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Objectives: This study aimed to determine whether texture analysis (TA) and

machine learning-based classifications can be applied in differential diagnosis

of cardiac amyloidosis (CA) and hypertrophic cardiomyopathy (HCM) using

non-contrast cine cardiac magnetic resonance (CMR) images.

Methods: In this institutional review board-approved study, we consecutively

enrolled 167 patients with CA (n = 85), HCM (n = 82), and 84 patients

with normal CMR served as controls. All cases were randomized into

training [119 patients (70%)] and validation [48 patients (30%)] groups.

A total of 275 texture features were extracted from cine images. Based on

regression analysis with the least absolute shrinkage and selection operator

(LASSO), nine machine learning models were established and their diagnostic

performance determined.

Results: Nineteen radiomics texture features derived from cine images

were used to differentiate CA and HCM. In the validation cohort, the

support vector machine (SVM), which had an accuracy of 0.85, showed the

best performance (MCC = 0.637). Gray level non-uniformity (GLevNonU)

was the single most effective feature. The combined model of radiomics

texture features and conventional MR metrics had superior discriminatory

performance (AUC = 0.89) over conventional MR metrics model (AUC = 0.79).

Moreover, results showed that GLevNonU levels in HCM patients were
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significantly higher compared with levels in CA patients and control groups

(P < 0.001). A cut-off of GLevNonU ≥ 25 was shown to differentiate between

CA and HCM patients, with an area under the curve (AUC) of 0.86 (CI:0.804–

0.920). Multiple comparisons tests showed that GLevNonU was significantly

greater in LGE+, relative to LGE-patient groups (CA+ vs. CA- and HCM+ vs.

HCM-, P = 0.01, 0.001, respectively).

Conclusion: Machine learning-based classifiers can accurately differentiate

between CA and HCM on non-contrast cine images. The radiomics-MR

combined model can be used to improve the discriminatory performance. TA

may be used to assess myocardial microstructure changes that occur during

different stages of cardiomyopathies.

KEYWORDS

machine learning, texture analysis, cardiac amyloidosis, cardiac magnetic resonance,
hypertrophic cardiomyopathy, non-contrast

Introduction

Cardiac amyloidosis (CA) and hypertrophic
cardiomyopathy (HCM) are associated with increased left
ventricular wall thickness (LVWT). Differential diagnosis of
CA and HCM is still challenging in some instances in which
cardiovascular magnetic resonance (CMR) plays an essential
role. Cine sequences provide the morphological and functional
characterization of the heart. Still, the differential diagnosis
of amyloidosis is typically based on keypoint information
from late gadolinium enhancement (LGE) and mapping
technique (1, 2) combined with clinical information. Mapping
is an important novel technique, but these sequences are not
universally available to date. Gadolinium administration can
cause nephrogenic systemic sclerosis in patients with impaired
renal function. In addition, there is evidence that gadolinium
may be deposited in brain regions in humans (3, 4). This calls
for the development of gadolinium-free techniques to facilitate
myocardial fibrosis characterization.

In cardiac amyloidosis (CA), fibrillar proteins are
extracellularly deposited, disrupting normal tissue architecture
and function (5). Compared with CA, HCM is relatively more
common, and is thought to be caused by a gene mutation that
encodes the sarcomere. Histopathological findings in HCM
include hypertrophy and disarray of cardiomyocytes as well as
interstitial fibrosis (6).

Pathological changes lead to signal abnormalities. In the
context of a purely visual, subjective analysis, it is impossible
to discern signal abnormalities that are visible on LGE imaging
and invisible on non-contrast cine. The radiomics is a non-
invasive way of analyzing and calculating the shape and textural
information in radiological images. Recently, machine learning
have been used to deal with the level of information produced
by radiomics feature extraction and identify new patterns in

