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Sepsis is a worldwide health priority characterized by the occurrence of severe
immunosuppression associated with increased risk of death and secondary infections.
Interleukin 10 (IL-10) is a potent immunosuppressive cytokine which plasma
concentration is increased in septic patients in association with deleterious outcomes.
Despite studies evaluating IL-10 production in specific subpopulations of purified cells, the
concomitant description of IL-10 production in monocytes and lymphocytes in septic
patients’ whole blood has never been performed. In this pilot study, we characterized IL-
10 producing leukocytes in septic shock patients through whole blood intracellular
staining by flow cytometry. Twelve adult septic shock patients and 9 healthy volunteers
were included. Intracellular tumor necrosis factor-a (TNFa) and IL-10 productions after
lipopolysaccharide stimulation by monocytes and IL-10 production after PMA/Ionomycine
stimulation by lymphocytes were evaluated. Standard immunomonitoring (HLA-DR
expression on monocytes, CD4+ T lymphocyte count) of patients was also performed.
TNFa expression by stimulated monocytes was reduced in patients compared with
controls while IL-10 production was increased. This was correlated with a reduced
monocyte HLA-DR expression. B cells, CD4+, and CD4- T lymphocytes were the three
circulating IL-10 producing lymphocyte subsets in both patients and controls. No
difference in IL-10 production between patients and controls was observed for B and
CD4- T cells. However, IL-10 production by CD4+ T lymphocytes significantly increased in
patients in parallel with reduced CD4+ T cells number. Parameters reflecting altered
monocyte (increased IL-10 production, decreased HLA-DR expression and decreased
TNFa synthesis) and CD4+ T lymphocyte (increased IL-10 production, decreased
circulating number) responses were correlated. Using a novel technique for intracellular
cytokine measurement in whole blood, our results identify monocytes and CD4+ T cells as
the main IL-10 producers in septic patients’ whole blood and illustrate the development of
a global immunosuppressive profile in septic shock. Overall, these preliminary results add
to our understanding of the global increase in IL-10 production induced by septic shock.
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Further research is mandatory to determine the pathophysiological mechanisms leading
to such increased IL-10 production in monocytes and CD4+ T cells.
Keywords: sepsis, immunosuppression, flow cytometry, interleukin 10, lymphocytes, monocytes
INTRODUCTION

In 2017, the World Health Assembly and the World Health
Organization recognized sepsis as a global health priority (1).
Indeed, the incidence of sepsis is high and every year sepsis is
responsible for over 10 million deaths worldwide (2). While
sepsis and septic shock are caused by an excessive activation of
the immune system, current data indicate that after a short pro-
inflammatory phase, septic shock patients develop negative
regulatory mechanisms aimed at blocking initial hyper-
immune activation. In some patients, this may lead to
profound immunosuppression involving both innate and
adaptive immunity (3).

Sepsis-induced immunosuppression prevents the efficient
clearing of the primary infection, is associated with an
increased risk of nosocomial infections and favors the
reactivation of latent viruses (Cytomegalovirus or Herpes
Simplex Virus) (3). In addition, it is reported that over 70% of
total mortality after septic shock occurs in the immunosuppressive
phase (i.e., after the first 3 days) (4). This is the rationale behind
clinical trials based on adjunctive immunostimulation in sepsis
(interferon gamma, human granulocyte-macrophage colony-
stimulating factor, interleukin 7, anti-PD1/L1 checkpoint
inhibitor antibodies) (5). However, a better description of sepsis-
induced immune alterations is mandatory in order to improve
the understanding of sepsis-induced immunosuppression
pathophysiology and to identify innovative therapeutic targets
and stratification biomarkers.

Interleukin 10 (IL-10) is a potent immunosuppressive cytokine
which concentration is increased in the plasma of septic shock
patients. IL-10 blood levels have been shown to correlate with
inflammation severity and the development of organ failure in
septic shock (6). Increased plasmatic IL-10 concentration has also
been associated with an increase in nosocomial infections and
mortality (7–9). IL-10 thus likely appears to play a major role in
sepsis-induced immunosuppression.

