Article

Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of *Porphyromonas gingivalis*

Kumaran Sundaram, Daniel P. Miller, Anil Kumar, ..., Juw W. Park, Richard J. Lamont, Huang-Ge Zhang

h0zhan17@louisville.edu

HIGHLIGHTS

Plant exosomes-like nanoparticles (ELNs) are selectively taken up by *P. gingivalis*

The degree of unsaturation of ELNs phosphatidic acid determines uptake specificity

ELN PA and miRs target multiple pathogenic factors of *P. gingivalis*

Orally taking ginger ELNs ameliorates bone loss induced by *P. gingivalis*

Sundaram et al., iScience 21, 308–327 November 22, 2019 © 2019 The Authors. https://doi.org/10.1016/ j.isci.2019.10.032

Check for

Article

Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of *Porphyromonas gingivalis*

Kumaran Sundaram,² Daniel P. Miller,⁵ Anil Kumar,² Yun Teng,² Mohammed Sayed,³ Jingyao Mu,² Chao Lei,² Mukesh K. Sriwastva,² Lifeng Zhang,² Yan Jun,² Michael L. Merchant,⁴ Liqing He,⁸ Yuan Fang,⁸ Shuangqin Zhang,⁷ Xiang Zhang,⁸ Juw W. Park,^{3,6} Richard J. Lamont,⁵ and Huang-Ge Zhang^{1,2,9,*}

SUMMARY

Plant exosomes protect plants against infection; however, whether edible plant exosomes can protect mammalian hosts against infection is not known. In this study, we show that ginger exosome-like nanoparticles (GELNs) are selectively taken up by the periodontal pathogen *Porphyromonas gingivalis* in a GELN phosphatidic acid (PA) dependent manner via interactions with hemin-binding protein 35 (HBP35) on the surface of *P. gingivalis*. Compared with PA (34:2), PA (34:1) did not interact with HBP35, indicating that the degree of unsaturation of PA plays a critical role in GELN-mediated interaction with HBP35. On binding to HBP35, pathogenic mechanisms of *P. gingivalis* were significantly reduced following interaction with GELN cargo molecules, including PA and miRs. These cargo molecules interacted with multiple pathogenic factors in the recipient bacteria simultaneously. Using edible plant exosome-like nanoparticles as a potential therapeutic agent to prevent/treat chronic periodontitis was further demonstrated in a mouse model.

INTRODUCTION

Chronic infectious disease commonly involves large numbers of virulence factors that target several host factors in multiple pathways (Pan et al., 2014). Developing an effective therapeutic strategy that can inhibit a plurality of virulence factors without causing side effects requires a change from the current focus of delivering individual therapeutic agents to delivery of a package of therapeutic agents that can target multiple virulence factors simultaneously (Baron, 2013; Kauppi et al., 2003). No such ideal delivering vehicle that can selectively target pathogenic organisms and carry multiple therapeutic agents without causing toxicity is available. Recently, edible plant-derived exosome-like nanoparticles (ELNs) have been identified, and these consist of a large numbers of lipids, RNA including microRNAs (miRNAs), and proteins (Mu et al., 2014; Wang et al., 2013). It is well documented that edible plants are beneficial for human health and can prevent/treat chronic infectious diseases (Alvarez-Erviti et al., 2011; Zhuang et al., 2011). However, the cellular and molecular mechanism underlying the therapeutic effect on infectious disease by plants is not known. Since ELNs carry a large number and variety of molecules naturally (Mu et al., 2014; Xiao et al., 2018), we hypothesize that, upon ELNs being taken up by infectious agents, the ELN molecules can target multiple virulence factors simultaneously to prevent disease development.

Porphyromonas gingivalis, a Gram-negative anaerobe, is a major pathogen in chronic periodontitis, an inflammatory disease associated with dysbiotic host responses (Olsen et al., 2017). Periodontitis and periodontal pathogens have also been associated with serious systemic conditions including cardiovascular disease, type 2 diabetes mellitus, and adverse pregnancy outcomes (Liu et al., 2018; Reyes et al., 2018). *P. gingivalis* produces a number of virulence factors that enable colonization of oral surfaces, degradation of periodontal tissues, induction of destructive immune responses, and growth in the peptide- and heminrich inflammatory microenvironment. These include the FimA- and Mfa1-component fimbrial adhesins, arginine (Rgp)- and lysine (Kgp)-specific gingipain proteases, lipopolysaccharides, and hemin transport systems (Zenobia and Hajishengallis, 2015) (Lamont et al., 2018) (Bao et al., 2014).

Oral delivery of ginger exosome-like nanoparticles (GELNs) in mice leads to protection against alcoholinduced liver damage (Zhuang et al., 2015). Moreover, GELNs alter the gut microbiome composition and host physiology (Teng et al., 2018) leading us to test whether GELNs could be applied to treat/prevent ¹Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA

²James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA

³Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA

⁴Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA

⁵Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA

⁶KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA

⁷Department of Medicine, University of Chicago, Chicago, IL 60637, USA

⁸Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA

⁹Lead Contact

*Correspondence: h0zhan17@louisville.edu https://doi.org/10.1016/j.isci. 2019.10.032

oral infectious disease. In this study, ginger-derived ELNs (GELNs) were tested for antagonism of *Porphyromonas gingivalis* virulence factors and for inhibition of pathogenicity in a chronic periodontitis mouse model. Our data suggest that GELNs are selectively taken up by *P. gingivalis* whereupon pathogenicity of the organism is reduced. Pathogenic processes impacted by GELNs include growth, attachment, entry, and proliferation in host cells, with consequent reduced virulence in a mouse model of periodontal disease.

RESULTS

Ginger Exosome-like Nanoparticles Are Selectively Taken up by *P. gingivalis* Leading to Inhibition of *P. gingivalis* Growth

Our previous reports have shown that GELNs have anti-inflammatory effects (Mu et al., 2014) via interaction with host hepatocytes (Zhuang et al., 2015), and moreover GELN miRNAs selectively promote beneficial bacterial growth in the intestine (Teng et al., 2018). Whether GELNs have a direct effect on pathogenic oral bacteria such as *P. gingivalis* is not known. To test this, *P. gingivalis*, along with the oral commensal *Streptococcus gordonii*, was incubated with different concentrations (0–6.0 × 10⁸ particles/mL) of PKH26-labeled GELNs for 1 h. fluorescence-activated cell sorting (FACS) analysis indicated that the GELNs were selectively taken up by *P. gingivalis* in a dose-dependent manner, whereas uptake of GELNs by *S. gordonii* was negligible (Figure 1A). *P. gingivalis* uptake of GELNs was further confirmed by confocal microscopy with fluorescently labeled *P. gingivalis* and GELNs (Figure 1B).

Uptake of GELNs led to inhibition of the growth of *P. gingivalis* in a dose- and time-dependent manner (Figures 1C and 1D). At a higher dose (6×10^8 particles/mL), no growth of *P. gingivalis* was observed. Electron microscopy images further suggested that GELN treatment at the higher dose completely disrupted the morphology of *P. gingivalis* but not of *S. gordonii* (Figure 1D). Additionally, GELNs neither were taken up by *S. gordonii* nor inhibited the growth of this commensal. However, GELNs did inhibit the *in vitro* growth of other bacteria including *F. nucleatum*, *P. intermedia*, and *A. actinomycetemcomitans* (Figures S1C–S1E), which are associated with periodontitis.

Membrane depolarization has a profound impact on bacterial viability and signal transduction (Goldberg et al., 2013). Thus, we measured GELN effect on cytoplasmic membrane depolarization of *P. gingivalis* and *S. gordonii* using the membrane potential-sensitive dye diSC3-5 (Nusslein et al., 2006). The results showed that GELNs increased the depolarization of *P. gingivalis*. In contrast, GELNs did not affect the cytoplasmic membrane depolarization of *S. gordonii* (Figures S2A and S2B). In addition, we measured the *P. gingivalis* outer membrane barrier function by an ethidium bromide (EtBr) influx assay (Miki and Hardt, 2013). Our results showed that GELNs significantly increased fluorescence intensity in a dose-dependent manner (Figure S2C). Furthermore, we collected the supernatant from GELN-treated *P. gingivalis* and *S. gordonii* along with untreated control and analyzed these by SDS-PAGE electrophoresis. A large amount of proteins was released into the external milieu by GELN-treated *P. gingivalis* but not by GELN-treated *S. gordonii* (Figure S2D), indicating that interaction of GELNs with the *P. gingivalis* membrane leads to external release of cytoplasmic proteins. We also quantified metabolic products released from GELN-treated *P. gingivalis* (Figure S3), and the predicted role of these metabolic products is listed in Table S1. Collectively, the data indicate that GELNs are selectively taken up by pathogenic *P. gingivalis*, but not by commensal *S. gordonii*, leading to membrane perturbations and inhibition of *P. gingivalis* growth.

Edible plant exosomes, including GELNs, consist of a number of proteins, lipids, and RNAs including miRNA (Mu et al., 2014). Next, we determined which GELN-derived factor(s) specifically inhibits *P. gingivalis* growth. *P. gingivalis* was treated with different concentrations of total lipids derived from GELNs (lipidG) (0–5.0 × 10^8 particles/mL) for 24 h and growth measured. LipidG significantly decreased *P. gingivalis* growth in a dose-dependent manner (Figure 2A). RNA sequencing analysis of GELN RNAs showed that miRNAs are enriched (Figure S4). Target sequencing analysis showed that these GELN miRNAs have potential target sequences in a variety of genes in *P. gingivalis* (Table S2). Based on the target genes in *P. gingivalis*, we selected miRNAs aly-miR159a-3p, gma-miR166u, and gma-miR166p to further determine whether miRNAs play a role in inhibition of *P. gingivalis* growth. *P. gingivalis* was transduced with GELN-derived miRNAs, and *P. gingivalis*, supporting the notion that GELN lipids play a critical role in inhibition of *P. gingivalis* growth. Thus, we next determined whether GELN-derived total lipids (lipidG) and miRNA have synergetic effects on the growth of *P. gingivalis*. However, as shown in Figure S6, lipidG and miRNA from GLENs do not have a synergetic effect. Next, we investigated which GELN lipid(s) inhibits

CellPress

Figure 1. Ginger Exosome-like Nanoparticles (GELNs) Selectively Inhibit Growth of the Pathogenic *P. gingivalis* but Not the Commensal *S. gordonii*

(A) *P. gingivalis* and *S. gordonii* were incubated with different concentrations (0–6.0 \times 10⁸ particles/mL) of PKH26-labeled GELNs for 1 h in an anaerobic chamber. GELN uptake by *P. gingivalis* and *S. gordonii* was quantified by flow cytometry.

(B) *P. gingivalis* and GELNs were labeled with fluorescent dyes PKH67 and PKH26, respectively. Then, *P. gingivalis* and GELNs were incubated at 37°C for 1 h in anaerobic chamber and fluorescence images were taken by confocal microscopy.

(C) *P. gingivalis* was incubated with GELNs (4.0 × 10⁸/mL) for the indicated times. The growth of *P. gingivalis* was determined by measuring optical density at 600 nm.

(D) *P. gingivalis* was treated with different concentrations (0–6 \times 10⁸/mL) of GELNs and incubated at 37°C for 24 h. The growth of *P. gingivalis* was determined by measuring optical density at 600 nm. *P. gingivalis* and *S. gordonii* were treated with or without GELNs (6 \times 10⁸/mL) for 3 h and negatively stained with ammonium molybdate. The images were taken by transmission electron microscopy.

Results are expressed as mean \pm standard deviation from three independent experiments. **p < 0.01, ***p < 0.001 compared with the untreated group using one-way ANOVA with Turkey's Multiple comparison test.

в

DGDG MGDG PG LysoPG LysoPC LysoPE

Figure 2. PA-Containing Lipid of GELNs Inhibits P. gingivalis Growth

(A) GELN total lipids (LipidG) isolated from different concentrations of GELNs (0–5.0 × 10⁸ particles) were reacted with *P. gingivalis* for 24 h in an anaerobic chamber. Bacterial growth was determined by measuring optical density at 600 nm.

(B) Total lipids extracted from GELNs was subjected to mass spectrophotometry for lipid identification. The concentrations of each lipid were calculated as nmol/mg of GELNs.

(C) P. gingivalis was treated with different concentrations (0–50 µg/mL) of PC (34:2), LysoPG (18:1), PA (36:4), PA (36:2), PA (34:2), and PA (34:1) for 24 h in an anaerobic chamber. Bacterial growth was determined by measuring optical density at 600 nm.