large datasets (7, 8). Such tools provide objective assessment
of organ heterogeneity and lesions, thereby revealing important
details in the tissue microenvironment. It is increasingly used
in cardiovascular diseases and across a range of disciplines.
Myocardium heterogeneity can be assessed objectively using
ML beyond subjective visual interpretations, and subtle
changes in myocardial microstructure may be detected during
cardiomyopathy (9). Machine learning algorithms are classified
as supervised or unsupervised. These algorithms can deal
with many quantitative variables of radiomics to characterize
tissues. The goal of supervised learning is to identify unknown
patterns from datasets using algorithms based on a subset
of a trained data set with known labels. There are several
clinical applications for CMR-based ML, irrespective of the
methodology used (10–13). For instance, through texture
analysis (TA) with Boruta machine learning algorithms (10),
CMR cine images have been used to differentiate between
HCM and control subjects. Using quantitative CMR images
is another approach to TA in CMR imaging (11, 12). Hence,
we hypothesized that a radiomics approach could identify
differences in the myocardial texture of CA and HCM on
CMR cine images.

In this study, we aimed to determine whether ML-based
classifications incorporating TA can be applied in the differential
diagnosis of CA and HCM using non-contrast cine images.

Materials and methods

Patient population

We recruited 251 consecutive patients subjected to routine
CMR examination from June 2017 to January 2022. Inclusion
criteria for patients (CA and HCM patients) and control group
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were based on an established diagnostic criteria and CMR
measurements (14, 15) (Supplementary Methods).

All patients with clinically suspected systemic amyloidosis
and histologically confirmed systemic light chain (AL)
amyloidosis by Congo red and immunohistochemical
diagnosis were subjected to CMR. Cardiac amyloidosis
was defined by the combination of typical CMR findings
and biopsy-proven AL amyloidosis on cardiac or non-
cardiac tissues. Patients enrolled in this study participate
in our ongoing bidirectional cohort study of cardiac
amyloidosis. Hence, this was a secondary analysis
of the cohort study based on radiomics. Finally, 85
patients were recruited.

The HCM was diagnosed by either unexplained LVH
(LVWT ≥ 15 mm) or having a sarcomeric mutation (genotype
positive phenotype negative, G+ P−, n = 11) that causes HCM
(16). Those with previous septal ablation or myectomy were
excluded. In total, 82 patients who satisfied the diagnostic
criteria were enrolled in this study.

The control group consisted of 7 healthy adult subjects
recruited through advertisement and 77 clinical patients
screened for any history of cardiac disease who did not exhibit
cardiovascular disease or diabetes symptoms, including cardiac
surgery or interventions. Finally, a total of 84 subjects were
enrolled in this study as control (Supplementary Methods). The
patient enrollment procedure is shown in Figure 1.

The CA and HCM groups were randomized into training
and validation cohorts in a 7:3 ratio (Supplementary Figure 1).

This study was approved by the Medical Ethics Committee
of our institution. Prior to their recruitment, participants were
required to provide a written informed consent.

Cardiac magnetic resonance imaging
data acquisition

ECG-gated CMR imaging was performed using a 3.0
T whole body MR scanner (MAGNETOM Skyra, Siemens
Healthcare, Erlangen, Germany). Cine images were obtained
by a 2D steady-state precession (SSFP) sequence before
administration of contrast medium (Gd-DTPA, 0.02 mmol/kg).
LGE images were acquired 10 min after contrast injection using
a segmented-phase sensitive inversion recovery gradient echo
(PSIR-GRE) sequence.

Cardiac magnetic resonance imaging
data analysis and patient subgroups

An analysis of left ventricular volume was performed on
short-axis (SAX) cine images using commercially available
software (cvi42, Circle, Cardiovascular Imaging, Calgary,
Alberta, Canada).

Furthermore, some patients (equal LVWT subgroup) were
matched with respect to potential cofounding factors to allow
accurate evaluation of the test’s diagnostic significance in
patients with similar morphological features. Therefore, HCM
patients with high clinical suspicion (LVWT > 13 mm and
genotype positive) and CA patients (LVWT ≥ 15 mm) were
matched strictly by gender, maximal LVWT and age were
assigned to the similar asymmetric septal hypertrophy (ASH:
was defined as septal to posterior free wall ratio > 1.3) group
(6, 17) (Supplementary Methods and Supplementary Table 1).