The increased production of IL-10 by some specific cell
subpopulations has only partially been described in sepsis (3–
5). These data were based on ex vivo experiments with purified
cells, which may not necessarily be representative of cytokine
production status by circulating leukocytes. In addition, previous
studies evaluated IL-10 production by one specific cell subset at a
time and thus far, no data are available describing IL-10
production by leukocytes subpopulations simultaneously. In
r cell; Abs, antibodies; Breg, regulatory
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this context, the aim of this exploratory study was to
characterize IL-10 producing cells in sepsis through a novel
whole blood intracellular staining approach by flow cytometry.
MATERIALS AND METHODS

Study Population
This pilot clinical study was conducted on twelve consecutive
septic shock patients admitted to the intensive care unit of
the Edouard Herriot Hospital (Hospices Civils de Lyon,
Lyon, France). This project is part of a global study in sepsis-
induced immune dysfunctions (IMMUNOSEPSIS cohort,
#NCT04067674). Diagnostic criteria for septic shock was based
on the Sepsis-3 definition (10). Exclusion criteria disqualified
patients under 18 years of age and subjects with aplasia or pre-
existent immunosuppression as defined by preexistent
immunosuppressive treatment including corticosteroids at an
immunosuppressive dosage (> 10 mg equivalent prednisone/day
and cumulative dose >700 mg), ongoing hematological disease or
within 5 years preceding inclusion, solid tumor under
chemotherapy or in remission, innate immune deficit,
extracorporeal circulation within one month before inclusion
(cardiac surgery or ECMO). Samples of peripheral blood were
collected at day 3–4 after the onset of septic shock in heparin
coated tubes. The immunosuppressive state of septic patients was
verified by measuring decreased HLA-DR expression on
monocytes (mHLA-DR) expressed as a number of antibodies
bound per cell (AB/C, see reference for standardized laboratory
protocol) and CD4+ T lymphocyte count (11). Clinical
parameters were collected during the follow-up period (until
28 days).

This non-interventional study was conducted in accordance
with the Declaration of Helsinki, under terms of all relevant local
legislation and was approved by our Institutional Review Board
for Ethics [“Comité de Protection des Personnes Ouest II -
Angers” – n° RCB: 2019-A00210-57, n° CPP: 19.01.23. 71857
(2019/11)], which waived the need for informed consent, as the
study was observational and performed on residual blood after
the completion of routine follow-up. Patients or next-of-kin were
systematically informed of the study and non-opposition to
inclusion in the study was systematically obtained and
registered for each patient. Residual samples were stored
within a blood collection registered at French Ministry of
Research and Education (#DC-2008-509) and at the
“Commission Nationale de l’Informatique et des Libertés”.
Peripheral blood from healthy volunteers (HV) was provided
by the “Etablissement Français du Sang” (EFS) from Lyon.
According to EFS standardized procedures for blood donation
and to provisions of the articles R.1243–49 and following ones of
February 2021 | Volume 11 | Article 615009

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fabri et al. IL-10-Producing Cells in Sepsis
the French public health code, a written non-opposition to the
use of donated blood for research purposes was obtained from
HV. The blood donors’ personal data were anonymized before
transfer to our research laboratory.

Intracellular Staining Procedure
Intracellular staining protocol was optimized by Beckman
Coulter Immunotech (Marseille, France).

For monocytes, 100 ml of heparin anticoagulated whole blood
was directly added to the stimulation tube (DurActive3® tube
containing dry coated lipopolysaccharide (LPS) and Brefeldin A,
Beckman Coulter, Brea, US) or to an empty control tube. After 3h
incubation at 37°C, cells were labeled with cell surface antibodies:
FITC-labeled anti-CD16, ECD-labeled anti-HLA-DR, PB-labeled
anti-CD14, and KrO-labeled anti-CD45 (all from Beckman
Coulter, Brea, US). Thereafter, samples were washed with PBS
and treated with the IntraPrep Permeabilization Reagent set
(Beckman Coulter, Brea, US) according to the manufacturer’s
instructions. Samples were then stained for 45min at room
temperature in the dark with intracellular antibodies: PE-labeled
anti-IL10 (BioLegend, San Diego, US) or Rat IgG2a PE-labeled
isotype control antibody (BioLegend, San Diego, US) and AF700-
labeled anti-TNFa (Beckman Coulter, Brea, US) or mouse IgG1
AF700-labeled isotype control antibody (BioLegend, San Diego,
US). Isotype controls of anti-IL-10 and anti-TNF antibodies were
used in order to evaluate non-specific binding both in stimulated
and non-stimulated conditions and thus to set-up threshold of
positivity when markers were expressed as percentages of
positive cells.

