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As already demonstrated in greenhouse trials, outcrossing of transgenic plants can be drastically reduced via
transgene integration into the plastid. We verified this result in the field with Petunia, for which the highest
paternal leakage has been observed. The variety white 115 (W115) served as recipient and Pink Wave (PW) and
the transplastomic variant PW T16, encoding the uidA reporter gene, as pollen donor. While manual pollination
in the greenhouse led to over 90% hybrids for both crossings, the transgenic donor resulted only in 2% hybrids in
the field. Nevertheless paternal leakage was detected in one case which proves that paternal inheritance of

plastid-located transgenes is possible under artificial conditions. In the greenhouse, paternal leakage occurred in
a frequency comparable to published results. As expected natural pollination reduced the hybrid formation in the
field from 90 to 7.6% and the transgenic donor did not result in any hybrid.

1. Introduction

Genetically modified (GM) plants have been widely adopted in
agriculture. They were grown on 179.7 billion hectare in 2015, which
represents 13% of the cultivated area worldwide [1]. However, since
their first commercial release in 1996, GM plants have been under
debate, including concerns about outcrossing of transgene-encoded
traits to conventional crops [2]. Extensive research has been conducted
to determine the rate of transgene transmission via pollen mediated
gene flow (PMGF) [3]. Studies with corn, wheat, rice and canola de-
monstrated that, depending on the crop, a distance of 20 to 50 m was
sufficient to keep the fraction of GM plants below 0.9%. Nevertheless,
presence of transgenes below 0.9% was detectable up to a maximum
distance of 350 m [4-8]. In addition to unintended admixture with non-
transgenic crops, the potential introgression of GM plants into wild
relatives is discussed, particularly when the transgene might increase
the plant fitness or competitiveness [9-12]. Some member states of the
EU imposed extensive isolation distances, which are difficult to im-
plement in farming practices and have high costs [13,14]. In Lux-
embourg, for example, 3 km distances are demanded between GM and
conventional canola plots [14,15].
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Integrating transgenes into the plastid genome represents a natural
confinement strategy, because in most angiosperms they are mainly
inherited by the female gametophyte, but not by the pollen, [16].

Plastid transformation has been established for a variety of plant
species and crop plants e.g. sugar beet [17], cabbage [18,19], soybean
[20], potato [21], petunia [22], tomato [23] and tobacco [24]. Occa-
sional paternal transfer of plastids was observed in Antirrhinum majus
[25], Setaria italica [26], Nicotiana tabacum [27,28] and Arabidopsis
thaliana [29], even though the frequency was quiet low ranging from
10~ * to 107°. In petunia (Petunia hybrida) paternal inheritance was
detected for up to 2% of the progeny [30]. However, it is unlcear to
what extend these results from experiments conducted in the green-
house under controlled conditions can be transferred to the conditions
present in the field [31]. Only one study investigated the paternal
leakage under field conditions in non-transgenic A. thaliana with a
mutated endogen as marker. But comparable experiments in the
greenhouse were not conducted [32].

In the present study, we assessed the paternal inheritance of plastid
encoded genes by comparing outcrossing frequencies in greenhouse and
field trials. P. hybrida, for which the highest rate of paternal leakage has
been reported, was chosen as a model. The variety white 115 (W115)
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Fig. 1. Schematic presentation of the T-DNA cassette of
transplastomic P. hybrida PW T16. aadA: coding region of the
aminoglycoside-3’-adenyltransferase gene (Escherichia coli),
5rrnBn:  promotor of 16s rRNA gene (Brassica napus);
3’BnpsbC:Terminator of the psbC gene (B. napus), uidA: coding

5rrnNt

region of the B-glucuronidase (E. coli), 5rrnNt: promotor of the 16 s rRNA gene (Nicotiana tabacum), 3’NtpsbA: Terminator of the psbA gene (N. tabacum). T16-fw/-rv: primer pair used

for the detection of the T-DNA.