In further analyses, we compared HCM and CA patients
from the feature selection dataset with control participants to
reveal detailed tissue characteristics specific to the disease.

The LGE image evaluation procedure was performed by two
blinded readers (one had 3 years of experience in cardiovascular
imaging while the senior radiologist had 6 years of experience).
Patients were assigned into two subgroups based on whether
they had visual LGE (LGE+) or not (LGE−). In case of
differences in opinion, a consensus was reached by discussion.

Placement of region of interest

The region of interest (ROIs) covering the left ventricular
myocardium was manually drawn by two radiologists using
the MaZda software package (version 4.6.0)1 on 4 chamber
long-axis (LAX) image in the end-systolic frame (shown in
Figure 2). The two radiologists were both blinded to clinical
results. Trabeculated and epicardial borders were excluded to
eliminate partial volume effects. Unlike most previous studies,
we innovated by choosing 4 chamber LAX image in the end-
systolic images, however, most previous studies choosed SAX
end-diastolic images (Supplementary Methods contains the
reason details for placement of ROIs).

Radiomics extraction and analysis

Cine sequences were acquired in accordance with the
guidelines of the Society for CMR (SCMR) and retrieved from
Picture Archiving and Communication System (PACS) of our
institution with the corresponding window width and position.
For each patient, trigger time was visually chosen based on
smallest LV dimension (end-systolic).

Gray-scale normalization was performed between the mean
and three standard deviations (“± 3σ” method) before feature
extraction. In accordance with previous studies, it minimizes
the effects of inter-scanner differences and improves the
reproducibility as well as robustness of radiomics features
(7, 18). A total of 275 radiomics features within each
ROI were separately extracted from 5 subsets of image

1 https://www.Eletel.p.Lodz.Pl/mAzda/
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FIGURE 1

The flowchart of inclusion and exclusion criteria.

descriptors (Table 1). MaZda’s official website contains a detailed
description of these radiomics features and their mathematical
formula.

Analysis of feature reproducibility and
feature selection

All extracted radiomics features were evaluated by
calculating intra-class correlation coefficients (ICC).
Calculations for the ICC were generated using the “icc”
command in the irr package in R. For further analysis,
reproducibility was rated as excellent only for features with an
ICC value of 0.75 (Supplementary Figure 2).

Then, the least absolute shrinkage and selection operator
(LASSO) regression was applied to each variable classifier in the
training cohort, according to binomial deviance minimization
criteria. An unbiased analysis was produced and cross-validated
10 times to prevent overfitting (Supplementary Figure 3).

Classification and validation

In this study, six supervised machine learning algorithms
were utilized: K-Nearest Neighbor (KNN), Random Forest (RF),
Naïve Bayes (NB), Support-Vector Machine (SVM), Logistic
Regression (LR), and Artificial Neural Networks (ANN). Nine
machine-learning classifiers were constructed in the training
cohort, which were tested in the validation cohort. Based
on previous studies, we calculated the Matthews correlation
coefficient (MCC, Eq. 1) of the confusion matrix to quantify how
robust the model is in imbalanced data (7, 19). Additionally,
specificity, sensitivity, and accuracy were calculated.

MCC = [(TP × TN)− (FP × FN)] / [(TP + FP) (TP + FN)

(TN + FP) (TN + FN)]1/2 (1)

The equation of MCC; MCC, Matthews correlation
coefficient; TP, true positive; TN, true negative; FP, false positive,
FN, false negative.
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FIGURE 2

Workflow for image analysis including TA. Cine images were used for visual wall motion analysis and functional assessment LGE images were
used to further divide the patient cohort into LGE+ and LGE- subjects for subgroup analyses. Freehand ROIs were drawn encompassing the
entire myocardium while carefully excluding the endo- and epicardial regions. The rightmost column showed the feature extraction of the ROIs
using the MaZda software.

TABLE 1 Overview of all computed texture categories with corresponding features and selected features for classification.