For lymphocytes, 100 ml of heparin anticoagulated whole
blood was directly added to the stimulation tube (DurActive1®

tube containing dry coated Phorbol 12-Myristate13 Acetate
(PMA), Ionomycin and Brefeldin A, Beckman Coulter, Brea,
US) or to an empty control tube. After 3h incubation at 37°C,
cells were labeled with cell surface antibodies: PC7-labeled anti-
CD19, KrO-labeled anti-CD45, PB-labeled anti-CD3 and APC-
labeled anti-CD4 (all from Beckman Coulter, Brea, US).
Thereafter, samples were washed with PBS and treated with
the IntraPrep Permeabilization Reagent set (Beckman Coulter,
Brea, US) according to the manufacturer’s instructions. Samples
were then stained for 45min at room temperature in the dark
with intracellular antibodies: PE-labeled anti-IL10 (BioLegend,
San Diego, US) or Rat IgG2a PE-labeled isotype control antibody
(BioLegend, San Diego, US).

Data Acquisition
Data acquisition was performed on a Navios Flow Cytometer
(Beckman Coulter, Brea, US). Our instrument was daily
calibrated with Flow Check (Beckman Coulter, Brea, US) and
Flow Set (Beckman Coulter, Brea, US) calibration beads to
control the optical and fluidic stability of the device and for a
performance validation throughout the study. To minimize
autofluorescence and the improper analysis of cell doublets,
cells were first put through a forward scatter area and forward
scatter height gate to identify single cells. Leukocytes were then
gated out from dead cells and debris on the basis of labeling with
CD45. For the monocyte panel, among the CD45+ cell
Frontiers in Immunology | www.frontiersin.org 3
population, monocytes were identified on a CD14/SS dot-plot.
Intracellular tumor necrosis factor-a (TNFa) and mHLA-DR
results were expressed as mean fluorescence intensity (MFI) of
the entire monocyte subpopulation. For the lymphocyte panel,
two complementary gating strategies were used. First, in order to
phenotype IL-10 producing lymphocytes in stimulated tubes, on
a IL-10 (x-axis) and SS (y-axis) dot-plot gated on in CD45+
leukocytes, we selected IL-10 producing lymphocytes (IL-10+
SSClow cells). CD3, CD19, and CD4 expressions were then
characterized on these cells based on CD4 (y-axis) and CD3 or
CD19 (x-axis) dot-plots. Second, so as to evaluate the impact of
sepsis on IL-10 production capacity on beforehand identified
lymphocyte subpopulations, B cells were identified on a CD19/SS
dot-plot and T cells on a CD3/SS dot-plot among the CD45+ cell
population. Finally, CD4- and CD4+ T cells were gated among
CD3+ cells on a CD3/CD4 dot-plot. The percentages of IL-10
expressing cells among these three lymphocyte subpopulations
were then evaluated. Positivity threshold was defined based on
isotype values set up at 1%. A minimum of 5,000 target cells
(monocytes or lymphocytes) were systematically acquired to
ensure robustness of results. Of note, both in patients and
donors, the majority of monocytes were able to produce TNF-
a; which was not the case for IL-10. Thus TNF- a results
expressed as MFI possessed a better dynamic range compared
with percentages which saturated at 100%. In addition, TNF-a
results expressed as percentages and MFI were strongly
correlated (Data not shown).

Statistical Analysis
Results are expressed as individual values and medians ± IQR
(interquartile range). Comparisons between patients and HV
were made using the non-parametric Mann-Whitney U test.
Comparisons between stimulated and non-stimulated tubes were
made using the Wilcoxon paired test. Correlations were made
with the Spearman correlation test. Statistical significance was set
at p < 0.05. Statistical analyses were performed with R Studio
software (version 1.2.5001; R studio, Boston, Massachusetts).
RESULTS

Clinical Characteristics of the Cohort
In total, 12 septic shock patients were included in this pilot study.
Patients presented with usual demographic and clinical
characteristics of septic shock patients (elderly patients and
high severity scores, Table 1). These septic patients presented
with signs of immunosuppression including decreased mHLA-
DR and CD4+ T lymphopenia compared with reference values
from the lab. In addition, nine healthy volunteers were included
(median age = 53, five women - four men).

