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Background: Most studies of molecular subtype prediction in breast cancer

were mainly based on two-dimensional MRI images, the predictive value of

three-dimensional volumetric features from dynamic contrast-enhanced

magnetic resonance imaging (DCE-MRI) for predicting breast cancer

molecular subtypes has not been thoroughly investigated. This study aimed

to look into the role of features derived from DCE-MRI and how they could be

combined with clinical data to predict invasive ductal breast cancer molecular

subtypes.

Methods: From January 2019 to December 2021, 190 Chinese women with

invasive ductal breast cancer were studied (32 triple-negative, 59 HER2-

enriched, and 99 luminal lesions) in this institutional review board-approved

retrospective cohort study. The image processing software extracted 1130

quantitative radiomic features from the segmented lesion area, including

shape-based, first-order statistical, texture, and wavelet features. Three

binary classifications of the subtypes were performed: triple-negative vs.

non-triple-negative, HER2-overexpressed vs. non-HER2-overexpressed, and

luminal (A + B) vs. non-luminal. For the classification, five machine learning

methods (random forest, logistic regression, support vector machine, naïve

Bayes, and eXtreme Gradient Boosting) were employed. The classifiers were

chosen using the least absolute shrinkage and selection operator method. The

area evaluated classification performance under the receiver operating

characteristic curve, sensitivity, specificity, accuracy, F1-Score, false positive

rate, precision, and geometric mean.
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Results: EXtreme Gradient Boosting model showed the best performance in

luminal and non-luminal groups, with AUC, sensitivity, specificity, accuracy, F1-

Score, false positive rate, precision, and geometric mean of 0.8282, 0.7524,

0.6542, 0.6964, 0.6086, 0.3458, 0.8524 and 0.7016, respectively. Meanwhile,

the random forest model showed the best performance in HER2-

overexpressed and non-HER2-overexpressed groups, with AUC, sensitivity,

specificity, accuracy, F1-Score, false positive rate, precision, and geometric

mean of 0.8054, 0.2941, 0.9744, 0.7679, 0.4348, 0.0256, 0.8333 and 0.5353,

respectively. Furthermore, eXtreme Gradient Boosting model showed the best

performance in the triple-negative and non-triple-negative groups, with AUC,

sensitivity, specificity, accuracy, F1-Score, false positive rate, precision, and

geometric mean of 0.9031, 0.9362, 0.4444, 0.8571, 0.9167, 0.5556, 0.8980 and

0.6450.

Conclusion: Clinical data and three-dimension imaging features from DCE-

MRI were identified as potential biomarkers for distinguishing between three

molecular subtypes of invasive ductal carcinomas breast cancer. In the future,

more extensive studies will be required to evaluate the findings.
KEYWORDS
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Introduction

Breast cancer accounts for about 30% of female cancers

worldwide, with a mortality-to-incidence ratio of 15% (1). As the

world’s largest developing country, China ranks first in terms of

female breast cancer incidence and deaths, accounting for 17.6%

and 15.6% of global female breast cancer incidence and deaths,

respectively (2). Breast cancer subtyping has important

therapeutic implications for the disease’s clinical management.

The luminal (A or B), human epidermal growth factor receptor 2

(HER2)-overexpressed, and triple-negative subtypes of breast

cancer are the most common molecular subtypes (3). Most

invasive breast cancers (70%) are luminal tumors, which

respond well to endocrine therapy. HER2-positive tumors are

more likely to respond to targeted antibody therapy (4).

Although triple-negative cancers are more aggressive and

challenging to treat, some respond well to chemotherapy (4,

5). In routine clinical practice, breast cancer subtypes can be

identified using genetic array testing or immunohistochemistry

markers. Immunohistochemistry necessitates tissue samples,

which are usually obtained through a needle biopsy. The

subtyping assessment performed on a needle biopsy sample

may not represent the tumor entirely due to the small tissue

sample size and tumor heterogeneity.

The use of radiological images to characterize breast cancer

subtypes has recently progressed. For example, the molecular

subtypes of breast cancer are linked to certain qualitative
02
and visual information of imaging characteristics assessed on