(D) Total lipids were separated on a silica gel-coated thin-layer chromatography plate.

(E) Depletion of PA lipids in the total GELN lipids (LipidG) by eluting the PA band on a TLC plate and mixing the remaining lipids. *P. gingivalis* was treated with lipids from the PA-containing band, PA depleted and LipidG incubated in anaerobic chamber for 24 h. Bacterial growth was measured at 600 nm. Results are expressed as mean \pm standard deviation from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 compared with an untreated group using a one-way ANOVA with the Turkey's Multiple Comparison Test.

P. gingivalis growth. Extracted total lipids from GELNs (5.0 $\times 10^8$ particles) were subjected to mass spectrometry analysis. The lipid profile of LipidG is listed in Table S3, and the percentage of each lipid in is presented in Figure 2B. P. gingivalis was treated with different concentrations (0-50 µg/mL) of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PC 34:2), 1-oleoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (LysoPG 18:1), 1,2-dilinoleoyl-sn-glycero-3-phosphate (PA 36:4), 1,2-dioleoylsn-glycero-3-phosphate (PA 36:2), 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphate (PA 34:2), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (PA 34:1). Among these lipids tested, PA (34:2) inhibited P. gingivalis growth at a very low concentration (5 μ g/mL, 2.5 × 10⁹ particles have 1 μ g of lipid that contains 325.5 nM of PA (34:2) compared with other lipid compounds) (Figure 2C). Next, we sought to determine the role of phosphatidic acid (PA) in the context of GELNs by depletion of PA. Total GELN lipids were extracted and separated by TLC that included a standard PA (34:2) (Figure 2D). The corresponding PA band from the TLC was excised, and the majority of excised lipids is PA (Lipid profile, Table S4); remaining lipids were pooled together as PA-depleted lipids. P. gingivalis was incubated with lipidG, the PA-containing band, and the PA-depleted lipids for 24 h. Interestingly, the PA-containing band alone inhibited P. gingivalis growth as potently as the total lipids, and in contrast to the PA-depleted lipids, which had minimal growth inhibition (Figure 2E). Since oxidation may alter the biological activity of the lipids, we further determined the lipid oxidation of GELN lipids before and after TLC extraction. No significant changes in lipid oxidation were observed after TLC extraction (Figure S7). Collectively, these results suggest that PA is the major active molecule in GELN lipids that inhibits P. gingivalis growth.

GELN PA Directly Interacts with HBP35 Protein in *P. gingivalis*, Leading to Inhibition of *P. gingivalis* Growth

We hypothesized that GELN PA lipids interact with an outer membrane protein of P. gingivalis that modulates growth. To test this hypothesis, we used Surface Plasmon Resonance (SPR) to identify the P. gingivalis proteins that may interact with GELN lipids. We made lipid nanoparticles (Figure S8A) from GELNs PA (34:2) (Figure S8B). In terms of diameter, lipid nanoparticles cover a range between 100 and 500 nm and contain a negligible amount of TAG compared with total lipids derived from GELNs (Figures S8C and S8D). These lipid nanoparticles were immobilized on a LIP-1 sensor. P. gingivalis total cell lysates were run over the immobilized nanoparticles as analyte. As shown in Figures 3A-3C, the sensogram of SPR peaks revealed that P. gingivalis proteins can interact with lipid nanoparticles with/without depletion of PA lipid and PA (34:2). We eluted the lipid-binding protein from the immobilized nanoparticles by injection of NaOH (200 μ M), which causes dissociation of protein from the nanoparticles, and eluted protein samples were subjected to tandem mass spectrometry (MS/MS) for protein identification. Interestingly, we identified several proteins (listed in Table 1) that bound to the GELN lipid nanoparticles and PA (34:2) but not with the PA-depleted lipid nanoparticles. From this result, we identified PA binding with P. gingivalis proteins/ peptides, including the C-terminal domain of Arg and Lys-gingipain proteases, hemin-binding protein (35 kDa, HBP35), an electron transfer flavoprotein, an esterase, and an outer membrane lipoprotein. These proteins specifically bind with both GELN nanoparticles and PA.

We next wanted to determine which proteins directly interacting with GELNs play an inhibitory role in P. gingivalis growth. HBP35 has been shown to be essential for growth of P. gingivalis and survival in hemin-depleted conditions (Shibata et al., 2011; Shoji et al., 2010) (Hiratsuka et al., 2010). Therefore, we next examined the interaction of GELNs and its lipids with HBP35. The functional domain of HBP35 is WPRVGQLFIALDQTLGIPGFPTFSVCRME, which plays a critical role in the hemolytic activity of P. gingivalis (Hiratsuka et al., 2010). To block the interaction of GELNs with HBP35, we utilized a synthetic peptide (29 amino acids) corresponding to the functional domain. GELNs (4.0 \times 10⁸ particles) were preincubated with the functional domain peptide (10 μ M), then P. gingivalis was reacted with the GELNs and growth was measured. Interestingly, P. gingivalis growth was not affected by GELNs pre-incubated with HBP35 peptide (Figure 4A). Similarly, LipidG made from total lipid of 4.0 and 6.0 \times 10⁸ GELNs (Figure 4B) and PA (34:2) (Figure 4C) were pre-incubated with HBP35 synthetic peptide and treated with P. gingivalis. The synthetic peptide significantly blocked GELN lipids and PA-mediated inhibition of P. gingivalis growth (Figures 4B and 4C). To test whether the HBP35 synthetic peptide directly binds with PA (34:2) and PA (34:1) of GELN lipids, we again utilized SPR. Lipid nanoparticles from GELN total lipids, PA-depleted lipid, PA (34:2), and PA (34:1) were immobilized on the LIP-1 sensor. The HBP35 synthetic peptide and a non-specific peptide were used as analyte. The SPR sensogram peaks show that the HBP35 synthetic peptide directly interacts with GELNs and PA (34:2) nanoparticles but not with PA-depleted lipid nanoparticles and PA (34:1) nanoparticles (Figures 4D-4G). This result indicates that

Lipid nanoparticles were prepared from LipidG, PA-depleted GELN lipids, and PA (34:2), and these lipid nanoparticles were immobilized on a LIP-1 sensor. Total *P. gingivalis* cell lysates were used as analyte as described in the Transparent Methods. The lipid-protein interaction was determined by SPR sensograms.

(A) Sensogram of GELNs lipid nanoparticles.

(B and C) (B) Sensogram of PA-depleted GELN lipid nanoparticles and (C) Sensogram of PA (34:2) lipid nanoparticles. Protein bound with lipid nanoparticles was eluted by NaOH (200 μ M), and the fraction was collected for MS/MS analysis for protein identification. The lipid-binding proteins in *P. gingivalis* are listed in Table 1.

the degree of unsaturation of PA plays a critical role in GELN-mediated interaction with HBP35. In addition to using SPR, we further confirmed PA binding to HBP35 by a pull-down assay. PA (34:2) nanoparticles were fluorescently labeled with PKH26 (PE channel) and incubated with biotin-HBP35 peptide for 2 h. The lipidpeptide complex was pulled down by streptavidin beads, and the complex was washed thoroughly. The presence of PA (34:2) in the complex was confirmed by flow cytometry (Figure 4H, top panel). The number of lipid nanoparticles (Figure 4H, bottom, left panel) and fluorescent intensity (Figure 4H, bottom, right panel), including GELNs with/without depletion of PA, PA band from GELN, and PA (34:2) in the complex was determined. The results generated from all three independent assays demonstrated that PA lipid binds to HBP35. We further tested inhibition of GELN uptake by HBP35 peptide. P. gingivalis was fluorescently labeled with PKH67 (green), whereas GELNs and lipid nanoparticles were labeled with PKH26 (red). GELNs and GELN lipid nanoparticles were pre-incubated with HBP35 peptide (10 μ M) and then reacted with P. gingivalis for 1 h at 37°C. P. gingivalis uptake of GELNs and lipid nanoparticles was visualized by confocal microscopy (Figure 4I) and quantified by flow cytometry (Figure 4J). Pre-incubation of synthetic peptide with GELNs and lipid nanoparticles significantly decreased P. gingivalis uptake of GELNs and lipid nanoparticles. HBP35-dependent GELN uptake by P. gingivalis was further demonstrated by deletion of the gene encoding HBP35 in P. gingivalis. The wild-type and HBP35 mutant of P. gingivalis were incubated with PKH26-labeled GELNs for 1 h at 37°C, and GELN uptake was quantified by flow cytometry. As shown in Figure 4K, the HBP35 mutant had a significantly decreased uptake of GLENs. Furthermore, the mutation of the gene HPB35 in P. gingivalis led to less inhibition of its growth by GELNs compared with wild-type P. gingivalis (Figure 4L). Taken together, these results suggest that the lipid moiety of GELNs, specifically PA (34:2), interacts with HBP35 on the outer membrane of P. gingivalis, and this interaction followed by lipid uptake leads to inhibition of bacterial growth.

GELN miRNAs and Lipid PA (34:2) Inhibit the Virulence Activity of Gingipain and Type IX Secretion System of *P. gingivalis*

Besides growth, there are many specific virulence factors that which contribute to the pathogenicity of *P. gingivalis* (Lamont et al., 2018). GELNs are complex nanoparticles that could interact with a multiple

Identified Proteins	Gene	Accession Number	Quantitative Value (iBAQ)		
	Symbol		GELN Lipid Nanoparticles	PA Depleted GELN	PA (34:2) Lipid Nanoparticles
CTD of Arg- and Lys-gingipain proteinase	rgpA	B2RHG9_PORG3	8,269,700	0	5.49E+07
Uncharacterized protein	PGN_1182	B2RK06_PORG3	1,974,600	0	4,816,600
Exo-glucosaminidase LytG muramidase	lytG	B2RME7_PORG3	1,870,800	0	628,530
35 kDa hemin-binding protein	HBP35	B2RII3_PORG3	540,420	0	1.11E+07
Probable transcriptional regulator	asnC	B2RK48_PORG3	428,670	0	0
Electron transfer flavoprotein beta subunit	carD	B2RJZ7_PORG3	280,750	0	3,750,900
META domain lipoprotein implicated in motility	PGN_0740	B2RIR4_PORG3	215,870	0	1,347,800
Methylmalonyl-CoA decarboxylase-a subunit	рссВ	B2RI24_PORG3	195,390	0	2,510,400
30S ribosomal protein S4	rpsD	RS4_PORG3	190,850	0	2,002,700
Oxygen-insensitive NADPH nitroreductase	rdxA	B2RIT9_PORG3	80,440	0	0
Lys-gingipain protease	kgp	B2RMI8_PORG3	72,555	0	0
Esterase	estD	B2RM02_PORG3	38,153	0	1,953,400
Outer membrane lipoprotein 42 kDa antigen PG33	ompA	B2RKC0_PORG3	36,170	0	0
Uncharacterized protein	PGN_1697	B2RLH1_PORG3	34,827	0	0
Protein translocase SecA	secA	SECA_PORG3	30,589	0	0
NAD-dependent 4-hydroxybutyrate dehydrogenase	adh	B2RIP8_PORG3	13,268	0	2,250,200
L-erythro-35-diaminohexanoate dehydrogenase	kdd	B2RJY9_PORG3	10,490	0	1,263,500
Chaperone protein DnaK	dnaK	DNAK_PORG3	6,316.60	0	23,177
Long-chain-fatty-acid-CoA ligase	fadD	B2RK69_PORG3	4,928.30	0	0

CelPress

Table 1. PA-Binding Protein in P. gingivalis.

of *P. gingivalis* virulence factors in addition to HBP35. To search for *P. gingivalis* factors that could interact with GELNs, biotin-labeled GELNs were incubated with *P. gingivalis* total cell lysates. After pull-down with streptavidin beads, the *P. gingivalis* factors that bind with GELNs were separated by SDS-PAGE, and analyzed by MS/MS (Figures 5A and 5B). The GELN-binding proteins which included HBP35, lysine and arginine gingipain, hemagglutinin (HagA), outer membrane protein A (OmpA), and type IX secretion system (T9SS) were identified (Table S5). Interestingly, we identified using two independent assays that GELN interacts with HBP35: the biotin pull-down and SPR assays.