[33] was used as pollen recipient while the transplastomic event Pink
Wave (PW) T16 encoding the uidA gene for B-glucuronidase (GUS;
Fig. 2) served as pollen donor. The near isogenic line PW [22] was used
for control crossings. In hybrids of W115 x PW T16, paternal trans-
mission can be tracked by the detection of the T-DNA and/or measuring
of GUS enzyme activity.

Manual pollination in the greenhouse was compared to manual and
natural pollination in the field. In the greenhouse, paternal leakage was
observed (5 events), which is in line with previous studies under these
conditions [25-29]. However, in the field, despite emasculation and
manual pollination, cross-pollination rates were extremely low for W115
x PW T16 (max. 2.0%) while those of W115 x PW (96.2%) were com-
parable to the greenhouse results. Nevertheless, one case of paternal
leakage was found after manual pollination which proves that paternal
inheritance of transgenes located in the plastids is possible in the field.

2. Material and methods
2.1. Plant material and growth conditions

The Petunia hybrida variety W115, forming white flowers [33,34],
served as pollen recipient. Either the non-transgenic P. hybrida variety
Pink Wave (PW) or the transplastomic event (PW T16), carrying the
marker genes aadA and uidA [22] (Fig. 1), both flowering deep pink,
were used as pollen donors. Hybrids can be phenotypical identified by
light pink flowers (Fig. S1) and paternal leakage can be detected by
GUS-staining (Fig. S2).

For the greenhouse experiments, seeds of Petunia were germinated
in planting trays on peat soil, optimized for Petunia (F900 with
Cocopor, Stender AG, Schermberg, Germany). Seedlings were decol-
lated and transferred into pots (7 X 7 X 8 cm) with the same substrate
and fertilized once a week using 0.2% Hakaphos blue (Hermann Meyer
KG, Rellingen Germany). W115 x PW and W115 x PW T16 crosses were
achieved via manual pollination. Shortly before flowering, W115 buds
were opened, emasculated and pollinated with the corresponding donor
pollen using a brush. Mature capsules were harvested once per week.

For field trials, seeds were surface-sterilized and germinated on
Murashige and Skoog (MS) medium (4.g g/L MS medium including vi-
tamins supplemented with 30 g/L sucrose, 6.5 g/L plant agar (Duchefa,
Haarlem, Netherlands) and adjusted to pH 5.7) with a 16 h/8 h 24 °C/
22 °C light/dark photoperiod. Seedlings were transferred from in vitro
culture into the same peat soil as above in multi-pot-trays (each pot: top
@ 4.6 cm, bottom @ 3.2 cm) and cultivated in the greenhouse. For pro-
pagation, Petunia plants were cut up to 10 times per plant every two to
three weeks and transferred into another multi-pot-plate. Plants were
directly transferred from the pots into the field. The field trials were
conducted from 08/03 to 10/25 in 2009 and 05/25 to 10/11 in 2010 in
Thulendorf in Mecklenburg-Pomerania, Germany, which lies in the cli-
matic region of the Baltic Sea. The predominant wind direction is from
west to east, which was taken into account for the setup of the plots
(Fig. 2). The soil type is loamy soil. Two experimental setups were used:
(i) one row of the recipient W115 surrounded by three rows of the
transgenic pollen donor PW T16 (plot A; high pressure = HP), and (ii)
alternating rows of W115 and PW T16 (plot B; low pressure = LP),
corresponding to a ratio of 1:6 and 1:1, respectively (Table 1; Fig. 2).
Control experiments with the non-transgenic PW were done for the first
variant (plot C). In addition to natural pollination, some W115 buds were
randomly selected within each plot, manually emasculated and polli-
nated as described above. In 2010 growth distance between individual
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plants and rows was shortened from 25 X 25 cm in 2009 to 15 X 17 cm
and more plants were grown (Table 1). In 2009 the highest temperatures
were measured between 08/16 till 09/13 with heat maxima ranging
from 22 - 32°C, minimal temperatures ranging from 8 — 18 °C, total
precipitation of nearly 50 mm and humidity ranging from 52 — 84%. In
2010 highest temperatures were measured between 06/20 till 07/18
with heat maxima ranging from 19 - 36 °C, minimal temperatures ran-
ging from 9 - 21 °C, total precipitation of nearly 7 mm and humidity
ranging from 50 — 76%. Meteorological data for the time periods of the
field trials were derived from http://www.wetteronline.de for Laage,
which is located close to Thulendorf.