Intracellular Cytokines in Monocytes
As reported previously, LPS stimulation induced a strong
increase in intracellular TNFa expression in monocytes both
from healthy volunteers and patients (12). However, this increase
was statistically stronger in HV than in patients (MFI 61.6 [IQR:
February 2021 | Volume 11 | Article 615009
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58.0–74.5] vs 23.6 [IQR: 16.8–39.9], p=0.0013) (Figure 1A). We
observed a good correlation between intracellular TNFa
induction after stimulation and monocyte HLA-DR expression
both in patients and controls, with individuals with high HLA-
DR expression producing more TNFa than individuals with
decreased HLA-DR expression (R= 0.79; p<0.001) (Figure 1B).
This was also observed at the single cell level as, in septic patients,
monocytes with high HLA-DR expression also had higher
expression of TNFa compared with HLA-DRlow monocytes
(MFI 27.5 [IQR: 15.3–45.7] vs 7.3 [IQR: 5.3–16.8], p=0.00049)
(Figures 1C, D).

LPS challenge also induced IL-10 expression in monocytes in
both patients and controls (Figure 2A). However, in contrary to
TNFa, the proportion of IL-10 positive monocytes was statistically
higher in patients than HV (2.4% [IQR: 1.8–3.7] vs 1.2% [IQR: 0.9–
1.6], p=0.0093) (Figure 2B). The proportion of IL-10 positive
monocytes was negatively correlated with HLA-DR (Figure 2C)
and intracellular TNFa expression (Figure 2D) in these cells.
Correlation coefficients were -0.61 (p=0.0041) and -0.67
(p=0.0012) respectively.

Intracellular IL-10 Expression
in Lymphocytes
In order to identify circulating lymphocyte subsets producing IL-
10, we evaluated CD4, CD3 and CD19 expressions on IL-10
Frontiers in Immunology | www.frontiersin.org 4
expressing cells after stimulation. B lymphocytes, CD4+ T cells
and CD4- T cells were the three main subsets of IL-10 producing
lymphocytes in both patients and HV (Figure 3A). Among the
three subsets, CD4+ T cells were the main IL-10 producing
lymphocytes representing more than 60% of IL-10+
lymphocytes. No significant difference was found in the
relative proportions of IL-10 producing lymphocyte subsets
between patients and HV and we did not observe any
appearance or disappearance of an IL-10 producing
lymphocyte subset after septic shock (Figure 3B).

When comparing IL-10 production between patients and
controls, in these beforehand identified cells no significant
difference was observed in the proportion of B lymphocytes
and CD4- T cells expressing IL-10. However, the proportion of
CD4+ T cells expressing IL-10 was significantly higher among
septic shock patients than HV (median [IQR] 2.8% [1.8–3.4] vs
1.6% [1.3–1.9], p=0.0077) (Figure 4).

In addition, intracellular IL-10 expression in CD4+ T cells was
inversely correlated to CD4+ T cell counts in patients (R= -0.8,
p=002) (Figure 5A). The proportion of IL-10 positive CD4+ T cells
was also negatively correlated to mHLA-DR and intracellular TNFa
expression (R= -0.62, p=0.0026, and -0.46, p=0.034 respectively) and
positively correlated to the proportion of IL-10 positive monocytes
(R=0.54, p=0.012) (Figures 5B–D).
DISCUSSION

Results from this study showed that IL-10 production was
induced in circulating monocytes from septic shock patients in
parallel with decreased TNFa production and reduced HLA-DR
expression. Among circulating lymphocytes, CD4+ T cells were
the main IL-10 producers in circulating blood and this cytokine
production was increased after septic shock. Such increase was
negatively correlated with CD4+ T cell lymphopenia and
positively with increased IL-10 production by monocytes. The
strong correlations between parameters reflecting altered
monocyte (increased IL-10 production, decreased HLA-DR
expression and decreased TNFa synthesis) and CD4+ T
lymphocyte (increased IL-10 production, decreased circulating
number) responses suggest a common regulation mechanism
and illustrate the development of a global immunosuppressive
profile in septic shock. Overall, these preliminary results add to
our understanding of the global increase in IL-10 production
induced by septic shock.