As an asaccharolytic organism *P. gingivalis* is highly proteolytic and the arginine- and lysine-specific gingipain are responsible for nearly 85% of the total proteolytic activity (Potempa et al., 2003). Gingipain are involved in a variety of pathogenic functions, including colonization, nutrition, and neutralization of host defenses, and contribute to extensive periodontal tissue destruction. Both the lysine-specific (Kgp) and arginine-specific (RgpA and RgpB) gingipain are also involved in the accumulation of hemin derivatives of the cell surface giving rise to black pigmentation of *P. gingivalis* colonies on blood agar (Lasica et al., 2016) (Smalley and Olczak, 2017). GELN treatment inhibited the formation of black-pigmented colonies of *P. gingivalis* (Figure 5C). This result was further supported by the finding that activity of both Rgp and Kgp was significantly decreased in *P. gingivalis* treated with GELNs (Figure 5D). GELN lipids, PA (34:2) (Figure 5E), and GELNs aly-miR159a (Figure 5F) all contributed to the inhibition of Rgp and Kgp activities.

CellPress

Figure 4. GELN Lipids Bind to Hemin-Binding Protein 35 (HBP35) on the Outer Membrane of P. gingivalis and Inhibit Its Growth

(A–E) (A–C) A synthetic peptide representing the functional domain of HBP35 WPRVGQLFIALDQTLGIPGFPTFSVCRME (10 μ M) was pre-incubated with GELNs (4.0 × 10⁸ particles), LipidG (4.0–6.0 × 10⁸ particles), and 5 μ g of PA (34:2) for 1 h at 37°C. The pre-treated GELNs and lipids were reacted with *P. gingivalis* for 24 h in anaerobic chamber, and growth of *P. gingivalis* was measured at 600 nm. Determination of direct binding of PA with HBP35 by surface plasmon resonance. Lipid nanoparticles were made from (D) LipidG (E) PA depleted GELN lipids.

(F and G) (F) PA (34:2) and (G) PA (34:1). These lipid nanoparticles were immobilized on a LIP-1 sensor, and HBP35 synthetic peptide was used as an analyte and non-specific peptide used as a negative control. The lipid-protein interaction was determined by SPR sensograms.

(H) Lipid nanoparticles were made from GELN lipids, PA-depleted GELNs, the PA-containing band, and PA (34:2). These nanoparticles were labeled with PKH26 red fluorescent dye and incubated with biotin-HBP35 peptide for 2 h at room temperature with rotation. The lipid nanoparticles and peptide complex were precipitated with streptavidin beads. After washing with PBS, the presence of lipid nanoparticles in the complex was confirmed by flow cytometry. The number of lipid nanoparticles in the complex was measured using a NanoSight 300, and the quantity of lipid nanoparticles was determined by fluorescence intensity as described in Transparent Methods.

(I) *P. gingivalis* was labeled with PKH67 (Green), and GELNs and GELN lipid nanoparticles were labeled with PKH26 (Red). The labeled particles were preincubated with synthetic peptide of HBP35 (10 µM) for 1 h at 37°C. Then, particles were treated with labeled *P. gingivalis* for 1 h at 37°C in an anaerobic chamber. Uptake of particles by *P. gingivalis* were visualized by confocal microscopy.

(J) P. gingivalis uptake of particles were quantified by flow cytometry.

(K) P. gingivalis wild-type and $\Delta hbp35$ mutant were labeled with PKH67, and GELNs were labeled with PKH26. GELNs were reacted with P. gingivalis for 1 h at 37°C in an anaerobic chamber. P. gingivalis and $\Delta hbp35$ mutant uptake of particles was quantified by flow cytometry.

(L) *P. gingivalis* wild-type and *hbp35* mutant was reacted with GELNs for 24 h in an anaerobic chamber. Bacterial growth was determined by measuring optical density at 600 nm.

Results are expressed as mean \pm standard deviation from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 compared with an untreated group using a one-way ANOVA with the Turkey's Multiple Comparison Test.

We also examined the expression of genes encoding other *P. gingivalis* proteins that have the potential to contribute to the pathophysiology of the organism. GELNs strongly inhibited expression of mRNA encoding the AraC transcription factor; HagA, hemagglutinin; OmpA, outer membrane protein A; and the RodA, rod shape determining protein (Figure 5G). Furthermore, GELN aly-miR159a, gma-miR166u/p differentially regulated mRNA expression of AraC, HagA, OmpA, and RodA (Figure 5H). In addition, we found an aly-miR159a-3p-binding site in *hagA* (PGN_1733) and *araC* (PGN_0082), and gma-166p has a potential binding site in *ompA* (PGN_0299) (Figure S9). Indeed, miRNAs derived from GELNs have putative binding sites in several *P. gingivalis* genes, indicating the potential for broadly based inhibition of *P. gingivalis* function. Additionally, lipids derived from GELNs and PA (34:2) inhibited *araC*, *hagA*, *ompA*, and *miRNA* starget several virulence genes expressed in *P. gingivalis*.

The translocation of gingipain to the bacterial surface requires the type IX secretion system (T9SS) (de Diego et al., 2016). T9SS also secrete a variety of other potential virulence factors that possess a conserved C-terminal domain (Lasica et al., 2017). Hence, we examined the role of GELNs and GELN lipids and miRNAs in modulating the expression of genes related to the T9SS. *P. gingivalis* was treated with GELNs (4.0 × 10⁸ particles/mL) and GELN lipids derived from 4.0 × 10⁸ particles, or 5 µg of PA (34:2) for 6 h miRNAs aly-miR159a, gma-miR166u, and gma-miR166p were transduced individually into *P. gingivalis* and incubated for 24 h. The expression of the T9SS family of genes (Vincent et al., 2017) including *porK*, *porL*, *porN*, *porP*, *porQ*, *porT*, *porV*, *porX*, *porY*, and *sov* was quantified using RT-qPCR. GELNs and GELN total lipids significantly inhibited the expression of 11 of the 12 T9SS family of genes compared with the control (Figures 6A and 6B). In addition, PA (34:2) and miRNAs differentially modulated the expression of the T9SS family of genes (Figures 6B and 6C). Furthermore, we found aly-miR159a-3p has a binding site in the T9SS C-terminal target domain containing protein (PGN_0152) (Figure S9). Taken together, GELNs and total lipids derived from GELNs inhibit expression of the T9SS family of genes, which can be predicted to impact the ability of the organism to secrete important virulence factors.

GELNs Inhibits P. gingivalis Attachment to and Invasion in Oral Epithelial Cells

The early stages of *P. gingivalis* colonization involve attachment and invasion of gingival epithelial cells (Lamont et al., 1995); therefore, we determined whether GELNs have an effect on these processes. *P. gingivalis* was treated with GELNs (4×10^8 particles/mL) for 3 h, and then gingival epithelial cells (human telomerase immortalized gingival keratinocytes [TIGKs]) were infected with *P. gingivalis* (MOI 10) for 1 h. Visualization of *P. gingivalis* attachment to TIGKs by confocal microscopy showed that GELN treatment significantly decreased the level of *P. gingivalis* binding (Figure 7A). Consistent with this, when attachment

CellPress

Figure 5. Identification of GELN-Binding Proteins in P. gingivalis

GELNs were labeled with biotin and incubated with total cell lysates of *P. gingivalis* for 1 h at room temperature. GELN-binding proteins were pulled down by streptavidin-conjugated beads.

(A) Protein was separated by SDS PAGE.

(B) Pull-down proteins were subjected to MS/MS analysis.

(C) *P. gingivalis* was incubated with GELNs (4.0 × 10⁸ particles/mL) for 6 h in an anaerobic chamber; the bacteria was spread on blood agar plates and incubated anaerobically for 1 week.

(D) *P. gingivalis* was incubated with different concentrations (2.0 or 4.0×10^8 particles/mL) of GELNs for 6 h. *P. gingivalis* was lysed with Bugbuster lysis reagent, and gingipain activities were measured using specific substrates for Arg-specific protease (Rgp) and Lys-specific protease (Kgp).

(E) *P. gingivalis* was treated with total lipids derived from GELNs and PA (34:2) for 6 h. Gingipain activity was measured in *P. gingivalis* cell lysates. (F) *P. gingivalis* was transduced with scrambled miRNA, aly-miR159a-3p, gma-miR166u, or gma-miR166p for 24 h and gingipain activity measured in total cell lysates.

(G) P. gingivalis was treated with GELNs (4 \times 10⁸ particles/mL) for 6 h.

(H) Transduced with scrambled miRNA, aly-miR159a, gma-miR166u, or gma-miR166p for 24 h. Expression of mRNA for *araC*, *hagA*, and *rodA* was determined by RT-qPCR.

(I) P. gingivalis was treated with total lipids derived from GELNs (4 × 10⁸ particles) or 5 µg of PA (34:2) for 6 h. Expression of mRNA for araC, hagA, and rodA was determined by RT-qPCR.

Results are expressed as mean \pm standard deviation from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 compared with untreated group using one-way ANOVA with Turkey's Multiple Comparison Test.

of *P. gingivalis* to TIGK cells was determined by enzyme-linked immunosorbent assay (ELISA), GELN treatment significantly decreased the surface binding of *P. gingivalis* to TIGK cells (Figure 7B).

The FimA component fimbriae are required for attachment of *P. gingivalis* to oral epithelial cells (Tribble and Lamont, 2010). Therefore, we next sought to determine the effect of GELNs on expression of FimA, as well as on expression of the Mfa1 component fimbriae. As presented in Figures 7C and 7D, expression FimA at both mRNA and protein levels was decreased by GELN treatment. However, GELNs did not change expression of Mfa1. Attachment of *P. gingivalis* to epithelial surfaces can also induce internalization of the organism, which can survive intracellularly. Pre-treatment of *P. gingivalis* with different concentrations of GELNs (0–6.0 ×10⁸ particles/mL) for 3 h decreased intracellular invasion of TIGKs in an antibiotic protection assay (Figure 7E). After 24 h within the TIGKs, quantitation of intracellular *P. gingivalis* by qPCR analysis using 16S rRNA expression showed that GELNs significantly inhibit intracellular proliferation (Figure 7F). These results indicate that GELNs significantly inhibit attachment and invasion of *P. gingivalis* into oral epithelial cells.

Next, we determined which GELN factors contribute to the inhibition of the attachment and invasion of *P. gingivalis* in oral epithelial cells. We pretreated *P. gingivalis* with GELN-derived total lipids (from 4.0×10^8 GELNs) and 50 nM of PA (34:2), which is equivalent to lipids extracted from 4.0×10^8 GELNs for 3 h. Under these conditions *P. gingivalis* was not killed; however, there was a significant inhibition of attachment to TIGK cells (Figure 7G). Furthermore, *P. gingivalis* was treated with the same concentration of lipids for 6 h and FimA expression was determined by western blot and RT-qPCR analysis. FimA expression was decreased significantly (p = 0.002) in both LipidG- and PA (34:2)-treated *P. gingivalis* (Figures 7H and 7I). Furthermore, we next examined the effect of GELN total lipids and PA (34:2) on *P. gingivalis* invasion and proliferation in TIGK cells. A significant decrease in *P. gingivalis* invasion and proliferation was observed with both GELN total lipids and PA-treated *P. gingivalis* (Figures 7J and 7K). Collectively, these results suggest that GELN PA (34:2) inhibits the growth, attachment, and invasion of *P. gingivalis*.

To test whether GELN miRNAs play an inhibitory role in attachment and invasion of *P. gingivalis*, we transduced miRNAs gma-miR166u, gma-miR166p, or aly-miR159a into *P. gingivalis* and used scrambled miRNA as a control. Among these three miRNAs tested, aly-miR159a significantly decreased the attachment of *P. gingivalis* to TIGK cells and gma-miR166u and gma-166p moderately inhibited attachment (Figure 7L). Next, we determined the effect of these miRNAs on *P. gingivalis* invasion (Figure 7M) and proliferation (Figure 7N). As with attachment, inhibition of invasion by aly-miR159a was most pronounced (Figure 7M) and all of the miRNAs inhibited proliferation (Figure 7N). Collectively, these results suggest that GELNs and total lipids derived from GELNs, as well as constituent miRNAs, can impede colonization of *P. gingivalis* by antagonizing epithelial cell attachment and invasion.

GELNs Inhibit P. gingivalis-Induced Bone Loss in an In Vivo Mouse Model

Consistent with its role as a periodontal pathogen, *P. gingivalis* can induce alveolar bone loss in rodent models (Baker et al., 2000). *P. gingivalis*, along with other pathogenic bacteria in the oral cavity, reside

Figure 6. GELNs Inhibit T9SS mRNA Expression in P. gingivalis

(A) P. gingivalis treated with GELNs (4 \times 10⁸ particles/mL).