Texture category Texture feature Classification between CA and
HCM

Number of
selected
features

Histogram Mean, variance, skewness, kurtosis, percentiles (1, 10, 50, 90,
99%)

percentiles (1, 10%) 2

Co-occurrence
matrix (computed for four
directions [(a,0), (0,a), (a,a),
(0,-a)] at five interpixel distances
(a = 1–5))

Angular second moment, contrast, correlation, entropy, sum
entropy, sum of squares, sum average, sum variance, inverse
different moment, difference entropy, difference variance

S(1,1) Contrast S(2,0) DifVarnc
S(0,2) SumAverg S(0,2) SumVarnc
S(0,3) SumVarnc S(3,3) SumAverg
S(4,-4) AngScMom S(0,5) InvDfMom
S(0,5) SumVarnc S(5,5) SumOfSqs
S(5,-5) Contrast S(5,-5) InvDfMom

12

Run-length matrix [computed
for four angles (vertical,
horizontal, 0◦ , and 135◦)]

run-length non-uniformity, gray-level non-uniformity, long
run emphasis, short run emphasis, fraction of image in runs

GLevNonU 1

Absolute gradient mean, variance, skewness, kurtosis, and non-zeros 5

Autoregressive model Teta 1 to 4, sigma Teta1 Sigma 2

Wavelet transform (calculated
for four subsampling factors
(n = 1–4)

Energy of wavelet coefficients in low-frequency sub-bands,
horizontal high-frequency

WavEnHL_s.4 WavEnHH_s.4 2

sub-bands, vertical high-frequency sub-bands, and diagonal
high-frequency sub-bands

Statistical analysis

Statistical analyses were performed using R statistical
software (version 3.3.3) and IBM SPSS (version 26.0).
Kolmogorov-Smirnov was used to determine whether data
was normally distributed. Categorical data are presented

as percentages, continuous and normally distributed data
are expressed as mean ± standard deviation (SD) while
data that did not conform to normal distribution were
expressed as medians and interquartile ranges (IQR). The
independent t-tests or Mann-Whitney U-tests were used
to compare continuous variables while categorical variables
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between groups were compared using the Chi-square tests.
Multiple non-parametric comparisons between subgroups
and controls were conducted using the Kruskal-Wallis
tests. False Discovery Rate (FDR) was calculated using
the Benjamini-Hochberg’s (BH) method. P ≤ 0.05 was
the threshold for statistical significance. The areas under
the receiving operating characteristic (ROC) curves were
used to evaluate the accuracy of the three models for
differential diagnosis. Comparing the different AUCs was
done using DeLong’s test.

Results

Patient population

A total of 167 patients (CA85, HCM82) and 84 control
subjects were enrolled in this study; Their demographic
and LV volumetric data is presented in Table 2. There
were significant differences between groups in terms of
Maximum LVWT, Asymmetric septal hypertrophy, LV mass,
and LGE presence.

Diagnostic performance of
conventional magnetic resonance
imaging model

Four conventional MR metrics were used in the model
to classify CA and HCM: Maximum LVWT, asymmetric
septal hypertrophy, LV mass, and LGE presence. The AUC,
sensitivity, and specificity of the model were 0.79 (CI: 0.72–
0.86), 0.81 (CI: 0.72–0.88), 0.79 (CI: 0.69–0.86) in the validation
group, respectively.

Radiomics features selection and
diagnostic performance of radiomics
model

In this study, 265 of 275 radiomics features showed
excellent reproducibility (ICC ≥ 0.75). For differentiation
of CA from HCM, 19 features in cine images were
generated using the LASSO feature selection analysis.
The selected features and their values are presented in
Table 1 and Figure 3. Auto- and cross-correlations of the 19
features are illustrated in this correlogram (Supplementary
Figure 4).

A cross-validation-trained SVM polynomial classifier can
achieve an MCC of 0.98 and an accuracy of 0.99 (CI: 0.97–
1.00). In the validation cohort, the SVM polynomial classifier
yielded the highest MCC and accuracy scores: 0.637 and 0.852
(CI: 0.76–0.91) (Table 3 and Figure 4).