2.2. Determination of thousand grain weight (TGW) and seed number per
capsule

The thousand grain weight (TGW) was determined by weighing 50 to
600 seeds (at least 10 different samples) and using a linear regression.
The number of seeds per capsule was calculated with help of the TGW.

2.3. GUS staining and DNA analysis of seedlings

Seeds from natural and manual pollination were germinated on
perlite (Sunshine Seeds, Ahlen/Germany), soaked with Hoagland
medium [35], and grown at 20 °C in the dark for two weeks. The
number of sowed seeds was calculated, based on the TGW, while the
number of germinated seedlings was counted. Seedlings were either
transferred to peat soil and grown to maturity or directly used to de-
termine the activity of the 3-glucuronidase (GUS).

The GUS activity was analysed by histochemical staining according
to [36]. Seedlings were examined with a stereomicroscope for GUS
staining, and positive ones were flash frozen in liquid nitrogen and used
for DNA analysis.

Total DNA was extracted by the cetyltrimethylammonium bromide
(CTAB) method [37]. DNA extraction was confirmed by amplification
of the endogenous efla gene as described by Hippauf et al. (2010,
Table 2) [38]. Hybrids were verified using the PM150 primer pair,
which was designed by the Institute of Plant Science of the University of
Bern for P. axillaris axillaris N. (Switzerland; http://www.botany.unibe.
ch/deve/caps/accessions.html). With the help of these primers, single
sequence repeat (SSR) elements of the nuclear genome, which differ in
their size in each Petunia variety (Table 2; Fig. S3), were amplified. To
detect paternal plastid DNA transmission, the uidA gene was amplified
using the primer pair T16-fw/-rv.

3. Results
3.1. Determination of the detection limit of plastid-encoded transgenes

Paternal plastid transfer leads to heteroplasmy in the hybrid zygotes,
but during subsequent cell proliferation only one plastid type is main-
tained. The plastid discrimination occurs in each cell independently and
the molecular mechanism has not yet been elucidated [27,30]. Since only
a few sectors of the embryo might contain the paternal plastids, the
content of paternal plastid DNA is expected to be low when isolating total
DNA from the entire hybrids. Thus, we determined the detection limit of
the marker gene uidA which is located on the T-DNA of transplastomic
PW T16 by a serial dilution, where the DNA-containing extracts of PW
T16 were diluted in DNA extracts of W115. Using PCR, the uidA gene was
detectable in dilutions up to 10°° (Fig. 3).


http://www.wetteronline.de
http://www.botany.unibe.ch/deve/caps/accessions.html
http://www.botany.unibe.ch/deve/caps/accessions.html

P. Horn et al.

plotA/C =HP p
W

lotB=LP

Biotechnology Reports 16 (2017) 26-31

Fig. 2. Schematic structure of field trial plots.
Dots represent the position of Petunia hybrida W115

= (white) as pollen recipient and either non-transgenic
(hlgh pOIIen pressure) (Io p0| Ien pressure) P. hybrida PW or transplastomic PW T16 (black) as
pollen donor.
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Table 1
Absolute numbers of plants per plot and field trial.

Plot 2009 2010

W115 PW/PW T16 W115 PW/PW T16
A/C 540 3240 756 4536
B 540 570 756 784

W115: Petunia hybrida W115 as pollen recipient; PW: non-transgenic P. hybrida as pollen
donor; PW T16: transplastomic P. hybrida as pollen donor.