(B) P. gingivalis treated with lipids extracted from GELNs (4 \times 10⁸ particles) or 5 µg of PA (34:2) for 6 h.

(C) *P. gingivalis* was transduced with scrambled miRNA, aly-miR159a, gma-miR166u, or gma-miR166p for 24 h T9SS family mRNA expression was measured by RT-qPCR.

Results are expressed as mean \pm standard deviation from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 compared with untreated group using the one-way ANOVA with Turkey's Multiple Comparison Test and Student's t test.

primarily in biofilm structures, which contribute to the alveolar bone loss. GELNs dose dependently decreased P. gingivalis biofilm formation in vitro (Figure S10). Therefore, we next wanted to test the effect of GELNs on P. gingivalis-induced alveolar bone loss. To confirm uptake of GELNs by P. gingivalis in the mouse oral cavity we inoculated fluorescent labeled (PKH67) P. gingivalis followed by fluorescent labeled (PKH26) GELNs. After 1 h incubation, the oral cavity was washed with PBS. As shown in Figures 8A and 8B, flow cytometry and confocal microscopy analyses of this PBS wash showed that P. gingivalis in the mouse oral cavity can take up GELNs. Next, the ability of GELNs to prevent/inhibit bone loss was examined. P. gingivalis was inoculated into the murine oral cavity every 2 days for a period of 10 days, and GELNs were given in drinking water ad libitum continuously until the end of the experiment. After 3 weeks, the colonization of P. gingivalis in the oral cavity was determined by qPCR. Oral samples were collected along the gingiva of the upper molars using a 15-cm sterile polyester-tipped applicator, and total genomic DNA was purified and amplified by qPCR with primers to 16 S rRNA. Numbers of P. gingivalis were calculated by comparison with a standard curve derived from known amounts of P. gingivalis. As shown in Figure 8C, the number of P. gingivalis in the oral cavity was significantly decreased with GELN treatment. This result indicates that GELN treatment given in drinking water had significant inhibition of colonization of P. gingivalis. In addition, the presence of P. gingivalis in the oral tissue was confirmed by confocal microscopy. It showed that P. gingivalis in the oral tissue was decreased in GELNs treated group compared with P. gingivalis alone infected tissue (Figure 8D). Furthermore, the in vivo uptake of GELNs by P. gingivalis was determined by confocal microscopy (Figure 8E). After 48 days, the mice were sacrificed and µCT analysis was used to determine alveolar bone loss by measuring the distance from the cementoenamel junction to the alveolar bone crest. In addition, bone volume was measured. A region of interest (ROI) was drawn manually on the axial planes, between the medial root surface of the first molar and distal root surface of the third molar. A three-dimensional image was generated from the ROI. All root volumes were excluded from the ROI to calculate the total volume (TV). The bone volume fraction (BV/TV) was calculated for each sample. GELNs significantly decreased P. gingivalis-induced bone loss, demonstrating that GELNs can inhibit P. gingivalis pathogenicity in vivo (Figures 8F-8H). Interestingly, GELNs alone significantly increased the bone density of alveolar bone compared with the sham condition (Figure 8H). Next, we sought to determine the effect of GELNs on osteoclast differentiation and osteoblast function in infected mice. GELNs treatment significantly decreased TRAP⁺ osteoclast number in *P. gingivalis*-infected mice compared with untreated mice (Figure 81). Osteoblast cells were stained by RUNX2 expression and immunohistochemistry. As shown in Figure 8I, RUNX2 expression was significantly decreased in P. gingivalis-infected oral tissue sections, whereas RUNX2 expression was significantly increased by GELN treatment in P. gingivalis-infected mice. These results suggest that GELNs differentially regulate osteoclasts and osteoblasts in P. gingivalis-infected mice. Furthermore, we screened the cytokine profile in mouse plasma modulated by P. gingivalis and GELNs. Cytokine array analysis revealed that GELNs significantly decreased P. gingivalis induction of pro-inflammatory cytokines and documented bone resorptive cytokines, such as TNF- α , IL-1 α , IL-1 β , INF-γ, IL-6, IL-13, and IL-22 (Figure S11). These cytokines play an important role in recruiting inflammatory Th17 T cells and macrophages into periodontal tissues, leading to bone loss (Baker et al., 1999) (Lam et al., 2014; Tzach-Nahman et al., 2017; Zhuang et al., 2018). Next, we investigated the effect of GELNs on T cell, macrophage, and leukocyte recruitment by using immunofluorescent labeled CD3, F4/80, and CD45 antibodies to detect T cells, macrophages, and leukocytes, respectively. As shown in Figures 8J-8L, P. gingivalis infection enhanced infiltration of T cells, macrophages, and leukocytes in periodontal tissues and this infiltration was decreased significantly by GELNs. Furthermore, qPCR analysis showed that GELNs significantly decreased P. gingivalis-induced expression of mRNA for the inflammatory and bone resorptive cytokines IL-1 β , IL-6, IL-8, and TNF- α in oral tissue (Figure 8M). Also, histology of oral sections showed increased cellular infiltration in the periodontal ligament region in P. gingivalis-infected mice compared with control, and this cellular infiltration was significantly decreased in GELN-treated mice (Figure 8N). Taken together, these results suggest that GELNs can target P. gingivalis and inhibit the expression of virulence factors and thereby decrease alveolar bone loss and inflammation induced by the organism in vivo.

CellPress

Figure 7. GELNs Inhibit P. gingivalis Attachment, Invasion, and Proliferation in Oral Epithelial Cells

(A) *P. gingivalis* was treated with or without GELNs (4.0 × 10⁸ particles/mL) for 3 h and reacted with TIGK cells at an MOI of 10 for 1 h. *P. gingivalis* was stained with whole-cell antibody, and the nucleus was stained with DAPI.

Figure 7. Continued

(B) *P. gingivalis* was treated with or without GELNs (4.0 × 10⁸ particles/mL) for 3 h and reacted with TIGK cells at an MOI of 10 for 1 h. Binding was determined by ELISA.

(C) P. gingivalis was treated with or without GELNs (0–4.0 × 10⁸ particles/mL) for 6 h, and total cell lysates were subjected to western blotting with the antibodies as indicated.

(D) *P. gingivalis* was treated with or without GELNs (4.0×10^8 particles/mL) for 24 h, and *fimA* mRNA expression was determined by RT-qPCR. (E) *P. gingivalis* was treated with different concentrations of GELNs ($0-4.0 \times 10^8$ particles/mL) for 3 h and invasion of TIGK cells determined by an antibiotic protection assay as described in the Transparent Methods section. The results are expressed as number of *P. gingivalis* invasion into TIGK cells. (F) *P. gingivalis* was treated with or without GELNs (4.0×0^8 particles/mL) and infected into TIGK cells at an MOI of 10. After further culturing for 24 h, numbers of intracellular bacteria were determined by qPCR.

(G) P. gingivalis was treated with or without GELN (from 6 $\times 10^8$ particles/mL) derived LipidG or PA (34:2) (5 μ g/mL) and surface attachment to TIGK cells measured.

(H) *P. gingivalis* was treated with or without LipidG (from 6 $\times 10^8$ particles/mL) or PA (34:2) (5 μ g/mL) for 6 h, and cell lysates were examined by western blotting with FimA antibodies.

(I-K) (I) *P. gingivalis* was treated with or without LipidG (from 6 × 10⁸ particles/mL) or PA (34:2) (5 µg/mL) and fimA mRNA determined by RT-qPCR (J) *P. gingivalis* invasion into oral epithelial cells and (K) *P. gingivalis* proliferation in oral epithelial cells as described in the Transparent Methods.

(L) *P. gingivalis* was transduced with miRNA from GELN aly-miR159a, gma-miR166u, gma-miR166p, or non-specific scrambled miRNA for 24 h and attachment to TIGK cells measured by ELISA.

(M and N) (M) P. gingivalis invasion into oral epithelial cells and (N) P. gingivalis proliferation in oral epithelial cells were determined as described in the Transparent Methods.

Results are expressed as mean \pm standard deviation from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 compared with untreated group using one-way ANOVA with Turkey's Multiple Comparison Test.

DISCUSSION

In this study we show that GELNs are selectively taken up by the oral pathogen P. gingivalis. This selectivity is determined by GELN-derived lipid PA, which interacts with hemin-binding protein 35 (HBP35) expressed on the surface of P. gingivalis. HBP35 is a functionally versatile protein involved in hemin uptake, colonization of epithelial surfaces, and biofilm development through binding to various oral Gram-positive and Gram-negative bacteria (Hiratsuka et al., 2010) (Hiratsuka et al., 2008). Our results showed that binding of HBP35 with GELN PA leads to inhibition of P. gingivalis growth. This conclusion is further supported by the finding that depletion of PA from GELNs or loss of HBP35 in P. gingivalis leads to no HBP35/PA interaction and consequently no disruption of P. gingivalis membrane. In addition, we found that pre-incubation of GELN with HBP35 peptide comprising the active binding domain prevents GELNmediated inhibition of growth of P. gingivalis. At the molecular level, we further defined that the specificity of PA binding to HBP35 is dependent on the degree of unsaturation of PA. It has been shown that PA recruits and activates effector molecules that change the biophysical properties of the mammalian cell membrane and directly induce membrane destabilization (Athenstaedt and Daum, 1999; Kooijman et al., 2003). However, the effect of PA on the bacterial membrane has not been reported before. Collectively, these results suggest that GELN PA is required for selective uptake by P. gingivalis via interaction with the HBP35-binding domain. This finding is significant since the selectively of uptake could be exploited not only for targeting specific bacteria but also for delivery of therapeutic agents to specific pathogens for treatment.

Previous studies have shown that both secreted and surface-associated proteins contribute to the virulence of P. gingivalis. Arg-gingipain, Lys-gingipain, and hemagglutinins are among the major virulence factors of P. gingivalis (Savett and Progulske-Fox, 1995; Veith et al., 2002). In this study, we showed that GELN and its component lipids and miRNAs decreased significantly gingipain activities and hemagglutinin expression in P. gingivalis. Furthermore, we found that miR-159a-3p has several potential binding sites on the 3'-UTR of genes encoding gingipain and hemagglutinin. This finding provides a foundation for further study of the molecular mechanisms underlying plant exosome-like nanoparticle inhibition of oral bacterial pathogenicity via plant miRNA interaction with pathogenic factors such as gingipain and hemagglutinin. Furthermore, other GELN molecules can also participate in inhibition of bacterial pathogenicity. We identified GELN PA binding to the proteins containing the T9SS conserved C-terminal domain (CTD), including gingipain and hemagglutinin. The Type IX secretion system is composed of several outer membrane, periplasmic, and inner membrane proteins that play a role in gingipain secretion and transport other virulence factors to the host environment. Mutation of these proteins leads to accumulation of gingipain in the periplasm and non-pigmented colony morphology (de Diego et al., 2016; Lasica et al., 2016; Vincent et al., 2017). In the present study, we observed that GELN and its lipids and miRNAs decreased significantly the expression of T9SS in P. gingivalis. In addition to these virulence factors, GELNs, lipid, and miRNA also

CellPress

CellPress

Figure 8. Effect of GELNs on P. gingivalis-Induced Bone Loss In Vivo

(A) *P. gingivalis* and GELNs were fluorescently labeled with PKH67 and PKH26, respectively. *P. gingivalis* (10⁸) was inoculated into the oral cavity, and GELNs (6.0 × 10⁸ particles) were applied to the oral cavity for 1 h. After washing, bacteria were collected with a sterile swab and uptake of GELNs was quantified by flow cytometry.

(B) P. gingivalis uptake of GELNs in the oral cavity was determined by confocal microscopy.

(C) P. gingivalis (10^8) was inoculated into the mouse oral cavity. The mice were given GELNs (4.0×10^8 particles/mL) ad libitum in drinking water. Three weeks after the final inoculation, the numbers of P. gingivalis were determined by qPCR.

(D) The presence of *P. gingivalis* in the oral tissue was determined by confocal microscopy. Oral tissue sections were stained with anti-*P. gingivalis* antibody followed by fluorescent Alexa Fluor 488-labeled secondary antibody. The presence of *P. gingivalis* was visualized by confocal microscopy. The nucleus was stained with DAPI.

(E) In vivo GELNs taken up by P. gingivalis were determined by confocal microscopy. P. gingivalis was inoculated in the mouse oral cavity three times on alternative days. Then, PKH26 labeled GELNs were added into the drinking water for 24 h. GELNs taken up by P. gingivalis in oral tissue were stained with anti-P. gingivalis followed by fluorescent Alexa Fluor 488-labeled secondary antibody. The GELN taken up by P. gingivalis was visualized by confocal microscopy.