Findings in the present study are consistent with sepsis-
induced monocyte anergy described in the literature and the
concept of leukocyte reprogramming (3–5). We replicated in
whole blood results observed on purified or frozen cells showing
the decreased TNFa but increased IL-10 productions by
monocytes in septic patients characteristic of the phenomenon
of endotoxin tolerance (13–15). However, we completed these
observations by showing at the single cell level the correlation
between decreased HLA-DR expression, decreased TNFa but
increased IL-10 productions. Similarly, a negative correlation
between mHLA-DR and IL-10 plasmatic concentrations was
TABLE 1 | Demographic, clinical, and immunological data for septic shock patients.

Parameters Septic shock Patients (n=12)

Age at admission (years) 69 [63–73]
Gender - Male, n (%) 7 (58)
Main admission category
Medical, n (%) 4 (33)
Surgical, n (%) 8 (67)
SAPS II score 53 [50–62]
SOFA score 9 [8-10]
McCabe score
0, n (%) 6 (50)
1, n (%) 6 (50)
Infection diagnosis, n* (%)
Microbiology 10 (91)
Surgery 1 (9)
Microbiologicaly documented, n(%)
Bacilli gram - 6 (40)
Cocci gram + 9 (60)
Other 0 (0)
Site of infection, n* (%)
Pulmonary 1 (9)
Abdominal 3 (27)
28-day non survivors, n (%) 2 (17)
Secondary nosocomial infections, n (%) 3 (25)
Immunological parameters
mHLA-DR (AB/C) 4044 [3,246–6,210]
Absolute CD4+ T cell count 317 [248–463]
Continuous data and biological parameters are presented as medians and interquartile
ranges [Q1–Q3]. For clinical parameters, categorical data are presented as numbers of
cases and percentages among the total population in brackets. SAPS II (Simplified Acute
Physiology Score II) and McCabe scores were calculated after admission. SOFA
(Sequential Organ Failure Assessment) score was measured after 24h of ICU stay.
mHLA-DR was expressed as numbers of anti-HLA-DR antibodies bound per monocyte
(AB/C). Reference values for healthy volunteers: mHLA-DR: > 15,000 AB/C, CD4+: 336-
1126 cells/µl.
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described in burned patients with sepsis (16). Together, these
results call for further investigation of the theory defended by
different groups suggesting that IL-10 plays a role in decreased
MHC class II expression in sepsis either through intracellular
sequestration of mHLA-DR or via inhibition of its transcription
(17–19).

Three subsets of IL-10 producing lymphocytes were identified
in both patients and HV: a predominant population of CD4+ T
cells and two smaller populations of B lymphocytes and CD4- T
cells. This was expected as IL-10 production has been reported in
the literature for nearly all lymphocyte subsets (including B
lymphocytes, CD4+ T cells, and CD8+ T cells) (20). It has also
been described that IL-10 produced by CD4+ T cells is critical to
limit inflammation in many infections that trigger adaptive
immune responses (21). In addition, no new IL-10 producing
lymphocyte subset emerged in septic patients. Therefore, any
Frontiers in Immunology | www.frontiersin.org 5
difference in IL-10 production related to septic shock appears to
be quantitative and not qualitative.