breast magnetic resonance imaging (MRI), mammography, or

ultrasound (6, 7). The usage of MRI to obtain multiparametric

data from morphologic and functional signals is becoming

more prevalent (8). Several radiomic studies have been

conducted in breast cancer research. They are primarily

based on DCE-MRI or combined MRI with other imaging

modalities, such as PET (9). MRI is the most sensitive imaging

modality for detecting, characterization, and accurate extent

definition of soft tissue tumors (10, 11). DCE-MRI is

particularly useful in determining breast cancer’s anatomic

and functional properties (12). Previous radiomic studies of

breast cancer have been conducted for invasiveness assessment

(13, 14), treatment response (15–17) and recurrence prediction

(18, 19), and genomic correlation (18). However, these studies

(20–23) were primarily based on texture analysis of two-

dimensional images; the predictive value of three-

dimensional volumetric features from DCE-MRI for

predicting breast cancer molecular subtypes has not been

thoroughly investigated. This study aimed to see if features

extracted from DCE-MRI three-dimensional imaging analyses

and clinical data could be used to predict invasive ductal

breast cancer molecular subtypes using machine learning. We

are the first to classify three distinct molecular subtypes of

invasive ductal breast cancer using three-dimensional

volumetric imaging features based on a larger sample from

Chinese women.
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Materials and methods

Patients and clinical information

The Ethics Committee of the First Affiliated Hospital of

Guangzhou University of Chinese Medicine reviewed and

approved this retrospective cohort study (ethics approval

number: JY2021-270_04.3.2). Informed consent was not

obtained from the patient. The breast MRI was performed on

205 consecutive female patients scheduled to undergo treatment

for pathologically proven invasive ductal carcinomas from

January 2019 to December 2021. Fifteen patients were

excluded due to previous resection or drug therapy and

radiation therapy (n = 4), lack of pathologic biomarkers (n =

5), and incomplete menstrual history information in clinical

medical records (n = 6). The largest tumor was chosen for

analysis from patients with multiple synchronous tumors in the

same breast. Finally, this study included 190 patients with 190

lesions (Figure 1). In addition, we used clinical information-

based variables such as patient age, menstrual status, and tumor

TIC type in this study.
MRI acquisition and analysis

A 3-T MRI system (American GE Singa HDxt) and a

dedicated eight-channel breast coil were used to perform the

MRI in the prone position (NORAS MRI products). A total of

nine phases were scanned, and the first phase was a plain scan

mask. The plain scan included: (1) cross-sectional fat-

suppressed T2 sequence (TR 3550 ms, TE 102 ms); (2) cross-

sectional T1 sequence (TR 4.4 ms, TE 2.1 ms); (3) cross-

sectional diffusion-weighted imaging (DWI) sequence (TR

6000ms, TE 69.2ms), slice thickness/slice spacing were both

4.0 mm/1.0 ms; and(4) dynamic enhancement was performed

with cross-sectional Vibrant + enhancement sequence (TR 4.4
Frontiers in Oncology 03
ms, TE 2.1 ms, layer thickness 1.2 mm). Gadopentetate

meglumine (Gd-DTPA) was rapidly injected through the

dorsal vein of the hand with a high-pressure syringe at a

bolus injection rate of 2.0 ml/s and a dose of 0.2 ml/kg,

followed by a rapid bolus injection of 20 mL of normal

saline. Eight dynamic enhancement sequences were

continuously scanned at 61s, 122s, 184s, 245s, 306s, 368s,

and 429s after the injection.

Two radiologists (L.Z.Y. and F.G., with 10 and 5 years of

experience in breast MRI, respectively) were blinded and

evaluated MRI features in consensus. Multi-level step-by-step

sketching of tumor lesions in T1 images of stage 2 after contrast

injection using commercially available image processing

software 3D Slicer (https://www.slicer.org, version number:

4.11.20210226 r29738/7a593c8). The sketched images were

finally fused to form a three-dimensional VOI (Volume of

Interest), as shown in Figure 2. Image features such as shape-

based, first-order statistical, texture, wavelet, and laplacian of

Gaussian (LOG) filter were extracted.
Pathologic assessment

The molecular subtypes of breast cancers in this study were

classified based on the expert consensus of the 2013 St. Gallen

International Breast Cancer Conference (24) as follows:

Luminal A (ER+, HER2–, and Ki67–); Luminal B (ER+,

HER2–, and Ki67+; or ER+, HER2+, and Ki67); HER2-

overexpressed (ER–, PR–, and HER2+); and triple-negative

cancer (ER–, PR–, and HER2–). From a total of 190 patients, a

mastectomy was performed on 60 patients, breast-conservation

surgery was performed on 125 patients, and neoadjuvant

chemotherapy and surgery were performed on five patients.

