
The ever increasing incidence of obesity and atherosclerosis has
highlighted the importance of understanding the function and
dynamics of the lipid droplet, but our knowledge of how these
structures grow remains rudimentary [1–7]. It is generally consid-
ered that the droplet is initially formed by accretion of lipid esters
within and/or adjacent to the endoplasmic reticulum (ER) mem-
brane [5–10]. Subsequent growth may be brought about by fur-
ther accretion from adjacent ER membrane, cytoplasmic transport
of lipid ester as soluble complexes to the droplet or direct accu-
mulation at the droplet itself [5, 6, 10]. When cells accumulate
lipid, the large numbers of small lipid droplets initially produced
are subsequently replaced with fewer large ones, leading to the
idea that homotypic fusion between droplets may also occur [5–7,
11, 12]. This mechanism, though frequently debated, remains
controversial as clear-cut evidence for fusion events in situ has
been difficult to obtain.

Possible fusion has been suggested from live cell fluorescence
imaging but the low resolution, and other technical factors, such
as vertical movement of structures out of the viewing plane, have
prevented definitive conclusions to be reached [11]. Although

thin-section electron microscopy has adequate resolution, extrac-
tion of lipids together with the surface phospholipid monolayers of
closely apposed droplets during processing creates false fusion-
like images. Freeze-fracture electron microscopy offers some
advantages over other approaches [13, 14]. Although only static
images are obtained, these are at high resolution from cells stabi-
lized by the physical process of freezing, without recourse to
chemical fixatives or solvents. Importantly, because the fracture
plane is dictated by lipid organization, a wealth of structural detail
within the droplet is revealed [9, 15].

Applying the freeze-fracture technique to THP-1 macrophages,
abundant lipid droplets appear in the cytoplasm after 24 hrs’ incu-
bation of the cells with acetylated low-density lipoprotein (LDL)
(Fig. 1). Freeze fracture typically reveals the lipid droplets as
closely associated but discrete spheroid or ovoid bodies, 0.5–1.0
�m in diameter, with a characteristic layered structure. Where the
droplet is convexly or concavely fractured, a series of concentric
layers is apparent, whereas cross fractures reveal less regular
stacked layers in the droplet core. These features help define each
droplet as an individual entity.

Despite being so tightly packed that individual droplets appear
to touch and even become flattened by mutual pressure at such
contact regions, the boundaries of the individual droplets are nor-
mally quite distinct, suggesting a strong resistance to fusion (Fig. 1).
Only occasionally is a possible site of continuity between the con-
tents of apposed droplets seen. Whether such sites represent
droplets caught in the act of fusion or the fracture path has simply
failed to be deviated sufficiently to show the boundaries clearly at
these sites, cannot be determined with certainty.
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Abstract

An understanding of how lipid droplets grow in the cell is important to current human health issues. Homotypic fusion of small lipid
droplets to create larger ones is one proposed mechanism though the evidence for this process continues to be debated. By applying
the technique of freeze-fracture electron microscopy to cells that have been stimulated to accumulate lipid droplets, we here present
images which suggest that at least some large lipid droplets may indeed result from amalgamation of multiple smaller ones. These visual
data add significantly to the notion that fusion contributes to lipid droplet growth.
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It is nevertheless striking that, from the appearances observed
in freeze fracture, the larger lipid droplets frequently appear to be
aggregates of smaller droplets. An example, in which a lipid
droplet containing two distinct layered structures resembling

those of separate droplets, is shown in the inset to Fig. 1. An
exceptionally large droplet, containing multiple ovoid concentric
structures, each reminiscent of those of individual droplets, is
illustrated in Fig. 2.
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Fig. 1 Freeze-fracture view of
typical appearance of cytoplas-
mic lipid droplets in THP-1
macrophages. The cells were
incubated with 50 �g/ml
acetylated LDL for 24 hrs to
stimulate lipid droplet accu-
mulation. The fracture plane
frequently follows along the
plane of organized lipids to
give convex or concave views
of the droplet; as the fracture
path skips back and forth
between lipid layers of the
droplet, an ‘onion-like’ mor-
phology is revealed. Other lipid
droplets are cross fractured,
revealing a stack of lipid layers
in the core. In either case, the
boundary of each droplet is
usually clearly defined, demar-
cating one droplet from the
next. Only occasionally do
side-by-side droplets show
regions of continuity (arrows),
raising the possibility of an
ongoing fusion event. PL,
plasma membrane. In some
instances, two stacks of lipid
layers, each approximately
ovoid in overall shape, are
found within a single droplet,
creating the impression that
two droplets have somehow
combined to make one (inset).
In this example, the droplet
has been immunogold labelled
for adipophilin. Bar: 0.5 �m.
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How are such structures formed? One possibility is that, as
lipids are accreted into the enlarging droplet, they are internally
organized into layered structures. However, if this were the case,
it seems odd that multiple individual layered structures are formed
rather than a single large one. The overwhelming impression cre-
ated by these images is that numerous smaller lipid droplets have
amalgamated to create a larger one. The ability of small lipid
droplets to fuse would imply lipid fluidity with consequent inter-
mixing of components; how their individual substructures would
be maintained thus remains something of a puzzle. However, if
such homotypic fusion between smaller lipid droplets does actu-
ally take place, then this could also explain how proteins that have
traditionally been regarded as key components of the surface
monolayer of the droplet are also detected in the core [15]. One of
the theoretical objections to fusion as a mechanism of lipid droplet
growth is that, owing to the reduction in overall surface area, an
excess of surface monolayer would result that could not be

accommodated via the mechanisms operating in membrane-
bound vesicles [5, 6]. It could be suggested that some excess
phospholipid monolayer becomes trapped in the droplet interior,
in keeping with the localization of proteins there. In addition, how-
ever, the occasional observation of small vesicle-like blebs at the
surface of large lipid droplets (Fig. 3) raises the intriguing possi-
bility of a phospholipid shedding mechanism.
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Fig. 2 Large lipid droplet con-
taining multiple small ovoid
concentric layered structures
which have the appearance of
individual droplets (examples
encircled with dashed lines).
Such images suggest the
amalgamation of many lipid
droplets, each of which has
retained the essential features
of its individual structure as
depicted in Fig. 1.
Amalgamation of this nature
implies that fusion events led
to the formation of this
droplet. Bar: 0.5 �m.
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Fig. 3 Vesicular structures (v) at
the periphery of a large lipid
droplet. These might represent a
mechanism for shedding excess
phospholipid monolayer though
how a stable bilayer vesicle could
be created in such a situation is
unclear. Alternatively, such struc-
tures may be involved in delivery
to the droplet. In this example,
the droplet has been double
immunogold labelled for
adipophilin (18 nm gold) and TIP
47 (12 nm gold). Bar: 0.2 �m.
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