(F) Linear measurements were taken from the cementoenamel junction (CEJ) to the alveolar bone crest (ABC) in the interdental space to measure alveolar bone loss. Images on the left are representative of 14 cross sections measured across the maxillary molars. On the right, three-dimensional reconstructed renderings are shown for representative specimens in each group, such as control (uninfected), GELNs (control mice drank GELNs), Pg (*P. gingivalis* infected), and Pg + GELNs (*P. gingivalis* infected mice continuously drank GELNs). The *P. gingivalis*-treated group shows clear exposure of the tooth root that is not observed when treated with GELNs.

(G) Quantification of alveolar bone fraction from the micro-CT three-dimensional image of alveolar bone crest of region of interest (ROI).

(H) Alveolar bone loss was measured by the distance between the ABC and CEJ at 14 predetermined points on the maxillary molars sites. Each symbol represents an individual mouse, and the short horizontal lines indicates the mean.

(I–L) (I) TRAP staining of an oral tissue section to determine osteoclast (OC) number, and RUNX2 expression for osteoblasts (OB) in an oral tissue section was determined by immunohistochemistry. The number of TRAP-positive multinucleated OCs and RUNX2-positive OBs was counted manually. (J–L) Oral tissue sections were stained with anti-CD3, anti-F4/80, and anti-CD45 antibodies followed by fluorescent labeled secondary antibodies. The expression of CD3, F4/80, and CD45 was visualized by confocal microscopy.

(M) Total RNA was isolated from the control and experimental mice oral tissue and analyzed by RT-qPCR for expression of mRNA for inflammatory and bone resorptive cytokines IL-1 β , IL-6, IL-8, and TNF- α . Results are expressed as mean \pm standard deviation from three independent experiments.

(N) Hematoxylin staining of oral section of control, *P. gingivalis*-infected mice, and GELN-treated mice. B, alveolar bone crest; PDL, periodontal ligament; E, epithelial cells.

Results are expressed as mean \pm standard deviation from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 compared with an untreated group using a one-way ANOVA with the Turkey's Multiple Comparison Test.

inhibited expression of other important *P. gingivalis* components such as OmpA, rod shape determining protein A (RodA), and the AraC transcriptional regulators. The AraC family of transcription regulators is one of the largest group of regulatory proteins in bacteria and can control the expression of several virulence factors in a variety of organisms (Yang et al., 2011). Collectively, our findings suggest that GELNs carry a broad spectrum of molecules, including lipids and miRNAs, that can inhibit multiple pathways in *P. gingivalis*.

Besides GELNs, the fact that all other types of edible plant exosome-like nanoparticles (ELNs) carry a broad spectrum of molecules supports further examination as to whether other ELNs have a role in inhibition of pathogenic factor(s) or/and promoting beneficial factor(s) from oral bacteria to regulating oral bacterial homeostasis. Over 700 bacterial species may be found in the oral cavity of humans (Paster et al., 2006). The diverse community that makes up the oral microbiome is of great importance in maintaining homeostasis. Oral dysbiosis contributes to the development of periodontitis. P. gingivalis is considered a keystone pathogen (Hajishengallis et al., 2012), and thus targeting of this organism may be sufficient to ameliorate or prevent disease. In this regard, in non-human primates where P. gingivalis is a natural inhabitant of the subgingival biofilm, immunization against P. gingivalis gingipain proteases causes a reduction in P. gingivalis numbers, total subgingival bacterial load, and bone loss (Page et al., 2007). Nonetheless, as periodontitis involves a community of organisms (Lamont et al., 2018), the ability of GELNs to modulate the pathogenic potential of other potential pathogens (e.g., Tannerella forsythia, Prevotella intermedia, Aggregatibacter actinomycetemcomitans, Treponema denticola, Filifactor alocis) alone and in the context of a heterotypic biofilm community also requires further study. The results presented in our previous report (Teng et al., 2018) imply that ginger edible exosome-like nanoparticles are taken up by a group of gut bacteria and have a role in maintaining gut microbiota homeostasis by inhibiting the growth of potential pathogens as well as increasing beneficial bacterial survival. The current study opens up a new avenue for studying whether a combination of other types of ELNs with GELNs can target more species than P. gingivalis to have greater potency in inhibiting the development of periodontitis. Collectively, this study further supports the hypothesis that edible plant exosome-like nanoparticles packaging various agents can

target multiple virulence factors of infectious agents simultaneously for the prevention/treatment of infectious diseases. Since pathogenicity in general is multifactorial, the action of edible plant exosome-like nanoparticles (ELNs) is likely to be more efficient than that of any single molecule. ELNs have the potential to be further developed as a new source of prebiotics. In addition, currently, only a subset of gut and oral bacteria can be grown in the laboratory in pure culture (Stewart, 2012), and systematic approaches to identifying growth conditions for as yet uncultivable bacteria have been challenging (Vartoukian et al., 2010). Our findings also suggest the possibility of *in vitro* co-culturing of oral or gut bacteria with ELNs for enhancing growth.

The interaction of bacterial factors with host cells contributes to P. gingivalis colonization and pathogenicity. Several P. gingivalis proteins, including the FimA component fimbriae (fimA) and the Mfa1 component fimbriae, play a role in attachment to host surfaces (Lin et al., 2006) (Hamada et al., 1996) (Zheng et al., 2011). Our study showed that GELNs and their component lipids and miRNAs significantly reduced FimA expression and further inhibited attachment of P. gingivalis to oral epithelial cells. We also showed that treatment with GELNs significantly diminished P. gingivalis-induced alveolar bone loss in a mouse model. Moreover, GELNs impacted the immune response and we observed a decrease in the expression of bone resorptive cytokines, including IL-1 β , IL-6, Il-8, and TNF- α , and decreased recruitment of macrophages, leukocytes, and CD3 cells into the oral tissue microenvironment. The data published also indicate that GELNs also have anti-inflammatory properties. Whether this GELN-mediated immune modulation is through direct interaction of GELNs with CD3 T cells and macrophages or through metabolites released by GELN-responsive oral bacteria cannot be distinguished in the standard in vivo periodontal bone loss model utilized in this study, and the relative importance of GELN effects on bacteria or host immunity requires further investigation. Indeed, GELNs may provide a two-hit effect, i.e., antibacterial and antiinflammatory. Interestingly, we also found that naive mice treated with GELNs in the drinking water have higher bone mineral density than control naive mice. This finding will open up a new avenue to study how GELNs can improve the bone mineral density in general since disruption of bone metabolism is associated with many diseases.

Limitations of the Study

One limitation of this study is that we examined the effect of GELNs on *in vitro* monospecies biofilm formation, which is not representative of the influence of GELNs on established polymicrobial biofilms. Therefore, further studies are needed to determine if GELNs can penetrate an established microbial biofilm and have an influence of polymicrobial interactions and on the antibiotic susceptibility of biofilms. Additionally, the impact of GELNs on pre-existing multispecies biofilms, such as those that occur in human *in vivo*, requires further study.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.10.032.

ACKNOWLEDGMENTS

We thank Dr. J. Ainsworth for editorial assistance. Funding: This work was supported by a grant from the NIH (UH3TR000875, R01AT008617), United States. H.-G.Z. is supported by a Research Career Scientist (RCS) Award, United States and P20GM125504. D.P.M is supported by K99DE028346, R.J.L is supported by DE011111 and DE012505, X.Z. is supported by 1S10OD020106, and M.L.M. is supported by P50 AA024337 and P20 GM113226.

AUTHOR CONTRIBUTIONS

K.S., D.P.M., X.Z., Y.T., R.J.L., and H.-G.Z. designed the study, analyzed, interpreted data, and prepared the manuscript; K.S. and D.P.M. performed experiments and interpreted data; J.W.P. and M.S. provided bioinformatics analysis and quantitation; C.L., L.H., and Y.F. provided HPLC analysis; J.M. provided histological analysis; A.K., M.K.S., C.L., and K.S. prepared GELNs and bacteria; M.L.M. did protein analysis; L.Z. provided technical support; S.Q.Z, Y.J., and X.Z interpreted the findings.

DECLARATION OF INTERESTS

The subject matter of this work is covered by a United States provisional patent application, serial no. 62/812,644.

Received: February 13, 2019 Revised: July 1, 2019 Accepted: October 16, 2019 Published: November 22, 2019

REFERENCES

Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M.J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. *29*, 341–345.

Athenstaedt, K., and Daum, G. (1999). Phosphatidic acid, a key intermediate in lipid metabolism. Eur. J. Biochem. 266, 1–16.

Baker, P.J., Dixon, M., Evans, R.T., Dufour, L., Johnson, E., and Roopenian, D.C. (1999). CD4(+) T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect. Immun. *67*, 2804–2809.

Baker, P.J., Dixon, M., and Roopenian, D.C. (2000). Genetic control of susceptibility to *Porphyromonas gingivalis*-induced alveolar bone loss in mice. Infect. Immun. *68*, 5864–5868.

Bao, K., Belibasakis, G.N., Thurnheer, T., Aduse-Opoku, J., Curtis, M.A., and Bostanci, N. (2014). Role of *Porphyromonas gingivalis* gingipains in multi-species biofilm formation. BMC Microbiol. 14, 258.

Baron, C. (2013). A novel strategy to target bacterial virulence. Future Microbiol. *8*, 1–3.

de Diego, I., Ksiazek, M., Mizgalska, D., Koneru, L., Golik, P., Szmigielski, B., Nowak, M., Nowakowska, Z., Potempa, B., Houston, J.A., et al. (2016). The outer-membrane export signal of *Porphyromonas gingivalis* type IX secretion system (T9SS) is a conserved C-terminal betasandwich domain. Sci. Rep. *6*, 23123.

Goldberg, K., Sarig, H., Zaknoon, F., Epand, R.F., Epand, R.M., and Mor, A. (2013). Sensitization of gram-negative bacteria by targeting the membrane potential. FASEB J. 27, 3818–3826.

Hajishengallis, G., Darveau, R.P., and Curtis, M.A. (2012). The keystone-pathogen hypothesis. Nat. Rev. Microbiol. *10*, 717–725.

Hamada, N., Sojar, H.T., Cho, M.I., and Genco, R.J. (1996). Isolation and characterization of a minor fimbria from *Porphyromonas gingivalis*. Infect. Immun. *64*, 4788–4794.

Hiratsuka, K., Hayakawa, M., Kiyama-Kishikawa, M., Sasaki, Y., Hirai, T., and Abiko, Y. (2008). Role of the hemin-binding protein 35 (HBP35) of *Porphyromonas gingivalis* in coaggregation. Microb. Pathog. 44, 320–328.

Hiratsuka, K., Kiyama-Kishikawa, M., and Abiko, Y. (2010). Hemin-binding protein 35 (HBP35) plays an important role in bacteria-mammalian cells interactions in *Porphyromonas gingivalis*. Microb. Pathog. 48, 116–123. Kauppi, A.M., Nordfelth, R., Uvell, H., Wolf-Watz, H., and Elofsson, M. (2003). Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem. Biol. *10*, 241–249.

Kooijman, E.E., Chupin, V., de Kruijff, B., and Burger, K.N. (2003). Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4, 162–174.

Lam, R.S., O'Brien-Simpson, N.M., Lenzo, J.C., Holden, J.A., Brammar, G.C., Walsh, K.A., McNaughtan, J.E., Rowler, D.K., Van Rooijen, N., and Reynolds, E.C. (2014). Macrophage depletion abates *Porphyromonas gingivalis*-induced alveolar bone resorption in mice. J. Immunol. *193*, 2349–2362.

Lamont, R.J., Chan, A., Belton, C.M., Izutsu, K.T., Vasel, D., and Weinberg, A. (1995). *Porphyromonas gingivalis* invasion of gingival epithelial cells. Infect. Immun. *63*, 3878–3885.

Lamont, R.J., Koo, H., and Hajishengallis, G. (2018). The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. *16*, 745–759.

Lasica, A.M., Goulas, T., Mizgalska, D., Zhou, X., de Diego, I., Ksiazek, M., Madej, M., Guo, Y., Guevara, T., Nowak, M., et al. (2016). Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic *Porphyromonas gingivalis*. Sci. Rep. *6*, 37708.

Lasica, A.M., Ksiazek, M., Madej, M., and Potempa, J. (2017). The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front. Cell. Infect. Microbiol. 7, 215.