We reviewed the pathology reports and included tumor size,

histological grade, and axillary lymph node metastases in the

statistical analysis.
FIGURE 1

Flowchart of study population with exclusion criteria.
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Statistical analysis and model evaluation

This study divided all of the enrolled patients into three

categories based on postoperative immunohistochemical

molecular subtypes: (a). “luminal type”, (b). “HER2-

overexpressed type” and (c). “triple-negative type”. For general

data processing, analysis, and related graphics of the two groups

under different categories, SAS 9.4 software and R language 3.6.1

(http://www.R-project.org) tools are used. Measurement data

were expressed as mean ± standard deviation. The frequency

data expressed the count data (composition ratio, percent). A t-

test was used to figure out the age. For the largest diameter, the

rank-sum test was used. The chi-square test determined

menstrual status and axillary lymph node metastasis. The

nonparametric Mann Whitney U test determined the tumor’s

histological grade and TIC.

Using the R language random grouping function, the

sample data for each category standard were randomly

divided into the model training cohort and the model

validation cohort in a 7:3 ratio. The pathology report

variables and the MRI imaging characteristics parameters

were both entered into the selection process, as shown in

Figure 3. Least Absolute Shrinkage and Selection Operator

(LASSO) regression was used to avoid the potential collinearity

of variables measured from the same patient and over-fitting

variables. Based on the value of l, this logistic regression model
Frontiers in Oncology 04
penalizes the absolute size of the coefficients of a regression

model. The estimates of weaker factors shrink toward zero as

the penalties become more significant, leaving only the

strongest predictors in the model. The optimal l was used to

select the most predictive covariates. Following that, we looked

at five machine learning models for predicting molecular

subtypes based on variables determined by LASSO

regression: logistic regression (LR), support vector machine

(SVM), naïve Bayes (NB), random forest (RF), and eXtreme

Gradient Boosting (XGBoost). To verify the classification

accuracy, a 5-fold cross-validation method was used to

randomly divide the entire sample into five groups. In each

round, four of the groups were used as a training set and one

served as a validation set. This process was repeated five times

until each group of the sample had been verified, and the mean

accuracy, sensitivity, specificity, AUC, F1-Score, precision,

geometric mean (GM), and false positive rate (FPR) of the

training sets were calculated. The confusion matrix between

the actual value and the prediction value of all samples was also

calculated to make a comprehensive evaluation of the model.

The parameters were defined as follows:
Accuracy = (True positive + True negative)/(True positive +

True negative + False positive + False negative)

Sensitivity (Recall) = True positive/(True positive + False

negative)
FIGURE 2

Multi-level step-by-step sketching of tumor lesions at contrast-enhanced T1-weighted MRI in a 49 year-old woman with invasive ductal cancer
of the left breast. (A) sagittal position image shows an irregular shaped, irregular margined, heterogeneous enhancing mass (arrow). (B)
transverse position image shows an irregular shaped, irregular margined, heterogeneous enhancing mass (arrow). (C) coronal position image
shows an irregular shaped, irregular margined, heterogeneous enhancing mass (arrow). (D) the VOI fused into the outlined images step-by-step.
(E) the pathological microscopic picture of invasive ductal cancer of the left breast.
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Specificity = True negative/(False positive + True negative)

FPR = False positive/(False positive + True negative)

Precision = True positive/(True positive + False positive)

F1-Score = 2 (Recall * Precision)/(Recall + Precision)

Geometric Mean = (Recall * Specificity) ^ 1/2
Each model’s median value was calculated after the

random split, and the analysis was repeated five times. Two

statisticians (L.Z.Y. and S.Q.K.) conducted the analyses in

January 2022.
Results

Patient characteristics

This study included 190 patients with bulky breast cancers

(mean age 48.67 years; age range 24–89 years). The mean

diameter of the breast tumors was 35.29 ± 24.23 mm. There

were 99 cases of Luminal type, 59 cases were HER2-

overexpressed, and 32 cases were Triple-negative type. The

tumor characteristics were shown in Table 1.
Feature selection

Category 1: luminal (A+B) vs. non-luminal
The 190 patients were divided into Luminal and Non-

Luminal groups in “Luminal vs. Non-luminal groups”. The

general characteristics of the two groups of patients are shown

in Supplemental Table 1. The Luminal type group includes 99

patients (ages 24 to 77, with an average of 49.17 ± 10.36 years

old), with 34 cases of Luminal A-type and 65 cases of Luminal B
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type. In the non-Luminal group, there were 91 cases (ages

ranged from 29 to 89 years, with a mean of 48.54 ± 9.70 years).