Radiomics features for identifying
myocardial tissue alterations in cardiac
amyloidosis and hypertrophic
cardiomyopathy patients

After the multi-part dimension reduction process, analysis
of CA (n = 85) and HCM (n = 82) patients revealed significant
differences in 5 out of the19 radiomics features, including 3
s-order features (Gray level non-uniformity, GLevNonU; Gray-
level run-length matrix, GLRLM) (DifVarnc, Contrast; Gray-
level co-occurrence matrix, GLCM) and 2 higher-order metrics
features (Teta1, Sigma). Multiple logistic regression analyses
revealed that GLevNonU was the best single texture feature
for discriminating between HCM and CA patients. In ROC
analyses, AUC was 0.86 (CI: 0.80–0.92) with GLevNonU ≥ 25
as the optimal cut-off, where higher values indicated a higher
likelihood for HCM. GlevNonU had a sensitivity of 0.68 (CI:
0.43–0.86) and a specificity of 0.74 (CI: 0.51, 0.89) with a
diagnostic accuracy of 0.71 (CI: 0.56–0.83) in equal LVWT and
ASH subgroups (Supplementary Figure 5).

CA and HCM patients were, respectively, assigned into LGE
positive (i.e., CA+, HCM+) and LGE negative (i.e., CA−, HCM-
) groups, and compared with controls. In subgroup analysis,
pairwise comparisons revealed that each of these subgroups
significantly differed from the other (all P < 0.05), except
for comparisons of CA- and HCM+ (P = 0.82). In CA and
HCM subgroups, GLevNonU exhibited a stepwise elevation
(CA-vs. CA+, P = 0.006) (HCM- vs. HCM+, P < 0.001), HCM-
had significantly elevated GLevNonU, compared to both CA-
and normal controls (P = 0.02, P = 0.003) (Figure 5 and
Supplementary Table 2).

Diagnostic performance of
radiomics-magnetic resonance
combined model

Finally, the combined model was constructed using four
conventional metrics and one texture feature (i.e., Maximum
LVWT, Asymmetric septal hypertrophy, LV mass, LGE, and
GLevNonU). The efficiency of the combined model to classify
CA and HCM was evaluated: The AUC, sensitivity, and
specificity were 0.89 (CI: 0.85–0.94), 0.80 (CI: 0.70–0.87), and
0.85 (CI: 0.76–0.91) in the validation group, respectively.

Comparison of diagnostic
performance of different models

Based on the validation group, the highest AUC (0.89),
accuracy (0.83), and specificity (0.85) were found in the
radiomics-imaging combined model to classify CA and HCM
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TABLE 2 Patient characteristics and morphological, functional measures based on cardiovascular magnetic resonance.

Parameter CA patients (n = 85) HCM patients (n = 82) Control (n = 84) P-value P* P** P***