Lin, X., Wu, J., and Xie, H. (2006). *Porphyromonas gingivalis* minor fimbriae are required for cell-cell interactions. Infect. Immun. *74*, 6011–6015.

Liu, L.S., Gkranias, N., Farias, B., Spratt, D., and Donos, N. (2018). Differences in the subgingival microbial population of chronic periodontitis in subjects with and without type 2 diabetes mellitus-a systematic review. Clin. Oral Invest. 22, 2743–2762.

Miki, T., and Hardt, W.D. (2013). Outer membrane permeabilization is an essential step in the killing of gram-negative bacteria by the lectin RegIIIbeta. PLoS One 8, e69901.

Mu, J., Zhuang, X., Wang, Q., Jiang, H., Deng, Z.B., Wang, B., Zhang, L., Kakar, S., Jun, Y., Miller, D., et al. (2014). Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. *58*, 1561–1573.

Nusslein, K., Arnt, L., Rennie, J., Owens, C., and Tew, G.N. (2006). Broad-spectrum antibacterial activity by a novel abiogenic peptide mimic. Microbiology 152, 1913–1918.

Olsen, I., Lambris, J.D., and Hajishengallis, G. (2017). *Porphyromonas gingivalis* disturbs hostcommensal homeostasis by changing complement function. J. Oral Microbiol. 9, 1340085.

Page, R.C., Lantz, M.S., Darveau, R., Jeffcoat, M., Mancl, L., Houston, L., Braham, P., and Persson, G.R. (2007). Immunization of *Macaca fascicularis* against experimental periodontitis using a vaccine containing cysteine proteases purified from *Porphyromonas gingivalis*. Oral Microbiol. Immunol. 22, 162–168.

Pan, X., Yang, Y., and Zhang, J.R. (2014). Molecular basis of host specificity in human pathogenic bacteria. Emerg. Microbes Infect. 3, e23.

Paster, B.J., Olsen, I., Aas, J.A., and Dewhirst, F.E. (2006). The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 2000 42, 80–87.

Potempa, J., Sroka, A., Imamura, T., and Travis, J. (2003). Gingipains, the major cysteine proteinases and virulence factors of *Porphyromonas gingivalis*: structure, function and assembly of multidomain protein complexes. Curr. Protein Pept. Sci. 4, 397–407.

Reyes, L., Phillips, P., Wolfe, B., Golos, T.G., Walkenhorst, M., Progulske-Fox, A., and Brown, M. (2018). *Porphyromonas gingivalis* and adverse pregnancy outcome. J. Oral Microbiol. *10*, 1374153.

Savett, D.A., and Progulske-Fox, A. (1995). Restriction fragment length polymorphism analysis of two hemagglutinin loci, serotyping and agglutinating activity of *Porphyromonas gingivalis* isolates. Oral Microbiol. Immunol. 10, 1–7.

Shibata, Y., Okano, S., Shiroza, T., Tahara, T., Nakazawa, K., Kataoka, S., Ishida, I., Kobayashi, T., Yoshie, H., and Abiko, Y. (2011). Characterization of human-type monoclonal antibodies against reduced form of hemin binding protein 35 from *Porphyromonas gingivalis*. J. Periodontal Res. 46, 673–681.

Shoji, M., Shibata, Y., Shiroza, T., Yukitake, H., Peng, B., Chen, Y.Y., Sato, K., Naito, M., Abiko, Y., Reynolds, E.C., et al. (2010). Characterization of

hemin-binding protein 35 (HBP35) in *Porphyromonas gingivalis*: its cellular distribution, thioredoxin activity and role in heme utilization. BMC Microbiol. 10, 152.

Smalley, J.W., and Olczak, T. (2017). Heme acquisition mechanisms of *Porphyromonas gingivalis* - strategies used in a polymicrobial community in a heme-limited host environment. Mol. Oral Microbiol. *32*, 1–23.

Stewart, E.J. (2012). Growing unculturable bacteria. J. Bacteriol. *194*, 4151–4160.

Teng, Y., Ren, Y., Sayed, M., Hu, X., Lei, C., Kumar, A., Hutchins, E., Mu, J., Deng, Z., Luo, C., et al. (2018). Plant-derived exosomal MicroRNAs shape the gut microbiota. Cell Host Microbe 24, 637– 652.e8.

Tribble, G.D., and Lamont, R.J. (2010). Bacterial invasion of epithelial cells and spreading in periodontal tissue. Periodontol. 2000 *52*, 68–83.

Tzach-Nahman, R., Mizraji, G., Shapira, L., Nussbaum, G., and Wilensky, A. (2017). Oral infection with *Porphyromonas gingivalis* induces peri-implantitis in a murine model: evaluation of bone loss and the local inflammatory response. J. Clin. Periodontol. 44, 739–748. Vartoukian, S.R., Palmer, R.M., and Wade, W.G. (2010). Strategies for culture of 'unculturable' bacteria. FEMS Microbiol. Lett. *309*, 1–7.

Veith, P.D., Talbo, G.H., Slakeski, N., Dashper, S.G., Moore, C., Paolini, R.A., and Reynolds, E.C. (2002). Major outer membrane proteins and proteolytic processing of RgpA and Kgp of *Porphyromonas gingivalis* W50. Biochem. J. *363*, 105–115.

Vincent, M.S., Canestrari, M.J., Leone, P., Stathopulos, J., Ize, B., Zoued, A., Cambillau, C., Kellenberger, C., Roussel, A., and Cascales, E. (2017). Characterization of the *Porphyromonas gingivalis* Type IX secretion trans-envelope PorKLMNP core complex. J. Biol. Chem. 292, 3252–3261.

Wang, Q., Zhuang, X., Mu, J., Deng, Z.B., Jiang, H., Zhang, L., Xiang, X., Wang, B., Yan, J., Miller, D., et al. (2013). Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat. Commun. 4, 1867.

Xiao, J., Feng, S., Wang, X., Long, K., Luo, Y., Wang, Y., Ma, J., Tang, Q., Jin, L., Li, X., et al. (2018). Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ 6, e5186.

Yang, J., Tauschek, M., and Robins-Browne, R.M. (2011). Control of bacterial virulence by AraC-like

regulators that respond to chemical signals. Trends Microbiol. *19*, 128–135.

Zenobia, C., and Hajishengallis, G. (2015). Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis. Virulence 6, 236–243.

Zheng, C., Wu, J., and Xie, H. (2011). Differential expression and adherence of *Porphyromonas gingivalis* FimA genotypes. Mol. Oral Microbiol. 26, 388–395.

Zhuang, X., Deng, Z.B., Mu, J., Zhang, L., Yan, J., Miller, D., Feng, W., McClain, C.J., and Zhang, H.G. (2015). Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles *4*, 28713.

Zhuang, X., Xiang, X., Grizzle, W., Sun, D., Zhang, S., Axtell, R.C., Ju, S., Mu, J., Zhang, L., Steinman, L., et al. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular therapy. J. Am. Soc. Gene Ther. 19, 1769–1779.

Zhuang, Z., Yoshizawa-Smith, S., Glowacki, A., Maltos, K., Pacheco, C., Shehabeldin, M., Mulkeen, M., Myers, N., Chong, R., Verdelis, K., et al. (2018). Induction of M2 macrophages prevents bone loss in murine periodontitis models. J. Dental Res. *98*, 200–208.

ISCI, Volume 21

Supplemental Information

Plant-Derived Exosomal

Nanoparticles Inhibit Pathogenicity

of Porphyromonas gingivalis

Kumaran Sundaram, Daniel P. Miller, Anil Kumar, Yun Teng, Mohammed Sayed, Jingyao Mu, Chao Lei, Mukesh K. Sriwastva, Lifeng Zhang, Yan Jun, Michael L. Merchant, Liqing He, Yuan Fang, Shuangqin Zhang, Xiang Zhang, Juw W. Park, Richard J. Lamont, and Huang-Ge Zhang

Supplemental Information

Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis

Kumaran Sundaram, Daniel P. Mille, Anil Kumar, Yun Teng, Mohammed Sayed, Jingyao Mu, Chao Lei, Mukesh K Sriwastva, Lifeng Zhang, Yan Jun, Michael L Merchant, Liqing He, Yuan Fang, Shuang Qin Zhang, Xiang Zhang, Juw Won Park, Richard J. Lamont, and Huang-Ge Zhang

(A) S. gordonii was treated with GELNs (4.0 x10⁸/ml) for the indicated times. (B) S. gordonii did not take up GELNs. S. gordonii and GELNs were labelled with fluorescent dyes PKH67 and PKH26, respectively. S. gordonii was incubated with GELNs for 1 h at 37°C. Uptake of GELNs by S. gordonii was determined using confocal microscopy. (C-E). F. nucleatum, P. intermedia and A. actinomycetemcomitans was treated with GELNs (4.0 x10⁸/ml) for the indicated times. The growth of S. gordonii was determined by measuring optical density at 600 nm. Results are expressed as mean \pm standard deviation from three independent experiments. *P <0.05, **P<0.01, ***P<0.001 compared with an untreated group using a one-way ANOVA with the Turkey's Multiple Comparison Test.

Figure S2. GELNs modulate inner membrane depolarization and membrane fluidity in *P. gingivalis*, Related to Figure 1.

(A-B) *P. gingivalis* and *S. gordonii* were washed with HEPES–glucose buffer and incubated with 0.4 μ M of diSC3-5 for 1 h. Bacteria were treated with GELNs (6.0 x 10⁸ particles /ml) for 2 h. Membrane depolarization was measured by fluorescence intensity at 620 nm excitation and 722 nm emission. (C) *P. gingivalis* was incubated with different concentrations (0-6.0 x 10⁸ particles /ml) of GELNs for 2 h at 37°C and 0.5 μ M of ethidium bromide was added. The fluorescent intensity was measured at 540 nm and 610 nm of excitation and emission, respectively. (D) *P. gingivalis* and *S. gordonii* were treated with GELNs (4.0 x 10⁸ particles /ml) for 24 h and centrifuged (10,000 rpm) for 10 min to remove bacteria. The supernatant was separated by SDS-PAGE and stained with Coomassie brilliant blue. Results are expressed as means ± standard deviation from three independent experiments. NS; Not significant, ***P<0.001 compared with an untreated control group using Student 't' Test.

P. gingivalis was treated with GELNs (4×10^8 particles /ml) for 24 h. Metabolic product in the supernatant were measured by LC- MS. (A) upregulated metabolic products. (B) down regulated metabolic products.

Table S1: Metabolies released by *P. gingivalis* released metabolites and their function,Related to Figure 1.

Metabolites	Function	Reference
Lysine	lysine, is required in protein synthesis and in the peptidoglycan layer of Gram- positive bacterial cell walls	(Gillner et al., 2013)
Tyrosine	D-tyrosine has potent activity toward biofilm disassembly	(Kolodkin-Gal et al., 2010)
Proline	Protection against abiotic stress, osmoregulation, protein stability, involved in cell signaling and energy production	(Christgen and Becker, 2018)
Ornithine	contribute to cytosolic pH homeostasis when cells are exposed to acidic environments	(Viala et al., 2011)
L- methionine sulfoxide	Defends against oxidative stress	(Luo and Levine, 2009)
L-Carnitine	Role in electron transport chain, osmoprotection, served as nutrient	(Meadows and Wargo, 2015)
L-pipecolic acid	served as carbon and nitrogen source	(Rao and Rodwell, 1962)
Pyridoxamine	Serves as cofactor of enzymes, role in amino acid and fatty acid metabolism	(El Qaidi et al., 2013)
Dimethyl -L-arginine	Involved in several metabolic pathway and role in bacterial pathogenesis	(Xiong et al., 2016)
Methionine	Initiation of translation, it is common cofactor	(Ferla and Patrick, 2014)
Phenylalanine	Degradation by several anaerobic bacteria and important for growth	(Fuchs et al., 2011)
3-Methylcrotonglycine	Modulates mitochondrial energy production and inhibit ATPase	(Moura et al., 2012)
2'-Methyladenosine	Involved in gene regulation	(Deng et al., 2015)
Threonine	Phosphorylation of protein which play an important role in pathogenesis, host cell interaction	(Cozzone, 2005)
Glycine	Inhibit bacterial growth, inhibit synthesis peptidoglycan on bacterial cell wall	(Hammes et al., 1973)
Isoleucine	Role in bacterial growth	(Conner and Hansen, 1967)
Tetramethylpyrazine	Bacteria used for carbon and energy source	(Kutanovas et al., 2013)
5-Aminovaleric acid	Bacterial catabolic product of Lysine and play a role in biotransformation	(Liu et al., 2014)
Cystathionine	Metabolites used for methionine biosynthesis	(Delavier-Klutchko and Flavin, 1965)
4-Indoleccarbaldehy de	Biofilm formation, virulence factor production, antibiotic resistance.	(Melander et al., 2014)
Choline	It is precursor to GB, and GB act as a potent osmoprotectant and roles in shaping microbial communities	(Wargo, 2013)
Citruline	Protects bacteria from acid stress	(Cusumano and Caparon, 2015)
Histidine	Used as a source of carbon, energy, and nitrogen	(Bender, 2012)
Asparagine	Important role in glycoprotein biosynthesis	(Hart, 1982)
Guanine	Bacterial genomic DNA	(Muto and Osawa, 1987)
Adenine	Adenine Methylation play a role in Regulating Bacterial Gene Expression	

Figure S4. miRNA profile of GELNs, Related to Figure 2.