Two independent samples t-tests and LASSO regression in R

language were used to screen 1130 MRI radiomics features and five

clinical features. Figure 4A showed a relatively stable model ability

when thenumberof screened feature variableswas18, and the tuning

parameter (l) selection was 0.05847632. The eigenvalues vary with

the value of different variables, as shown in Figure 4B. Finally,

eighteen features with non-zero coefficients (13 wavelet transform

features, five LOG features) were identified, and their coefficients

were shown in Supplemental Figure 1.
1. log.sigma.1.0.mm.3D.firstorder.Maximum

2. log.sigma.3.0.mm.3D.glcm.Imc1

3. log.sigma.3.0.mm.3D.gldm.LargeDependence

Emphasis

4. log.sigma.3.0.mm.3D.glrlm.ShortRunEmphasis

5. log.sigma.5.0.mm.3D.firstorder.Maximum

6. wavelet.LLH.glcm.Correlation

7. wavelet.LLH.glcm.MCC

8. wavelet.LHL.firstorder.Mean

9. wavelet.LHH.glcm.JointAverage

10. wavelet.LHH.glcm.SumAverage

11. wavelet.LHH.gldm.SmallDependenceHighGrayLevel

Emphasis

12. wavelet.LHH.gldm.SmallDependenceLowGrayLevel

Emphasis

13. wavelet.LHH.glszm.SizeZoneNonUniformity

Normalized

14. wavelet.HLH.glcm.ClusterProminence

15. wavelet.HLH.glszm.SizeZoneNonUniformity

Normalized

16. wavelet.HHL.firstorder.Kurtosis

17. wavelet.HHL.firstorder.Maximum

18. wavelet.HHL.firstorder.Mean
FIGURE 3

Flow chart of model establishment in this study. The 190 patients were grouped according to different molecular pressure types and divided
into 3 categories, namely luminal and non-luminal, HER2-overexpressed and non-HER2-overexpressed, triple negative and non-triple negative.
The following data were divided into training dataset and testing dataset. In the training dataset, the feature variables were screened by LASSO
regression, and five machine learning models were used to construct the model. The performance evaluation of the model was carried out in
the testing dataset to determine the optimal model.
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Category 2: HER2-overexpressed vs. non-
HER2-overexpressed

A total of 190 patients were divided into HER-2

overexpressed and Non-HER-2 overexpressed groups in the
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category “HER-2 overexpressed vs. Non-HER-2 overexpressed

groups”. The general characteristics of the two groups of patients

are shown in Supplemental Table 2. There were 59 cases in the

HER2-overexpressed group (ages 29 to 75, mean age 48.47 ±

9.31 years old) and 131 cases in the non-HER2-overexpressed

group (ages 24 to 89, mean age 48.75 ± 10.33 years old).

Figure 5A showed that the model ability is relatively stable

when the number of selected feature variables was 11, and the

tuning parameter (l) selection was 0.07596331. The eigenvalues

vary with the value of different variables, as shown in Figure 5B.

Finally, eleven non-zero coefficient features (5 wavelet features,

three morphological features, one texture feature, and two LOG

features) were determined, and their coefficients were shown in

Supplemental Figure 2.
1. original.shape.Maximum2DDiameterColumn

2. original.shape.Maximum2DDiameterSlice

3. original.shape.Sphericity

4. original.glcm.Imc2

5. log.sigma.3.0.mm.3D.glrlm.ShortRunEmphasis

6. log.sigma.5.0.mm.3D.firstorder.Maximum

7. wavelet.LLH.glcm.Correlation

8. wavelet.LHH.gldm.SmallDependenceHigh

GrayLevelEmphasis

9. wavelet.LHH.glszm.SizeZoneNonUniformity

Normalized

10. wavelet.LLL.gldm.LargeDependenceHighGrayLevel

Emphasis

11. wavelet.LLL.glrlm.LongRunHighGrayLevelEmphasis
Category 3: triple-negative type vs. non-triple-
negative type

In the category “Triple-negative vs. Non-triple-negative type”,

190 patients were split into triple-negative and non-triple-negative
TABLE 1 Tumor characteristics.

Characteristics No. of breast cancers (n = 190)

Age (year) (mean ± sd) 48.67 ± 10.03

Menstrual status

menopause 77 (40.53)

no menopause 113 (59.47)

Tumor size (mm) (mean ± sd) 35.29 ± 24.23 mm

Tumor histological grade

I 51 (26.84)

II 95 (50.00)

III 44 (23.16)

TIC type

I 2 (1.05)

II 68 (35.79)

III 120 (63.16)

Axillary lymph node metastases

yes 113 (59.47)

no 77 (40.53)

Molecular subtype

Category 1

Luminal (A+B) 99 (52.11)

Non-luminal 91 (47.89)

Category 2

HER2-overexpressed 59 (31.05)

Non-HER2-overexpressed 131 (68.95)

Category 3

Triple-negative type 32 (16.84)

Non-triple-negative type 158 (83.16)
TIC, Time Intensity Curve.
A B

FIGURE 4

Feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model in Luminal and Non-luminal
group. (A) Tuning parameter selection in the LASSO model used 5-fold cross-validation via minimum criteria, (B) LASSO coefficient profiles of
the baseline features.
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types. The general characteristics of the two groups of patients are

shown in Supplemental Table 3. The triple-negative type group had

32 cases (range of 30 to 77 years old, mean age 48.91 ± 10.89 years),

and the non-triple-negative type group had 158 cases (range of 24 to

77, mean age 48.62 ± 9.84 years).