In other clinical contexts, IL-10 production by lymphocyte
subsets such as T or B cells was proposed as a marker of
regulatory cell subpopulations (22, 23). In sepsis, the issue of
regulatory cells has recently grown in importance and a wide
variety of regulatory cell subsets has been identified.
Interestingly, different groups have reported an increase in the
proportion of regulatory B cells (Breg) in septic shock patients
(24, 25). In spite of the absence of consensus on the phenotype of
Breg in the literature, there is consensus to attribute their
immunosuppressive properties to their secretion of IL-10 (26).
Contrary to data from the literature, our current results did not
find a significant difference in the proportion of IL-10 positive B
cells between septic shock patients and HV. This could be
explained by the use of a whole blood approach or different
A B

DC

FIGURE 1 | Intracellular TNF-a expression in monocytes. (A) Monocyte intracellular TNFa expression (Mean fluorescence intensity – MFI) with (+LPS) and without
(Non stimulated) LPS challenge. (B) Scatterplot showing the relationship between monocyte intracellular TNFa expression and HLA-DR MFI (measured in LPS
stimulated tube). (C) One representative flow cytometry image of TNFa (x axis) and mHLA-DR (y axis) in monocytes (gated on CD14+ cells) following LPS challenge
in one healthy donor and one septic shock patient. (D) Intracellular TNFa expression in mHLA-DR high and mHLA-DR low monocytes. Results are presented as
individual values in septic patients (n = 12, red triangles) and healthy donors (n = 9, blue squares) and as medians ± IQR (A, D) and **p < 0.01 and ***p < 0.001 with
Mann-Whitney U test (A) or Wilcoxon paired test. Correlations were analyzed using Spearman correlation coefficient.
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stimulation conditions compared with previous studies. That
said, our results should not contest the importance of Breg in
sepsis-induced immunosuppression but encourage further
research on IL-10 independent immunoregulatory mechanisms
for Breg in sepsis such as IL-35 and adenosine production,
checkpoint inhibitors expression, or activation of the Fas/Fas
ligand apoptotic pathway (27).

IL-10 synthesis by CD8+ T cells has been described using
intracellular flow cytometry protocols in so-called CD8+ T
regulatory cells (28). The immunomodulatory role of CD8+ T
regulatory cells is well documented in autoimmune diseases,
cancer, human transplants and certain infections (Human
Immunodeficiency Virus or Epstein-Barr Virus) (29).
However, to the best of our knowledge, no study has been
conducted on IL-10 production by CD8+ T cells in septic
shock patients. Our results did not show a significant
Frontiers in Immunology | www.frontiersin.org 6
difference in the synthesis of IL-10 by CD8+ cells between
patients and HV, although we cannot exclude that
the possibility that CD4- T cells monitored in this study
were double-negative. That said, CD8+ T cell exhaustion
remains a hallmark of sepsis, as evidenced by the recently
reported decrease in the synthesis of IL-2 and TNFa by CD8+
T cells (30).

Finally, we revealed an increase in IL-10 synthesis by CD4+ T
cells in septic shock patients. This finding is consistent with a
considerable amount of published literature on regulatory T CD4+
cells (Treg) in sepsis and septic shock (31). Immunosuppressive
properties of Treg are mediated by cell-cell contact mechanisms and
IL-10 synthesis (32). In sepsis, the percentage of Treg is increased
without change in their absolute value due to a selective depletion of
other lymphocyte subsets (33, 34). This could imply that the increase
in IL-10 production observed in our study is due to CD4+ T regs.
A B

DC

FIGURE 2 | Intracellular IL-10 expression in monocytes. (A) One representative flow cytometry dot-plot and its respective isotype control of IL-10 (x-axis) and CD14
(y-axis) in monocytes (gated on CD14+ cells) following LPS challenge in a septic shock patient. Positivity threshold was defined based on isotype value below 1%.
(B) Proportion of IL-10 positive monocytes among total monocytes with (+LPS) and without (Non stimulated) LPS challenge. Results are presented as individual
values in healthy donors (n=9; blue squares) and septic patients (n = 12; red triangles) and medians ± IQR. **p < 0.01 with Mann-Whitney U test. (C) Scatterplot
showing the relationship between monocyte intracellular IL-10 expression (% of positive monocytes, x-axis) and HLA-DR mean fluorescence intensity (MFI, y-axis).
(D) Scatterplot showing the relationship between monocyte intracellular IL-10 expression and monocyte intracellular TNFa expression (MFI). Correlations were
analyzed using Spearman correlation coefficient.
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A