Total miRNA was extracted from the GELNs and the miRNA profile was determined as described in the Materials and Methods.

Table S2: GELN-derived miRNA targeting *P. gingivalis* gene, Related to Figure 2.

Aly-miR-159a-3p

miRNA_seed	Gene symbol	locus_tag	Description
TTTGGATT	PGN_RS08230	PGN_1733	hemagglutinin
TTTGGATT	PGN_RS05900	PGN_1227	hypothetical protein
TTTGGATT	PGN_RS06005	PGN_1253	hypothetical protein
TTTGGATT	PGN_RS05790	PGN_1204	aspartate 1-decarboxylase
TTTGGATT	PGN_RS04300	PGN_0902	anaphase-promoting protein subunit 3
TTTGGATT	PGN_RS05310		hypothetical protein
			3-deoxy-manno-octulosonate
TTTGGATT	PGN_RS08315	PGN_1750	cytidylyltransferase
TTTGGATT	PGN_RS02060	PGN_0433	phosphoglycerate kinase
			succinate-semialdehyde
TTTGGATT	PGN_RS03450	PGN_0723	dehydrogenase
TTTGGATT	PGN_RS01525	PGN_0318	precorrin-3B C(17)-methyltransferase
TTTGGATT	PGN_RS04735	PGN_0988	hypothetical protein
	_		ATP-dependent Clp protease
TTTGGATT	PGN_RS07385	PGN_1549	proteolytic subunit
TTTGGATT	PGN RS03750	PGN 0786	hypothetical protein
TTTGGATT	PGN RS06440	PGN 1349	S9 family peptidase
TTTGGATT	PGN RS09345	PGN 1976	hypothetical protein
TTTGGATT	PGN RS02890	PGN 0606	glucosamine-6-phosphate deaminase
TTTGGATT	PGN RS03215	PGN 0675	thiazole biosynthesis protein ThiJ
TTTGGATT	PGN RS04470	PGN 0935	hypothetical protein
TTTGGATT	PGN RS07600	PGN 1594	DNA topoisomerase IV subunit B
TTTGGATT	PGN RS03485	PGN 0732	hypothetical protein
TTTGGATT	PGN RS08125	PGN 1708	magnesium chelatase
			T9SS C-terminal target domain-
TTTGGATT	PGN_RS00715	PGN_0152	containing protein
TTTGGATT	PGN_RS00200	PGN_0043	cell division protein FtsH
TTTGGATT	PGN_RS00390	PGN_0082	AraC family transcriptional regulator
TTTGGATT	PGN_RS06580	PGN_1381	alaninetRNA ligase
TTTGGATT	PGN_RS00600	PGN_0128	hypothetical protein
TTTGGATT	PGN_RS05340	PGN_1115	hemagglutinin
TTTGGATT	PGN_RS00370	PGN_0079	hypothetical protein
			cytochrome D ubiquinol oxidase subunit
TTTGGATT	PGN_RS04995	PGN_1042	
TTTGGATT	PGN_RS02750		mobilization protein
TTTGGATT	PGN_RS05560	PGN_1159	anaphase-promoting protein subunit 3
TTTGGATT	PGN_RS09285	PGN_1963	hypothetical protein
TTTGGATT	PGN_RS00415	PGN_0087	hypothetical protein
TTTGGATT	PGN_RS01490	PGN_0311	DUF4271 domain-containing protein
TTTGGATT	PGN_RS04225	PGN_0884	organic solvent tolerance protein OstA
TTTGGATT	PGN_RS09490	PGN_2005	hypothetical protein
TTTGGATT	PGN_RS00890	PGN_0192	membrane protein
TTTGGATT	PGN_RS09325	PGN_1970	peptidase C25
TTTGGATT	PGN_RS09955	PGN_1340	hypothetical protein
TTTGGATT	PGN RS01395	PGN 0291	WWA domain-containing protein

gma-miR166u

miRNA_seed	Gene symbol	locus_tag	Description
TCTCGGAC	PGN_RS04795	PGN_1001	DNA polymerase III subunit delta
TCTCGGAC	PGN_RS00800	PGN_0172	hypothetical protein
TCTCGGAC	PGN_RS05480	PGN_1143	hypothetical protein
TCTCGGAC	PGN_RS05135	PGN_1070	radical SAM protein
			branched-chain amino acid ABC transporter
TCTCGGAC	PGN_RS06355	PGN_1330	ATP-binding protein
			5'-methylthioadenosine/S-
TCTCGGAC	PGN_RS07035	PGN_1475	adenosylhomocysteine nucleosidase
TCTCGGAC	PGN_RS05385	PGN_1124	paraslipin
TCTCGGAC	PGN_RS06240	PGN_1305	N-acetylmuramoyl-L-alanine amidase
TCTCGGAC	PGN_RS09395	PGN_1986	histidinol phosphate phosphatase
TCTCGGAC	PGN_RS07020	PGN_1471	membrane protein
TCTCGGAC	PGN_RS03965	PGN_0831	transcription antitermination factor NusB
TCTCGGAC	PGN_RS00960	PGN_0205	AraC family transcriptional regulator
			3-phosphoshikimate 1-
TCTCGGAC	PGN_RS08890	PGN_1874	carboxyvinyltransferase
TCTCGGAC	PGN_RS00680	PGN_0144	DUF5103 domain-containing protein
TCTCGGAC	PGN_RS02140	PGN_0446	ABC transporter ATP-binding protein
TCTCGGAC	PGN_RS03390	PGN_0710	indolepyruvate ferredoxin oxidoreductase
TCTCGGAC	PGN_RS05550	PGN_1157	lysinetRNA ligase
TCTCGGAC	PGN_RS04840	PGN_1011	adenine permease
TCTCGGAC	PGN_RS00735	PGN_0157	2-iminoacetate synthase ThiH
TCTCGGAC	PGN_RS00090	PGN_0017	sodium-independent anion transporter
TCTCGGAC	PGN_RS03905	PGN_0817	penicillin-binding protein 1A
TCTCGGAC	PGN_RS09895	PGN_2083	potassium transporter
TCTCGGAC	PGN_RS00980	PGN_0209	glycinetRNA ligase
TCTCGGAC	PGN_RS01460	PGN_0303	peptidase M16
TCTCGGAC	PGN_RS09845	PGN_2075	excinuclease ABC subunit A
TCTCGGAC	PGN_RS02640	PGN_0556	cobaltochelatase
TCTCGGAC	PGN_RS09725	PGN_2050	helicase UvrD

gma-miR166p

miRNA_seed	Gene symbol	locus_tag	Description
			signal recognition particle-docking protein
TCGGACCA	PGN_RS01275	PGN_0264	FtsY
TCGGACCA	PGN_RS01430	PGN_0299	outer membrane protein assembly factor
TCGGACCA	PGN_RS03345	PGN_0701	beta-galactosidase

Figure S5. miRNA from GELNs did not affect the growth of *P.gingivalis*, Related to Figure 2.

miRNAs aly-miR-159a, gma-miR166u or gma-miR-166p were packaged into lipid nanoparticles and incubated with *P. gingivalis* for 24 h. The growth of *P. gingivalis* was determined by measuring the optical density at 600 nm. Results are expressed as mean ± standard deviation from three independent experiments. NS; not significant compared with an scrambled miRNA transduced group using Student 't' Test.

P. gingivalis was transduced with scrambled miRNA, aly-miR159a, gma-miR166u or gmamiR166p or treated with total lipids extracted from different concentrations of GELNs ($0-4.0 \times 10^8$ particles) and incubated for 24 h. The growth of *P. gingivalis* was measured by optical density at 600 nm. Results are expressed as means with standard deviation from three independent experiments. NS; Not significant represents the comparison of each miRNA with Scr-miRNA with lipid treatment by two-way ANOVA.

Mass	Compound Formula	Compound Name	nmol per ma drv wt
DGDG			
958.6	C51H88O15	DGDG(36·4)	138.65
960.6	C51H90O15	DGDG(36:3)	119.80
936.6	C49H90O15	DGDG(34:1)	97.43
962.6	C51H92O15	DGDG(36:2)	57.25
934.6	C49H88O15	DGDG(34:2)	42.90
956.6	C51H86O15	DGDG(36:5)	29.63
964.7	C51H94O15	DGDG(36:1)	22.88
984.6	C53H90O15	DGDG(38:5)	7.44
932.6	C49H86O15	DGDG(34·3)	5.58
954.6	C51H84O15	DGDG(36:6)	4.87
MGDG			
796.6	C45H78O10	MGDG(36·4)	286.61
794 5	C45H76O10	MGDG(36:5)	170.49
798.6	C45H80O10	MGDG(36:3)	153.29
792.5	C45H74O10	MGDG(36:6)	91.86
800.6	C45H82O10	MGDG(36·2)	33.08
774.6	C43H80O10	MGDG(30.2)	10.13
826.6		MGDG(38:3)	13.08
772.6	C47H04O10	MGDG(30.3)	9 17
PC	04311/0010		3.17
768.5		PG(34·0)	3 71
766.5		PG(34:0)	2.20
700.5		PG(34.1)	2.11
704.5	C20U75O10P	PG(34.2)	2.22
740.5		PG(32.0)	1.20
700.0	04211/3010	F O(30.4)	1.02
Lysopg			26.75
520.3		LPG(10.2)	20.75
528.3			20.15
500.3	C22H43O9P		15.72
502.3		LPG(16:0)	14.98
524.3	C24H43O9P	LPG(18:3)	11.47
	00011500751		
520.3		LPC(18:2)	8.32
522.3	C26H52O7PN	LPC(18:1)	5.67
	00011440701		1.07
4/8.3	C23H44O7PN	LPE(18:2)	1.27
454.3	C21H44O7PN	LPE(16:0)	0.43
452.3	C21H42O7PN	LPE(16:1)	0.37
PC			
758.6	C42H80O8PN	PC(34:2)	7.79
782.6	C44H80O8PN	PC(36:4)	4.77
784.6	C44H82O8PN	PC(36:3)	2.48
760.6	C42H82O8PN	PC(34:1)	2.32
786.6	C44H84O8PN	PC(36:2)	1.08
756.5	C42H78O8PN	PC(34:3)	0.93
780.5	C44H78O8PN	PC(36:5)	0.78
PE			
716.5	C39H74O8PN	PE(34:2)	1.92

Table S3: Lipid profile of GELNs, Related to Figure 2.