Figure 6A showed that the model ability is relatively stable

when the number of selected feature variables was 10 and the tuning

parameter (l) selection was 0.04567723. The eigenvalues vary with

the value of different variables, as shown in Figure 6B. Finally, ten

non-zero coefficient features (8 wavelet transform features, one

clinical feature, and one LOG feature) were identified, and their

coefficients were shown in Supplemental Figure 3.
Fron
1. NA.NA.Menstrual.status

2. log.sigma.1.0.mm.3D.gldm.SmallDependenceLowGray

LevelEmphasis

3. wavelet.LHL.firstorder.Mean
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4. wavelet.LHH.firstorder.Kurtosis

5. wavelet.LHH.gldm.DependenceEntropy

6. wavelet.HLL.gldm.LargeDependenceHighGray

LevelEmphasis

7. wavelet.HLH.glcm.Contrast

8. wavelet.HLH.glszm.GrayLevelVariance

9. wavelet.HHL.glcm.Correlation

10. wavelet .LLL.gldm.LargeDependenceHighGray

LevelEmphasis
Model training and evaluation

Category 1: luminal (A+B) vs. non-luminal
Table 2 showed the prediction performance indicators of the

five machine learning models that used the variables chosen by
A B

FIGURE 5

Feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model in HER2-overexpressed and
Non-HER2-overexpressed group. (A) Tuning parameter selection in the LASSO model used 5-fold cross-validation via minimum criteria, (B)
LASSO coefficient profiles of the baseline features.
A B

FIGURE 6

Feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model in Triple negative and Non-
Triple negative group. (A) Tuning parameter selection in the LASSO model used 5-fold cross-validation via minimum criteria, (B) LASSO
coefficient profiles of the baseline features.
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LASSO regression to predict category 1. In the testing cohort, the

XGBoost model performed the best in terms of prediction, with

an AUC of 0.8282 vs. 0.7126 (LR), 0.7708 (RF), 0.7139 (NB), and

0.7420 (SVM). In the testing cohort, the XGBoost model’s

sensitivity and specificity were 0.7524 and 0.6542, respectively,

compared to 0.5556 and 0.7241 for LR, 0.7931 and 0.4815 for

RF,0.3333 and 0.8276 for NB, and 0.5926 and 0.7931 for SVM.

Supplemental Table 4 ~Table 11 showed the average evaluation

measures of the 5-fold cross-validation.
Category 2: HER2-overexpressed vs. non-
HER2-overexpressed

Table 3 showed the prediction performance indicators of thefive

machine learning models that used Lasso regression to select

variables to predict category 2. In the testing cohort,the RF model

performed best for prediction, with an AUC of 0.8054 vs. 0.7029

(LR),0.7164 (NB), 0.7617 (SVM), and 0.7459 (XGBoost). In the

testing cohort,the RF model’s sensitivity and specificity were 0.2941

and 0.9744, respectively, compared to 0.8462 and 0.3529 for LR,

0.8718 and 0.3529 for NB, 0.8974 and 0.4118 for SVM, and 0.7949

and 0.6471 forXGBoost. The average sensitivity, specificity, FPR, F1-

Score, and geometricmean for the 5-fold cross-validation are shown

in Supplemental Table 12~Table 19.
Category 3: triple-negative type vs. non-triple-
negative type

Table 4 showed the prediction performance indicators of the

five machine learning models that used Lasso regression to select

variables to predict category 3. In the testing cohort, the

XGBoost model performed the best in terms of prediction, with

an AUC of 0.9031 vs. 0.7069(LR), 0.7979(RF), 0.6809(NB), and

0.7778(SVM). In the testing cohort, the XGBoost model’s

sensitivity and specificity were 0.9362 and 0.4444, respectively,

compared to 0.9149 and 0.3333 for LR, 0.1111 and 1.0000 for RF,

0. 8723 and 0.3333 for NB, and 1.0000 and 0.2222 for SVM.