Table 2
Primer used in the study.

800 bp
700 bp
600 bp

500 bp
400 bp
300 bp

200 bp
100 bp

uidA

Fig. 3. Determination of the uidA gene detection limit. uidA: fragment of coding re-
gion of the B-glucuronidase amplified by the primers T16-fw/T16-rv; (1, 10) GeneRuler
DNA Ladder Mix (Thermo Fisher Scientific; Darmstadt, Germany), (2-7) Total DNA of
Petunia hybrida PW T16 diluted in total DNA of P. hybrida W115 up to 102 (2), 102
(3), 107* (4), 107° (5), 107° (6), and 107 (7). (8) Genomic DNA of P. hybrida W115,
(9) control PCR without template.

For analysis of the hybrid frequency, two week old seedlings were
randomly selected either to be fully grown to maturity where the hybrid
status was detected by their flower color and confirmed via SSR-PCR or

Primer Sequence (5’-3") Fragment size Reference

EFla-fw CTTGGTGGTATTGACAAGCGTG 500 bp [38]

EFla-rv ATTTCATCGTACCTAGCCTTG

PM150-fw  CGTCGAATGCCTTAACTGC 100 bp (P. Institute of Table 3).
hybrida W115) Plant Science

PM150-rv.  GGAACAACACAGAAACTGTC 120 bp (P. University of
hybrida PW/PW  Bern
T16)

T16-fw AGGAGCAATAGCACCCTCTTG 387 bp This work

T16-rv AATACGGCGTGGATACGTTAG

3.2. Paternal plastid DNA transmission after manual pollination in the
greenhouse

In order to test paternal leakage in the greenhouse, 1820 and 2084
flowers of Petunia W115 were emasculated and manually pollinated
with pollen of PW (W115 x PW) or PW T16 (W115 x PW T16), re-
spectively. In 2010, however, the amount of PW T16 pollen was dras-
tically reduced. Capsule setting of pollinated flowers was equal (66%
vs. 62%), but W115 x PW T16 crossings resulted in a higher percentage
of small capsules compared to W115 x PW (Fig. S4). Capsules from
W115 x PW T16 produced 60% fewer seeds and averaged a third of the
seed weight compared to the control crossing (Table 3).

While the viability of seeds of the control crossing W115 x PW was
only moderately affected (66.8%, Tab 3), the germination rate of seeds
from the crossing W115 x PW T16 was severely comprised (5.1%,
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via direct SSR-PCR of the seedling DNA (Table 3). Hybrid frequencies
were similar for both crossings with 96.8% (274/283 for W115 x PW)
and 91.3% (94/103 for W115 x PW T16).