B

FIGURE 3 | Analysis of IL-10 producing lymphocytes. (A) One representative example of flow cytometry staining in a septic patient. First, on a IL-10 (x-axis) and SS
(y-axis) dot-plot gated on in CD45+ leukocytes, we selected IL-10 producing lymphocytes (IL-10+SSClow cells). CD3, CD19, and CD4 expressions were then
characterized on these cells based on CD4 (y-axis) and CD3 or CD19 (x-axis) dot-plots. Three populations of IL-10 producing cells were identified: CD19+CD3-CD4-
cells (Green: B lymphocytes), CD19-CD3+CD4+ cells (purple: CD4+ T cells), CD19-CD3+CD4+ cells (red: CD4- T cells). (B) Proportions of lymphocyte subsets
among IL-10 positive lymphocytes Results are presented as individual values in healthy donors (n=9; blue squares) and septic patients (n = 12; red triangles) and
medians ± IQR.
A B C

FIGURE 4 | Intracellular IL-10 expression in lymphocytes. Proportion of IL-10 positive B lymphocytes (A), CD4- T cells (B), and CD4+ T cells (C). lymphocytes
presented as individual values in healthy donors (n=9; blue squares) and septic patients (n = 12; red triangles) and medians ± IQR, with (PMA/Iono) and without (Non
stimulated) PMA/Iononmycin challenge. **p < 0.01 with Mann-Whitney U test.
Frontiers in Immunology | www.frontiersin.org February 2021 | Volume 11 | Article 6150097

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fabri et al. IL-10-Producing Cells in Sepsis
We suggest adding an anti-Foxp3 antibody to our panel to explore
this hypothesis. In addition, the negative correlation between the
absolute count of CD4+ T cells and IL-10 expression in the same
cells confirms previous findings by Roth et al. showing that increased
IL-10 concentrations in sepsis may be due a susceptibility of Th1 T
cells to apoptosis, resulting in a prevalence of Th2 T cells, known for
their IL-10 production (35, 36).

To note, some authors rather described a dual role for IL-10
in human endotoxemia (37) and in COVID-19 (38) with both
pro and anti-inflammatory properties. This stresses the
importance to develop robust and easy to use tools to
investigate IL-10 production by leukocytes.

The main limitation of our study was the small sample size and
the absence of a kinetic evaluation. As it was a proof-of-concept
study, only 12 patients were included, and we could not investigate
association with clinical outcomes as our study was not powered
for such purposes. In addition, the evaluation of potential
confounding factors such as plasma LPS levels could not be
performed. Results are thus preliminary and should be assessed
and validated in a larger cohort of patients. In addition, in the
absence of any extended phenotyping with, for example, no
Frontiers in Immunology | www.frontiersin.org 8
specific marker of regulatory lymphocytes such as Foxp3 or of
any functional test, we could not formally qualify IL-10 producing
lymphocytes as regulatory cells. This specific aspect should be
further confirmed in a dedicated physiopathological study.
CONCLUSION

We demonstrated the feasibility of a novel technique for
intracellular cytokine measurement in whole blood to monitor
IL-10 production by circulating leukocytes in sepsis. We
described sepsis-induced increase in IL-10 production by
monocytes and CD4+ T cells but not B cells and CD8+ T
lymphocytes. In addition, increased monocyte IL-10
production negatively correlated with mHLA-DR expression
and TNFa production and with increased IL-10 production in
CD4+ T cells and their absolute count. We therefore described
the development of a global immunosuppressive profile affecting
monocytes and CD4+ T cells in septic shock. Further research is
now required to assess clinical significance of this profile in larger
A B

DC

FIGURE 5 | Correlations between IL-10 expressing CD4+ T lymphocytes and other immune parameters. Correlations between IL-10 producing CD4+ T cells
(percentages among total CD4+ T cells, x-axis) and CD4+ cell counts (A, cells per µl, y-axis), monocyte HLA-DR expression (B, mean fluorescence intensity = MFI,
y-axis), monocyte intracellular TNFa expression (C, MFI, y-axis) and monocyte intracellular IL-10 expression (D, percentages of positive cells among total monocytes,
y-axis). Correlations were analyzed using Spearman correlation coefficient. Results from n = 9 controls (blue squares) and 12 patients (red triangles) are shown.
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cohorts of patients and to identify the pathophysiological
mechanisms leading to its development in septic shock.
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