The average sensitivity, specificity, FPR, F1-Score, and
Frontiers in Oncology 08
geometric mean for the 5-fold cross-validation are shown in

Supplemental Table 20 ~ Table 27.
Discussion

Our research found that combining MRI radiomic variables,

pathology variables, and clinical data could help predict invasive

ductal breast cancer molecular subtypes. The XGBoost method

outperformed the other five machine learning models in

predicting luminal and triple-negative types. In the HER2-

overexpressed type, the RF method had the best predictive

performance. We believe that developing an MRI-based

diagnosis prediction model can provide a unique idea for

clinical non-invasive prediction of breast cancer molecular

subtype classification and a benchmark for developing

clinically precise and individualized treatment plans from

our findings.

We extracted five categories features from DCE-MRI: shape-

based features, first-order statistical features, texture features,

wavelet features, and the laplacian of a gaussian filter. Wavelet

features can be used to calculate image signal resolution on

various temporal, spatial, and frequency scale planes (25).

Texture analysis extracts and quantifies information such as

regularity, roughness, and the grey level of lesions that cannot be

distinguished by the naked eye, allowing for a more

comprehensive and detailed reflection of the characteristics of

lesions (26). Texture analysis plays a vital role in molecular

typing and can effectively distinguish between HR-positive and

HR-negative breast cancers (26). Three radiological features

were extracted by Tagliafico et al. (27): energy, entropy, and

difference. There were significant differences between breast and

normal breast tissue in patients with dense breasts. This research

shows that radiomics has much potential for detecting

malignant features in breast lesions.

Three first-order statistical features (minimum value, average

value, and maximum value) were selected in the luminal group.
TABLE 2 Evaluation indicators of predictive performance of five models in Luminal group and Non-luminal group.

Classifier SEN SPE PRE GM FPR F1 ACC AUC

LR Training Dataset 0.7524 0.7052 0.7293 0.7311 0.2948 0.7383 0.7282 0.7926

Testing Dataset 0.5556 0.7241 0.6522 0.6343 0.2759 0.6343 0.6429 0.7126

RF Training Dataset 0.8808 0.5895 0.6953 0.7163 0.4105 0.7759 0.7384 0.8523

Testing Dataset 0.7931 0.4815 0.6216 0.6180 0.5185 0.6180 0.6429 0.7708

NB Training Dataset 0.8907 0.4421 0.6277 0.6294 0.5579 0.7359 0.6717 0.7884

Testing Dataset 0.3333 0.8276 0.6429 0.5252 0.1724 0.5252 0.5893 0.7139

SVM Training Dataset 0.8427 0.6842 0.7422 0.7571 0.3158 0.7863 0.7641 0.8626

Testing Dataset 0.5926 0.7931 0.7273 0.6856 0.2069 0.6856 0.6964 0.7420

XGBoost Training Dataset 0.9571 0.5895 0.7139 0.7520 0.4105 0.8223 0.7846 0.9242

Testing Dataset 0.7524 0.6542 0.8524 0.7016 0.3458 0.6086 0.6964 0.8282
frontiers
LR, Logistic Regression; RF, Random Forest; NB, Naïve Bayes, SVM, Support Vector Machine; XGBoost, eXtreme Gradient Boosting; SEN, sensitivity; SPE, specificity, PRE, precision; GM,
geometric mean; FPR, false positive rate; ACC, accuracy; AUC, area under ROC.
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Two first-order statistical features (maximum and average) were

selected in the HER2-overexpressed group. Two first-order

statistical features (kurtosis and mean value) were selected in

the triple-negative group in our study. Ming Fan et al. (28) found

that luminal A had low kurtosis and skewness, the essential

features in predictive models. This finding is in line with

previous research suggesting that skewness can be used to

predict breast cancer molecular subtypes (11). Kurtosis and

skewness signatures have been identified as biomarkers of

tumor heterogeneity (29), with high values indicating treatment

failure (30) and low values indicating treatment response (31).

These studies discovered differences in parenchymal background

enhancement between normal and abnormal breasts. These

differences could reflect the aggressiveness of breast tumors,

which is one of the main characteristics of the HER2-

overexpressed type. Triple-negative breast cancer cells are more

disordered, loose, and prone to necrosis (32), and HER2-

overexpressed breast cancer behaves more like triple-negative

breast cancer, likely due to less aggressive tumors’ lower

neovascularization (33). This study chose no related first-order
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features in the luminal and HER2-overexpressed groups. We

believe this is related to the sample size and the grouping

method. The kurtosis was chosen in the triple-negative group,

which could be due to tumor heterogeneity.