The remaining seedlings were GUS-stained and GUS positive events
subsequently analyzed for the presence of the uidA-gene. In the case of
W115 x PW T16 crossings, GUS-staining occurred in 190 of 6022
seedlings (3.2%, Table 3), the uidA-gene could be detected in 5
(Table 3, Fig. 4a), and all proved to be hybrids in the SSR-PCR (Fig. 4b).
In the non-transgenic control W115 x PW, 42 out of 2368 seedlings
displayed GUS-activity (1.8%). As expected the uidA-gene was not de-
tected in any of them (Table 3). Hence this is assumed to be an en-
dogenous activity in Petunia seeds, which — to our knowledge — has
not yet been reported for Petunia, but for various other seedlings
[39-43]. Thus, GUS-staining could not be used as reliable marker for
plastid transmission but only for preselection of events. The PCR-based
tracking of transgene proved to be more reliable and highly sensitive
(Fig. 3).
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Table 3
Manual pollination in the greenhouse and under field conditions in 2009 and 2010.
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place year  crossing no. of pollinated capsule seeds per TGW of seeds germinated plants hybrid plants GUS-positive PCR positive
flowers setting  capsule seedlings seedlings
(uidA-gene)
green house W115 x PW 1820 66% 255(+13) 100 mg( = 6 mg) 2640/3952(66.8%) 274/283(96.8%) 42/2368(1.8%) O
W115 x PW T16 2084 62% 102 (= 11) 33mg(+4mg) 6092/119,037(5.1%) 94/103(91.3%) 190/6022(3.2%) 5
field 2009  W115 x PW 3077 45% 212 (£ 13) 123 mg( = 4mg) 7535/10,465(72.0%) 763/793(96.2%) 125/6756(1.9%) O
W115 x PW T16 9336 21% 346 (= 12) 58 mg( = 4mg) 8093/61,193(13.2%) 19/932(2.0%) 183/7222(2.5%) 1
field 2010 W115 x PW T16 3155 14% 111 (= 10) 42mg( = 5mg) 5234/52,358(10.0%) 8/615(1.3%) 214/4921(4.3%) 0
TGW: thousand grain weight.
3.3. Paternal plastid transfer after manual pollination under field conditions
A M1 2 3 C M 456 7 89 10
In the field study, cross pollination was studied both via manual and 600 bp
natural pollination. Both experiments were conducted within the same ggg gg - )
plots and under the same conditions in order to allow comparison. 300 bp uidA
Petunia W115 seeds were planted in the same plot with PW or PW T16. 200 bp

W115 and PW were cultivated in a ratio of 1:6 (plot C, Fig. 2), while
W115 and PW T16 were planted in ratio 1:1 (plot B, Fig. 2) and 1: 6
(plot A, Fig. 2). In the three plots, randomly selected W115 flowers
were manually emasculated, pollinated and labelled.

In 2009, plants were released to the field at the beginning of August
due to the late approval of the field trial. In 2010, however, plants were
released at the end of May. In both years, plants were grown and seeds
harvested until mid-October.

In 2009, manual pollination was conducted both for W115 x PW
and W115 x PW T16. Capsule setting of W115x PW was more than
twice as high compared to W115 x PW T16 (45% vs 21%, respectively;
Table 3), and seed capsules from W115 x PW T16 crossings were on
average smaller in size (Fig. S4). W115 x PW produced fewer seeds per
capsule (212 vs 346), but the TGW of the seeds was twice as high
(123 mg vs 58 mg). Similar to the manual pollination in the green-
house, the viability of seeds from the crossing W115 x PW T16 was
severely impacted (13.2%, Tab 3). In contrast, 72.0% of the seeds from
the control crossing W115 x PW germinated (Table 3).

As in the greenhouse experiment, the hybrid status of randomly
selected seedlings was determined either via the flower color or SSR-
PCR. In contrast to the 96.2% hybrids identified for W115 x PW (763/
793), only 19 of 932 W115 x PW T16 plants (2.0%) were hybrids.

Out of the 7222 W115 x PW T16 seedlings obtained in 2009, 183
showed GUS staining, and the uidA gene was detected in 1 descendant,
which also proved to be a hybrid in the SSR-PCR (Fig. 5).

In case of the control crossing W115 x PW, 125 out of 4,362 des-
cendants displayed GUS-activity, but the uidA gene was not detected in
any of them (Table 3).

Since so few seed capsules and seeds were obtained for W115 x PW

A

2 3C MI45 6 7 8 9 1011 12

2 3 C M245 6 7 8 9 1011 12

13 14 15 16

600 bp
500 bp
400 bp
300 bp
200 bp uidA
100 bp

13 14 15 16

100 bp

B M31 2 3 C M345 6 7 8 9 10
200 bp —_—
150 bp p—
100 bp
75 bp T
50 bp

Fig. 5. Analysis of Petunia W115x PW T16 from manual pollination in the field via
(A) uidA- and (B) SSR-PCR. (M1): GeneRuler DNA Ladder Mix (ThermoFisherScientifc;
Darmstadt, Germany); (M3) GeneRuler Low Range DNA Ladder (ThermoFisherScientific,
Darmstadt, Germany); (1) Petunia hybrida W115 (2) PW; (3) PW T16; (C) Control-PCR
without template (4-10) Hybrids of W115x PW T16;.