Age (year) 54± 9 46± 14 45± 8 0.56 0.39 0.32 0.91

Male, n (%) 40 (47) 44 (54) 51 (61) 0.20 0.39 0.09 0.36

BMI (kg/m2) 23.7± 3.2 25.5± 3.2 24.0± 3.5 0.78 0.53 0.93 0.90

SBP (mmHg) 116.6± 17.3 132.6± 22.5 116.8± 11.7 0.001 0.001 0.93 0.001

DBP (mmHg) 71.1± 11.0 82.04± 14.7 79.4± 8.4 0.08 0.03 0.08 0.58

NYHA II-III stage, n (%) 47 (55) 23 (28) 0 (0) − 0.001 − −

Maximum LVWT (mm) 16.4± 4.5 20.1± 5.1 9.3± 2.4 0.01 0.01 0.01 0.01

Asymmetric septal hypertrophy, n (%) 42 (49) 55 (67) 0 (0) − 0.03 − −

LVEDV (ml/m2) 55.2± 12.2 71.7± 20.1 74.6± 17.7 0.01 0.01 0.01 0.48

LVESV (ml/m2) 24.6± 11.6 23.6± 12.1 22.7± 8.2 0.29 0.75 0.36 0.79

LVEF (%) 63.9± 13.0 68.3± 7.1 62.8± 8.4 0.07 0.09 0.62 0.02

LV mass (g/m2) 94.5± 29.2 111.7± 31.5 49.0± 12.5 0.01 0.01 0.001 0.001

LGE presence, n (%) 68 (80) 51 (62) 0 (0) − 0.02 − −

CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; BMI, body mass index; SBP, systolic blood pressure; DBP, Diastolic blood pressure; NYHA, New York Heart Association;
LVWT, Left ventricular wall thickness; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVEF, left ventricular ejection fraction; LVmass, left
ventricular mass; LGE, Late gadolinium enhancement. Values are given as mean ± standard deviation for continuous variables; and count (%) for categorical variables. P-value, p-value
of ANOVA; *CA vs. HCM; **CA vs. Controls; ***HCM vs. Controls.

FIGURE 3

Heat-maps of the selected features from cine for the train (A) and validation (B) cohort, which were plotted in red (HCM, hypertrophic
cardiomyopathy) vs. blue (CA, cardiac amyloidosis) color scales to show the distribution and differences of normalized (z-score) feature values.

with sensitivity (0.80). Similarly, the SVM model to classify CA
and HCM also had the AUC (0.88) in the validation group. No
statistically significant difference was observed between the two
AUCs according to the DeLong’s test (P = 0.62) (Figure 6).

Discussion

The main findings of this study are as follows: In a clinical
cohort of CA and HCM patients, we differentiated between these
two diseases on non-contrast cine CMR images using machine
learning-based MRI classifiers, which achieved a satisfactory

performance. The best model was SVM classifiers, and the most
contributing texture feature for classification was GLevNonU.
A previous study differentiated the etiologies of left ventricular
hypertrophy based on first-order statistics histogram from SAX
cine images. Myocardial involvement between HCM and CA
was found to differ (20). To the best of our knowledge, our study
is the first to establish ML-based classifiers that combine TA to
distinguish between CA and HCM on non-contrast cine images.

Cine images routinely provide the initial diagnostic
impression in classifying non-ischemic cardiomyopathy based
on different patterns of left ventricular hypertrophy (LVH).
LGE imaging further improves diagnostic confidence. However,
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TABLE 3 Classification results of machine learning–based classifiers in differentiating CA and HCM.

Classifier Train cohort Validation cohort

ACC SEN SPE MCC ACC SEN SPE MCC

KNN 0.882 0.947 0.823 0.773 0.688 0.76 0.609 0.374

SVM (linear) 0.908 0.86 0.952 0.817 0.75 0.76 0.739 0.499

SVM (polynomial) 0.992 1 0.983 0.983 0.852 0.855 0.850 0.637

SVM (radial) 0.983 0.982 0.984 0.966 0.708 0.72 0.696 0.416

SVM (sigmoid) 0.605 0.632 0.581 0.212 0.604 0.56 0.652 0.176

RF 0.84 0.807 0.871 0.68 0.771 0.8 0.739 0.541

NB 0.84 0.895 0.79 0.686 0.667 0.68 0.652 0.332

ANN 0.983 0.966 1 0.977 0.75 0.741 0.762 0.5

LR 0.924 0.936 0.912 0.848 0.708 0.696 0.72 0.416

ANN, artificial neural network; RF, random forest; SVM, support vector machine; NB, Naive Bayesian; KNN, K-nearest neighbor; LR, Logistic Regression; ACC, accuracy; SEN, sensitivity;
SPE, specificity; MCC, Matthews correlation coefficient.

FIGURE 4

Histogram shows the performance of classifiers from cine images for discriminating CA and HCM in the train and validation cohort.

conventional radiological features visually assessed in the
clinical routine are not always typical; hence, they can vary
based on a radiologist’s subjective opinion (6, 17). Radiomics
is a potential tool in modern radiology. It can overcome the
limitations of visual assessment and provide a quantitative
objective estimation of tissue features. By extracting and
analyzing a large number of image features that cannot be
detected by the naked eye, it can provide important information
on histopathology.