Building predictive models and model selection are critical

in radiomics to ensure reliability and stability (34–39). In both

luminal and non-luminal groups, the XGBoost model

outperforms the other five models. The model’s AUC in the

validation cohort was 0.8282, indicating that it was more efficient

at classification. The sensitivity was 0.7524, indicating that

positive samples could be detected on average. In terms of

prediction, previous research has shown that the XGBoost

model outperforms other machine learning algorithms (40–

43). Our findings were comparable to or better than previous

retrospective radiomic studies on breast MRI (44, 45). Aside

from that, the triple-negative and non-triple-negative groups

had similar outcomes. Although some studies have found that

logistic regression is effective in the radiomic diagnostic

prediction model of triple-negative type breast cancer (22, 46),

we believe this is due to differences in the number of patients in
TABLE 3 Evaluation indicators of predictive performance of five models in HER2-overexpressed and Non-HER2-overexpressed groups.

Classifier SEN SPE PRE GM FPR F1 ACC AUC

LR Training Dataset 0.5000 0.7926 0.5232 0.5744 0.2074 0.5067 0.7026 0.7068

Testing Dataset 0.8462 0.3529 0.7500 0.5465 0.6471 0.7952 0.6964 0.7029

RF Training Dataset 0.3667 0.9704 0.9449 0.5782 0.0296 0.5105 0.7862 0.8065

Testing Dataset 0.2941 0.9744 0.8333 0.5353 0.0256 0.4348 0.7679 0.8054

NB Training Dataset 0.3833 0.8296 0.5958 0.5338 0.1704 0.4308 0.6923 0.6932

Testing Dataset 0.8718 0.3529 0.7556 0.5547 0.6471 0.8095 0.7143 0.7164

SVM Training Dataset 0.3667 0.8963 0.8269 0.5580 0.1037 0.4563 0.7333 0.7883

Testing Dataset 0.8974 0.4118 0.7778 0.6079 0.5882 0.8333 0.7500 0.7617

XGBoost Training Dataset 0.5167 0.9185 0.7972 0.6341 0.0815 0.6049 0.7949 0.7988

Testing Dataset 0.7949 0.6471 0.8378 0.7172 0.3529 0.8158 0.7500 0.7459
frontiers
RF, Random Forest; NB, Naïve Bayes; SVM, Support Vector Machine; XGBoost, eXtreme Gradient Boosting; SEN, sensitivity ;SPE, specificity; PRE, precision; GM, geometric mean; FPR,
false positive rate; ACC, accuracy; AUC, area under ROC.
LR, Logistic Regression.
TABLE 4 Evaluation indicators of predictive performance of five models in Triple-negative group and Non-triple-negative group.

Classifier SEN SPE PRE GM FPR F1 ACC AUC

LR Training Dataset 0.3043 0.9459 0.5344 0.7143 0.0541 0.3867 0.8358 0.7773

Testing Dataset 0.9149 0.3333 0.8776 0.5522 0.6667 0.8958 0.8214 0.7069

RF Training Dataset 0.1217 1.0000 1.0000 0.5958 0 0.2156 0.8493 0.8722

Testing Dataset 0.1111 1.0000 1.0000 0.3333 0 0.2000 0.8571 0.7979

NB Training Dataset 0.3217 0.9027 0.4068 0.7057 0.0973 0.3576 0.8030 0.7451

Testing Dataset 0.8723 0.3333 0.8723 0.5392 0.6667 0.8723 0.7857 0.6809

SVM Training Dataset 0.1565 1.0000 1.0000 0.6069 0 0.2691 0.8552 0.8743

Testing Dataset 1.0000 0.2222 0.8704 0.4714 0.7778 0.9307 0.8750 0.7778

XGBoost Training Dataset 0.4000 0.9730 0.7555 0.7669 0.027 0.5210 0.8746 0.9260

Testing Dataset 0.9362 0.4444 0.8980 0.6450 0.5556 0.9167 0.8571 0.9031
LR, Logistic Regression; RF, Random Forest; NB, Naïve Bayes; SVM, Support Vector Machine; XGBoost, eXtreme Gradient Boosting; SEN, sensitivity; SPE, specificity; PRE, precision; GM,
geometric mean; FPR, false positive rate; ACC, accuracy; AUC. area under ROC.
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the sample and the MRI radiomic characteristics used in the

studies. In our study, there were only 32 triple-negative patients.

In both the HER2-overexpressed and non-HER2-

overexpressed groups, the RF model outperformed the other

five models. The model’s AUC in the validation cohort was

0.8054, indicating it was more efficient at classification. The

model’s specificity was 0.9744 indicating that it could, on

average, distinguish negative samples. In contrast to the

literature, Ma et al. (21) discovered that the RF model could

distinguish HER2-expressed breast cancer by extracting

radiological features from digital mammography images.