T16 in 2009 and so few of those seeds germinated, in 2010, all efforts
focused on the manual pollination of W115 x PW T16 and W115 x PW
was not conducted. Similarly to 2009, capsule setting of W115 x PW
T16 was low (14%), the TGW reduced (42 mg), and only few seeds
germinated (10.0% Table 3). Only 8 of 615 plants were hybrids (1.3%,
Table 3). In the GUS assay, out of 4921 seedlings, 214 displayed GUS-
staining, though the uidA gene was not detected in any of them.

3.4. Paternal plastid DNA transmission by natural pollination under field
conditions

In 2009 and 2010, paternal inheritance of plastids via natural pol-
lination was studied in the field using the experimental plot setups

Fig. 4. Analysis of Petunia W115x PW T16 off-
spring from manual pollination in the green-
house via (A) uidA- and (B) SSR-PCR. (M1):
GeneRulerDNA Ladder Mix (ThermoFisherScientifc;
Darmstadt, Germany); (M2) Low Molecular Weight
DNA Ladder (New England Biolabs GmbH, Frankfurt
am Main, Germany); (1) P. hybrida PW T16; (2) PW;
(3) W115; (C) Control-PCR without template; (4-19)
Hybrids of W115 x PW T16.

17 18 19

17 18 19

200 bp
150 bp
100 bp
75 bp

29
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Table 4
natural pollination under field conditions in 2009 and 2010.
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year crossing seeds per capsule TGW of seeds germinated plants hybrid plants

2009 W115 x PW HP 187 (+13) 81 mg ( + 4mg) 378/1400 (27.0%) 14/185 (7.6%)
W115 x PW T16 HP 201 (= 14) 90 mg ( + 4 mg) 822/3073 (26.7%) 0/566 (0%)
W115 x PW T16 LP 194 (£ 14) 91 mg ( + 6 mg) 737/2000 (36.9%) 0/282 (0%)

2010 WI115 x PW HP 228 (= 12) 89 mg ( = 4mg) 175/240 (72.9%) 2/82 (2.4%)
W115 x PW T16 HP 207 (= 11) 85mg ( + 5mg) 124/240 (51.7%) 0/53 (0%)
W115 x PW T16 LP 200 (*13) 88 mg ( + 4 mg) 155/240 (64.6%) 0/66 (0%)

HP: high pressure: W115 x PW/PW T16 planted in a ratio of 1:6; LP: low pressure: W115 x PW T16 planted in a ratio 1:1; n.d.: not determined; TGW: thousand grain weight.

described for manual pollination.

Comparing the two independent field trials 2009 and 2010, capsule
size (Fig. S4), number of seeds per capsule and TGW of the different
crossings did not differ (Table 4). However, independent of the crossing
partners and scheme, the germination rate was drastically lower in
2009, ranging from 26.7-36.9%, compared to 51.7%-72.9% in 2010
(Table 4).

In 2009, only 14 of 185 (7.6%) W115 x PW seedlings were hybrids,
and for W115 x PW T16 no hybrids were detected out of 566 (plot HP;
Fig. 2) and 282 (plot LP, Fig. 2) plants tested.

Therefore the main question to be asked in 2010 was whether the
low frequency of hybrids was due to the environmental conditions or to
somaclonal variation in PW T16 resulting in low pollen quality. Hence
the number of W115 x PW T16 seedlings analyzed for their hybrid
status was restricted to a size where a pronounced increase in hybrid
formation would become obvious. As in 2009, in 2010 no W115 x PW
T16 hybrids could be identified. The amount of W115 x PW hybrids was
in roughly the same range as 2009 (Table 4). We therefore assume that
the PW T16 pollen quality is responsible for the failure of hybrid for-
mation. Since none of the W115 x PW T16 seedlings were hybrids
pollen mediated flow of the uidA gene was impossible and hence not
analyzed.