Advanced imaging tools including T1 and extracellular
volume (ECV) mapping, are now widely used for differential
diagnosis of LVH patients because they overcome the limitations
of conventional radiological feature classification. Based on
T1 mapping images, Neisius et al. (21) reported a maximum
diagnostic accuracy of 86.2%. Martini et al. (22) investigated
the diagnosis of CA from CMR using deep learning. Advanced

imaging is not always available for all medical conditions and
it requires sophisticated acquisition and analysis techniques.
This would facilitate clinical work-up if conventional sequences
can be used to classify LVH (e.g., cine). To date, only one
study has adopted MaZda to extract texture features from non-
contrast T1-weight images to perform ML-based classification
of HCM. In this study (10), one classifier was trained to
differentiate HCM from the control achieving an AUC of 0.95.
Recently, the LASSO method was found to be an effective
and efficient method for feature selection (7). We used several
ML classifiers and feature selection algorithms to identify and
explore differences between CA and HCM, and various trained
classifiers were used, including: ANN, SVM, k-NN, NB, LR,
and RF. Before verification, each classifier was subjected to
internal cross-verification to evaluate the classification accuracy
and avoid overfitting.
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FIGURE 5

Boxplot indicating median and interquartile ranges for the GLevNonU feature for each subgroup. All Values are Median +/-interquartile. All
results were analyzed using the Kruskal-Wallis test followed by Benjamini-Hochberg’s multiple-testing corrections. ap < 0.05 compared to
control. bp < 0.05 compared to CALGE-. cp < 0.05 compared to CALGE+. dp < 0.05 compared to HCMLGE-.

FIGURE 6

Performance comparison of different models.

The best model was SVM classifiers. Validation data showed
a decrease in accuracy of the selected features, as is common in
cardiac “omics” studies (23). Compared with other ML methods,
SVM was found to be suitable for identifying subtle patterns
in complex data sets (24, 25). It has also been proven to play
a crucial role in cancer classification and sub-classification in
oncogenomics. Vamvakas et al. (26) used SVM to classify low-
grade and high-grade gliomas with TA. With a leave one out
cross validation (LOOCV), they achieved an accuracy of 0.955
and an AUC of 0.955.

Radiomics models are slowly gaining traction as superior
diagnostic tools to conventional image analysis. Neisius et al.
(21) applied exhaustive texture analysis using six radiomics

features and a SVM model combined also showing an improved
accuracy of 0.86. Unlike this study, in our study, the most
contributing radiomics feature was GLevNonU, and we found
that radiomics and conventional MR image metrics can be
combined to improve the differential diagnosis performance,
and the combined model had a significant higher AUC (0.89)
than the conventional MR imaging model (0.79). It should
be noted that the combined conventional CMR metric model
already utilizes and benefits from LGE information. In contrast,
radiomics model building uses only radiomics features obtained
from non-contrast images. Radiomics can derive quantitative
metrics on a number of aspects, including tissue shape
and texture, by analyzing pixel-level data (27). The type of
information provided by radiomics conceptually suggests that
features not captured by current conventional image analysis
methods can be extracted from existing CMR images by means
of radiomics, and that this information appears to provide
additional insight into myocardial microstructural remodeling
patterns (28) so that models combining both radiomics and
conventional imaging graphics parameters can be used to
improve diagnostic performance. Previous studies (29, 30) in
other fields have also shown the combined model performs
better than single conventional imaging or radiomics model.