Between the HER2-overexpressed and non-HER2-

overexpressed groups, the AUC difference was 0.784. The

AUC under the RF model was similar in our study than in

Ma’s. The intrinsic differences between two-dimensional

mammogram images and three-dimensional DCE-MRI

images, we believe, are to blame. MRI can reveal details that

digital mammography cannot, such as the location, size,

morphology, surrounding tissue infiltration, intratumoral

hemorrhage, necrosis, etc. Breast MRI was used by Braman

et al. (23) to extract radiological features around and within the

tumor, demonstrating that similar features can identify HER2-

overexpressed breast cancer.

According to previous research, the incidence rates of

luminal type, HER2-overexpressed type, and triple-negative

breast cancer were 44.5% - 69.0%, 10% - 25%, and 10% - 20%,

respectively (46). Our study’s incidence of these three types of

breast cancer supports this theory. They are 52.78% for the

luminal type, 32.41% for the HER2-overexpressed type, and

14.81% for the HER2-overexpressed type (triple-negative type).

Our research is one of the few MRI diagnostic models for breast

cancer that includes all three types of cancer and is based on

many patient samples. Small sample sizes of around 100 were

used in most radiomic studies of breast cancer, resulting in

selection bias and affecting the results (47). For obtaining

uniform results and building predictive models in radiomics,

collecting methods, sample size, and imaging acquisition are

critical. Second, we used commercially available image analysis

software to create a three-dimensional image of the tumor (48),

ensuring that more relevant variables were captured. It may be

possible to conduct multicenter external validation studies to

measure the predictive performance of radiomic machine

learning models objectively. Most radiomics have been used in

scientific research, but they are not widely used in clinics. Third,

we identified key MRI parameters for predicting prognostic

factors in various breast cancer subtypes, primarily molecular

subtypes. The advancement of precision medicine in breast

cancer will be aided by developing more detailed and precise

assays for the important parameters discovered in our study.

In terms of clinical application, our findings show that

additional information can be added before and after

treatment, in addition to pathological correlations. Clinical

biomarkers for prognosis prediction and treatment monitoring
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can be created by combining important MRI radiomic and

pathology variables. They reflect microstructural tumor

characteristics like tumor heterogeneity and angiogenesis,

allowing for noninvasive intratumoral dynamics monitoring

throughout treatment.

Texture heterogeneity was discovered by Trebeschi et al. (49)

to be a noninvasive imaging biomarker for predicting

immunotherapy responses that could be used in neoadjuvant

and palliative settings. Our findings show that radiomics has the

potential to improve patient stratification and treatment planning.

Lubner et al. (48) found that the results captured from two-

dimensional and three-dimensional image features in untreated

hepatic metastatic colorectal cancer were comparable. Our

results were slightly better than those of the most recent study

(20), which used two-dimensional images for feature selection,

with an AUC of 0.83 vs. 0.80 in the lumina and non-luminal

groups, and 0.81 vs. 0.65 in the HER2-overexpressed and non-

HER2-overexpressed groups, suggesting that three-dimensional

images may have advantages.

There are some limitations to our study. First, this study did

not assess the reproducibility of segmentation for image analysis.

To avoid problems with lesion selection, our study had two

experienced radiologists evaluate MRI features blinded to the

clinicopathologic findings. Second, for internal validation, the

random split and analysis were repeated five times, and

the average AUCs for each machine learning model in this

study were calculated. The validity of this study is expected to

improve with more random splits and analyses on internal and

external data sets, such as 50 times. Third, we did not include

other sequences due to the practical advantage of quick

acquisition times (50–52). This study obtained a cross-section

fat-suppressed T2 sequence, cross-sectional T1 sequence, cross-

sectional DWI sequence, and cross-sectional Vibrant +

enhancement sequence.

Recent research has found a strong link between quantitative

MRI parameters and breast cancer aggressiveness and subtypes

in ultrafast and diffusion-weighted MRI (50–52). A multi-center

clinical prospective study with larger patient samples and more

MRI sequence features extracted currently underway. We are

excited to learn more about the results of this long-term study

and we look forward to enrolling more patients and observing

such results in our next phase of clinical research.
Conclusion

Our research found promising results from a radiomic

machine learning analysis that combined pathology variables,

clinical information, and radiomic variables on MRI to achieve

noninvasive and objective diagnostic factor prediction for

different molecular subtypes of invasive ductal breast cancer.

The RF model had the best predictive performance for

distinguishing HER2-overexpressed types, while the XGBoost
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model showed the best predictive performance for

distinguishing luminal and triple-negative types.
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