4. Discussion

This is the first study which aimed at measuring the pollen mediated
gene flow of plastid located transgenes in the field. Unexpectedly, hy-
brid production with the transgenic pollen donor was much lower —
both for natural conditions and manual pollination — compared to the
manual pollination in the greenhouse. The reduction in hybrid forma-
tion was observed in both years and was accompanied by a strong re-
duction of pollen in PW T16 and — since even high amounts of pollen
applied manually to the stigma did not lead to a hybrid formation
comparable to the PW pollen — a reduction in pollen quality. Pollen
quality can be affected by adverse environmental conditions like heat or
drought [44]. In the field, high temperatures were accompanied by
extensive drought in both years, while in the greenhouse the plants
were well watered. Therefore it might be assumed that the integration
of the transgene into the chloroplast genome or somaclonal variations
— that might have occurred during the transformation process — led to
a higher sensitivity of the pollen to drought. It is also possible that the
expression of the uidA-gene in the plastids have a negative impact under
field conditions, since retarded growth, delayed flowering, reduced
fertility and seed production was reported for transgenic tobacco and
potato plants with a nuclear-encoded uidA-gene under field conditions,
while plants with other transgenes were unaffected [45-47]. This
phenomenon cannot be assigned to somaclonal variation because all
events carrying the uidA-gene showed a similar phenotype [45].
Nevertheless, GUS expression did not affect the agronomic traits in
nuclear-transformed papaya, banana, eucalyptus, spruce and poplar in
the field [48-51]. Thus the effect might be species-specific and cannot
be directly related to Petunia. Although the potato and tobacco studies
[45-47] did not analyze the events in the greenhouse in parallel, this
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phenomenon might be restricted to the field, since other tobacco plants
carrying the nuclear-encoded uidA-gene were completely unaffected
under greenhouse conditions [52-54]. Hence we assume that the re-
duction in pollen quantity and possibly quality in the field might be due
to the uidA expression.

The reduced pollen quality might also be the connected to the re-
duced hybrid seed viability and the capsule size in the presence of the
PW T16 genome.

Nevertheless, when Petunia W115 was manually pollinated by PW
T16, paternal leakage of the plastid-encoded uidA transgene could be
detected both in the greenhouse (5 events) and in the field (1 event). In
the greenhouse paternal leakage was also observed for Petunia varieties
[30,55] and other transplastomic plants [25-29]. Paternal leakage in
the field was described for plastid-located genes in non-transgenic A.
thaliana [32]. Unfortunately, due to the low number of hybrids a fre-
quency cannot be calculated and compared with previous studies.
Nevertheless, the fact that pollen-mediated transgene flow was mea-
sured after manual pollination in the field proves that this is possible.
Under natural conditions, no hybrids were formed and hence no pa-
ternal pollen transfer was possible. It remains to be ascertained whether
similar results can be obtained in other cultivars, namely in agricultu-
rally relevant crops, but it has to be assumed that although paternal
transfer of plastid located genes is possible, the frequencies should be
drastically lower than the hybrid formation. In addition, the paternal
plastids are only maintained in few cells of the developing hybrid
embryo, as demonstrated by Cornu and Dulieu [30] and Ruf et al. [27],
but only transmission into the germline is relevant. In fact, Ruf et al.
[27] observed in F1 seedlings of N. tabacum an extremely lower fre-
quency of paternal plastid transmission into the shoot apical meristem
(2.86 * 1079 compared to the transmission into the cotyledons (1.58
*10~°) and assumed that the frequency can be reduced down to 108
in the field when keeping a distance of 10 m. Hence, although not en-
suring absolute confinement, plastid transformation can facilitate a
practically applicable and economic feasible co-existence of GM and
non-GM crops.
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