For detecting myocardial tissue alterations, the most
important texture feature was GLevNonU from GLRLM in our
study. As a widely used texture analysis algorithm, GLRLM is
determined by computing the number of gray level runs, where
gray level runs correspond to a set of linearly adjacent picture
points of the same gray-level value (10). GlevNonU measures
pixel intensity diversity along a line toward the horizontal, thus,
higher values indicate more significant inhomogeneity at the
pixel level in the myocardium. Myocardial heterogeneity with
concomitant alterations of GLevNonU have been shown on T1-
sequences in HCM and T2 mapping in myocarditis (10, 31).
Our results showed that GLevNonU on cine-based images was
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significantly higher in CA patients relative to controls, which
supports the hypothesis that microstructures of the myocardium
of HCM patients may have a heterogeneous tissue texture.
This is possible considering that myocardial tissue heterogeneity
associated with GLevNonU alterations has also been identified
in other myocardial diffuse diseases (10, 32). we compared
GLevNonU in CA and HCM and its ability to differentiate them.
Using non-enhanced cine images, we found that GLevNonU in
HCM was higher than in CA and controls. Even in the equal
ASH subgroup, the GLevNonU value in HCM was markedly
higher relative to CA patients with a similar degree of LVWT.

The myocardial structural pattern differs between HCM
and CA. Unlike CA, HCM is characterized by myocyte
hypertrophy, disarray, and diffuse interstitial and perivascular
fibrosis. Case of infiltrative cardiomyopathy like CA present
with enlarged extracellular space with slight morphologic
changes of myocytes (5). Therefore, we postulated that
GLevNonU might be more sensitive to morphological or
structural changes of myocytes than extracellular changes.
Several tumor-related histological studies had also similar
findings with us: GLevNonU was an essential feature, which
was attributed due to the significant morphological and
structural differences between tumor cells and normal cells (33).
Conventional cine imaging cannot directly assess myocardial
microstructural abnormalities, including hypertrophic disarray
of cardiomyocytes. However, it can be detected by TA.
Thornhill et al. (34) found that GLevNonU differentiated
LGE+ from LGE-myocardium of HCM patients as well as
between HCM patients and healthy controls, suggesting that
GLevNonU may identify incipient myocardial markers and
microstructural abnormalities in HCM patients. In HCM
patients, Cui et al. (35) found good correlations between LGE
and collagen and, therefore, fibrosis, but not with myocardial
disarray. Accordingly, one might consider whether GLevNonU
and/or other texture features can detect different aspects of
myocardial damage (e.g., myocyte hypertrophy and disarray),
compared with LGE, which is directly linked to ventricular
arrhythmias (35).

It should be noted that even in the LGE- subgroup,
GLevNonU still showed a significant increase in HCM-
subgroup, compared with CA- subgroup (P = 0.02) and
controls (P = 0.001). LGE location and extent are of
particular value in differential diagnosis of non-ischemic
cardiomyopathy. Negative LGE complicates diagnosis, which
makes it more challenging. Consequently, GLevNonU may
provide a more sensitive marker of myocardial microstructure
abnormality. Therefore, TA is an effective diagnosis took
and may complement the LGE technique for potential
clinical application, the two techniques also might be used
complementary in future studies.

Applying model-based machine learning to decode
various statistical outputs from TA is becoming more widely
used, yielding clinically relevant and valuable achievements.

Radiomics has several advantages. This technology, which
can be retrospectively performed on basically any acquired
image, does not require additional scanning time, sequences, or
gadolinium-based contrast agents. An intensity-based radiomic
features approach have great potential for identifying disease
accurately and provide insight into disease process at the
tissue level. Consequently, radiomics has real potential to
become a very high yield, complementary image analysis tool in
clinical settings.

This study has several limitations. First, it was a single-
center study with a relatively small sample size, without
external validation, thus, a larger sample-sized multicenter
study is needed for validation in future clinical applications;
Second, only cine-MR was analyzed. Compared with novel
sequences, such as T1,T2 and ECV mapping, the information
provided by conventional sequences about the microstructure
and heterogeneity of myocardium is limited. A third potential
limitation is that radiomics features also suffer from lack of
robustness as they have been shown to change with imaging
parameters, ROI contouring and imaging equipment.

Conclusion

Machine learning methods can reliably differentiate CA
from HCM based on non-contrast cine sequence data. TA
may be used to assess myocardial microstructure changes that
occur during different stages of cardiomyopathies. TA combined
with ML might play an important role in clinical assessment
of cardiomyopathy.
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