C. The
concentration of UvrD monomers was varied between 100 pM–1 nM, and the ATP
concentration was fixed at 1 mM. To enhance the stability and longevity of Cy3,
we use 3 mM Trolox (Sigma-Aldrich), 0.8% dextrose with glucose oxidase
(Sigma-Aldrich) and catalase (Calbiochem)60.

References
1. Ha, T., Kozlov, A. G. & Lohman, T. M. Single-molecule views of protein

movement on single-stranded DNA. Ann. Rev. Biophys. 41, 295–319 (2012).
2. Myong, S., Rasnik, I., Joo, C., Lohman, T. M. & Ha, T. Repetitive shuttling of a

motor protein on DNA. Nature 437, 1321–1325 (2005).
3. Joo, C. et al. Real-time observation of reca filament dynamics with single

monomer resolution. Cell 126, 515–527 (2006).
4. Honda, M., Park, J., Pugh, R. A., Ha, T. & Spies, M. Single-molecule analysis

reveals differential effect of ssdna-binding proteins on DNA translocation by
XPD helicase. Mol. Cell 35, 694–703 (2009).

5. Park, J. et al. Single-molecule analysis reveals the kinetics and physiological
relevance of MutL-ssDNA binding. PLoS ONE 5, e15496 (2010).

6. Park, J. et al. PcrA helicase dismantles RecA filaments by reeling in DNA in
uniform steps. Cell 142, 544–555 (2010).

7. Baker, T. A. & Wickner, S. H. Genetics and enzymology of DNA replication in
Escherichia coli. Annu. Rev. Genet. 26, 447–477 (1992).

8. Kowalczykowski, S. C. Initiation of genetic recombination and recombination-
dependent replication. Trends Biochem. Sci. 25, 156–165 (2000).

9. Kabata, H. et al. Visualization of single molecules of RNA polymerase
sliding along DNA. Science 262, 1561–1563 (1993).

10. Blainey, P. C., van Oijen, A. M., Banerjee, A., Verdine, G. L. & Xie, X. S.
A base-excision DNA-repair protein finds intrahelical lesion bases by fast
sliding in contact with DNA. Proc. Natl Acad. Sci. USA 103, 5752–5757 (2006).

11. Kim, J. H. & Larson, R. G. Single-molecule analysis of 1D diffusion and
transcription elongation of T7 RNA polymerase along individual stretched
DNA molecules. Nucleic Acids Res. 35, 3848–3858 (2007).

12. Gorman, J. & Greene, E. C. Visualizing one-dimensional diffusion of
proteins along DNA. Nat. Struct. Mol. Biol. 15, 768–774 (2008).

13. van Mameren, J. et al. Counting RAD51 proteins disassembling from
nucleoprotein filaments under tension. Nature 457, 745–748 (2009).

14. van Mameren, J. et al. Unraveling the structure of DNA during overstretching
by using multicolor, single-molecule fluorescence imaging. Proc. Natl Acad. Sci.
USA 106, 18231–18236 (2009).

15. Bell, J. C., Plank, J. L., Dombrowski, C. C. & Kowalczykowski, S. C. Direct
imaging of RecA nucleation and growth on single molecules of SSB-coated
ssDNA. Nature 491, 274–278 (2012).

16. Gibb, B., Silverstein, T. D., Finkelstein, I. J. & Greene, E. C. Single-stranded
DNA curtains for real-time single-molecule visualization of protein–nucleic
acid interactions. Anal. Chem. 84, 7607–7612 (2012).

17. Dessinges, M. N. et al. Stretching single stranded DNA, a model polyelectrolyte.
Phys. Rev. Lett. 89, 248102 (2002).

18. Saleh, O. A., McIntosh, D. B., Pincus, P. & Ribeck, N. Nonlinear low-force
elasticity of single-stranded DNA molecules. Phys. Rev. Lett. 102, 068301
(2009).

19. Bonnet, G., Krichevsky, O. & Libchaber, A. Kinetics of conformational
fluctuations in DNA hairpin-loops. Proc. Natl Acad. Sci. USA 95, 8602–8606
(1998).

20. Woodside, M. T. et al. Nanomechanical measurements of the sequence-
dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad.
Sci. USA 103, 6190–6195 (2006).

21. Funatsu, T. et al. Imaging and nano-manipulation of single biomolecules.
Biophys. Chem. 68, 63–72 (1997).

22. Ishijima, A. et al. Simultaneous observation of individual ATPase and
mechanical events by a single myosin molecule during interaction with actin.
Cell 92, 161–171 (1998).

23. Lang, M. J., Fordyce, P. M., Engh, A. M., Neuman, K. C. & Block, S. M.
Simultaneous, coincident optical trapping and single-molecule fluorescence.
Nat. Methods 1, 133–139 (2004).

24. Hohng, S. et al. Fluorescence-force spectroscopy maps two-dimensional
reaction landscape of the Holliday junction. Science 318, 279–283 (2007).
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