740.5	C41H74O8PN	PE(36:4)	1.44
742.5	C41H76O8PN	PE(36:3)	0.22
828.6	C47H90O8PN	PE(42:2)	0.21
718.5	C39H76O8PN	PE(34:1)	0.20
PI			
852.5	C43H79O13P	PI(34:2)	16.28
876.5	C45H79O13P	PI(36:4)	7.98
854.5	C43H81O13P	PI(34:1)	4.37
878.5	C45H81O13P	PI(36:3)	4.08
850.5	C43H77O13P	PI(34:3)	3.44
824.5	C41H75O13P	PI(32:2)	2.65
874.5	C45H77O13P	PI(36:5)	2.50
828.5	C41H79O13P	PI(32:0)	1.99
822.5	C41H73O13P	PI(32:3)	1.91
PS			
872.6	C48H90O10PN	PS(42:2)	8.61
760.5	C40H74O10PN	PS(34:2)	2.75
844.6	C46H86O10PN	PS(40:2)	1.61
900.7	C50H94O10PN	PS(44:2)	1.35
874.6	C48H92O10PN	PS(42:1)	0.93
870.6	C48H88O10PN	PS(42:3)	0.64
786.5	C42H76O10PN	PS(36:3)	0.54
784.5	C42H74O10PN	PS(36:4)	0.49
PA			
690.5	C37H69O8P	PA(34:2)	325.56
714.5	C39H69O8P	PA(36:4)	219.54
716.5	C39H71O8P	PA(36:3)	130.51
692.5	C37H71O8P	PA(34:1)	70.04
718.5	C39H73O8P	PA(36:2)	39.98
688.5	C37H67O8P	PA(34:3)	20.51
712.5	C39H67O8P	PA(36:5)	19.07
666.5	C35H69O8P	PA(32:0)	2.43
DAG			
34:2	C37H72O5N	18:2/16:0	68810.79
34:1	C37H74O5N	18:1/16:0	12404.35
36:4	C39H72O5N	18:2/18:2	7971.51
34:3	C37H70O5N	18:3/16:0	7154.70
36:3	C39H74O5N	18:2/18:1	5916.98
36:2	C39H76O5N	18:2/18:0	1695.15
36:4	C39H72O5N	18:3/18:1	1688.38
36:5	C39H70O5N	18:3/18:2	1203.29
36:2	C39H76O5N	18:1/18:1	1163.96
34:3	C37H70O5N	18:2/16:1	401.01
32:0	C35H72O5N	16:0/16:0	365.18
36:1	C39H78O5N	18:1/18:0	251.94
36:3	C39H74O5N	18:3/18:0	124.73
34:2	C3/H/2O5N	18:1/16:1	118.98
32:1	C35H70O5N	16:0/16:1	118.12
34:7-0	C3/H62O6N	18:3/dnOPDA	82.71
34:4		18:2/16:2	82.62
36.6		18:3/18:3	79.35
34:4	C37H68O5N	18:3/16:1	52.67

34:5	C37H66O5N	18:2/16:3	40.19
34:3	C37H70O5N	18:1/16:2	34.97
36:7-0	C39H66O6N	OPDA/18:3	22.89
34:1	C37H74O5N	18:0/16:1	15.23
34:2	C37H72O5N	18:0/16:2	15.02
34:6	C37H64O5N	18:3/16:3	13.84
34:4	C37H68O5N	18:1/16:3	13.17
34:7-0	C37H62O6N	OPDA/16:3	11.43
34:5	C37H66O5N	18:3/16:2	9.84
34:8-20	C37H60O7N	OPDA/dnOPDA	4.68
34:3	C37H70O5N	18:0/16:3	4.61
TAG			
896.76807	C57H102O6N	TAG(54:6)	7.01
894.75247	C57H100O6N	TAG(54:7)	2.91
898.78367	C57H104O6N	TAG(54:5)	2.70
872.76807	C55H102O6N	TAG(52:4)	2.52
894.75247	C57H100O6N	TAG(54:7)	1.86
898.78367	C57H104O6N	TAG(54:5)	1.76
872.76807	C55H102O6N	TAG(52:4)	1.56
896.76807	C57H102O6N	TAG(54:6)	0.98
896.76807	C57H102O6N	TAG(54:6)	0.97
892.73687	C57H98O6N	TAG(54:8)	0.82
900.79927	C57H106O6N	TAG(54:4)	0.81
870.75247	C55H100O6N	TAG(52:5)	0.63
874.78367	C55H104O6N	TAG(52:3)	0.62
874.78367	C55H104O6N	TAG(52:3)	0.61
874.78367	C55H104O6N	TAG(52:3)	0.54
900.79927	C57H106O6N	TAG(54:4)	0.53
848.76807	C53H102O6N	TAG(50:2)	0.50
870.75247	C55H100O6N	TAG(52:5)	0.42
892.73687	C57H98O6N	TAG(54:8)	0.36
848.76807	C53H102O6N	TAG(50:2)	0.23
872.76807	C55H102O6N	TAG(52:4)	0.23
898.78367	C57H104O6N	TAG(54:5)	0.22
850.78367	C53H104O6N	TAG(50:1)	0.19
872.76807	C55H102O6N	TAG(52:4)	0.19
894.75247	C57H100O6N	TAG(54:7)	0.17
876.79927	C55H106O6N	TAG(52:2)	0.17
902.81487	C57H108O6N	TAG(54:3)	0.16
900.79927	C57H106O6N	TAG(54:4)	0.13

Figure S7. Measurement of lipid oxidation, Related to Figure 2.

Lipid oxidation of GELNs total lipids and lipids extracted from TLC was measured by level of malondialdehyde (MDA). The lipid sample was mixed with TBA reagent and kept at boiling water bath for 15 min and read at 535 nm. The concentration of MDA was calculated by standard MDA. Results are expressed as mean ± standard deviation from three independent experiments. Student 't' Test was used for analysis of statistical significance. NS; Not significant.

Figure S8. Characterization of GELNs lipid nano particles, Related to Figure 3.

Lipid nanoparticles were made from LipidG and PA (34:2). Size distribution lipid nanoparticles were determined using a NanoSight NS300 (Westborough, MA) with a flow speed at 0.03 mL per min. (A) size distribution of GELNs lipid nanoparticles. (B) size distribution of PA (34:2) lipid nanoparticles. (C-D) TAG content in GELNs lipid nanoparticles was determined by HPLC. TAG levels were expressed as mean \pm standard deviation from three independent experiments. Student 't' test was used to analysis statistical significance of TAG level between GELNs total lipid vs GELNs lipid nanoparticles.^{***}P<0.001.

	Gene		
Identified Proteins	Symbol	Accession Number	Molecular Weight
Lys-gingipain	kgp	KGP_PORG3	187 kDa
Hemagglutinin	hagA	B2RLK7_PORG3	283 kDa
Receptor antigen B	ragB	B2RHG8_PORG3	57 kDa
Cluster of Gingipain R1	rgpA	CPG1_PORG3	185 kDa
Receptor antigen A	ragA	B2RHG7_PORG3	115 kDa
35 kDa hemin binding protein	HBP35	B2RII3_PORG3	38 kDa
Peptidylarginine deiminase	PGN_0898	B2RJ72_PORG3	62 kDa
Immunoreactive 61 kDa			
antigen	tapA	B2RH26_PORG3	61 kDa
C-terminal domain of Arg-and			
Lys-gingipain proteinase	rgpA_4	B2RHG9_PORG3	32 kDa
Uncharacterized protein	PGN_0654	B2RIH8_PORG3	35 kDa
Zn-carboxypeptidase	scpD	B2RHK9_PORG3	92 kDa
Minor fimbrial subunit Mfa1	mfa1	MFA1_PORG3	61 kDa
T9SS C-terminal target			
domain-containing protease	PGN_0458	B2RHY2_PORG3	57 kDa
Glyceraldehyde-3-phosphate			
dehydrogenase	gapA	B2RH47_PORG3	36 kDa
NAD-specific glutamate			
dehydrogenase	gdh	DHE2_PORG3	49 kDa
Uncharacterized protein	PGN_0129	B2RH03_PORG3	22 kDa
Outer membrane lipoprotein			
immunoreactive 42 kDa			
antigen PG33	ompA_3	B2RIQ3_PORG3	43 kDa
Fibronectin type III domain			
protein	fib3	B2RIW9_PORG3	79 kDa
UDP-N-			
acetylenolpyruvoylglucosamine			
reductase inner membrane			
lipoprotein	PGN_1129	B2RJV3_PORG3	17 kDa
Lipoprotein	PGN_0426	B2RHV0_PORG3	17 kDa
Lysyl endopeptidase	pepK	B2RKP0_PORG3	103 kDa
Outer membrane lipoprotein			
immunoreactive 42 kDa			
antigen PG33	ompA_2	B2RIQ2_PORG3	42 kDa
Uncharacterized protein	PGN_1557	B2RL31_PORG3	30 kDa
Ferric enterobactin receptor	pfeA_1	B2RIK7_PORG3	79 kDa

Table S5. GELN-binding proteins of *P. gingivalis*, Related to Figure 5.

Figure S9. Schematic representation GELNs miRNAs targeting genes in *P. gingivalis,* Related to Figure 5 and Figure 6.

17

Figure. S10. GELNS inhibit biofilm formation of *P. gingivalis*, Related to Figure 8.

Human saliva was coated in 96-well plate for overnight. *P. gingivalis* was treated with different concentration (0- 4.0×10^8 particles/ml) of GELNS and incubated at anaerobic chamber for 24 h. Then, bacteria were removed by washing with PBS and the biofilm was stained with 0.5% of crystal violet for 15 min. Excess staining was removed by washing and 99% ethanol added. Optical density was measured at 590 nm. Results are expressed as means with standard deviation from three independent experiments. * P <0.05, **P<0.01, ***P<0.001 compared with control group using Student 't' Test.

Figure S11. GELNs significantly decreased pro-inflammatory cytokine expression in *P. gingivalis* infected mice, Related to Figure 8.

Cytokine expression was determined by a cytokine array. Plasma was collected from control, *P. gingivalis* infected and *P. gingivalis* infected with GELN treated mice. The cytokines levels are expressed as mean \pm standard deviation from three independent experiments. Student 't' test was used to analysis statistical significance of cytokine level between P. gingivalis infected Vs GELNs treatments. ^{\$}P<0.01, [#]P<0.001.

Primer Name	Forward	Reverse
AraC	CGCGAACTCTTCTGCATCTT	GAATACGAAGGCACGAAAGC
OMP	GGATCGTTCGCTTCAGATGT	AGCCATGATGGAAATTTTGG
RodA	CGATTATAAGGGACGGATCG	CCATCATGAAAAGGTGGGATA
HA	GATCGATGCTGATGGTGATG	CCGCTAGCAGTCCATGATTT
porX	GATCGGGGACAGAAGTACCA	ATTCGGGTAGGCGAAGAAGT
porY	AGAATTGAGGATGCCGAATG	TGCATACGAGCCTTTCTCCT
porL	GGGTGCTCTCTTCAAGTTGC	TCCATCGGATTCTTCGAGTC
porM	TTCCGTCACAGCTCAATCAG	ATTTCACGCTTACCCAAACG
porN	TCGCTCGTGAACGAGTAATG	GAATCGGGCGTAGGACAGTA
porK	AGCTCAATCCGGATCAAATG	GATGATATTGCCGCTTTCGT
porW	CTCAGTCCGGACAGGAGAAG	CTGCAGGAAATCGGCATTAT
SOV	AGGCGGCAGAGACTATGAAA	CTGATAAACCTGCCCGTTGT
porQ	ATGCGTTTCCTGAACTACGG	CACCAAGGCCAAAGGAACTA
porP	AGCTACTGACGGGCACAGTT	AAAGCATAGCCGGCATAGAA
porT	GGTCTCGGATGCGATTTTTA	CTCGAAATTGAACGTGAGCA
porV	CTCTGTGCCATCGCTGAATA	AGAAACCGGTCATCTGCATC
OMPA2	CATTGACATTGCAGGTGGAG	TCGAACATGAAGTCGAGGTG
fimA	TTGTTGGGACTTGCTGCTCTTG	TTCGGCTGATTTGATGGCTTCC
16S rRNA	AGGAACTCCGATTGCGAAGG	TCGGTTTACTGCGTGGACTACC
IL-1 β	GTTCCCATTAGACAACTGC	GATTCTTTCCTTTGAGGC
IL-6	GATACCACTCCCAACAGACC	GCAATGGCAATTCTGATTGT
TNF- α	TCTATGGCCCAGACCCTCAC	GACGGCAGAGAGGAGGTTGA
GAPDH	AGGTCATCCCAGAGCTGAACG	ACCCTGTTGCTGTAGCCGTAT

Table S6. Primers list, Related to Figure 5, Figure 6, Figure 7 and Figure 8

Transparent Methods

Bacterial strains and growth condition

P. gingivalis 33277 was cultured in trypticase soy broth supplemented with yeast extract (1 mg/ml), hemin (5 μ g/ml) and menadione (1 μ g/ml) and incubated at 37°C in an anaerobic chamber (85%N₂, 10%H₂, 5%CO₂). *S. gordonii* DL1 was cultured in brain-heart infusion broth containing 0.5% yeast extract and incubated anaerobically at 37°C.

A *P. gingivalis* 33277 deletion mutation in *HBP35* (PGN_0659) was obtained by allelic replacement. Briefly, DNA sequences 999 bp upstream of the PGN_0659 ATG initiation codon and 930 bp downstream of the PGN_0659 TGA stop codon were amplified using the 0659usF-GATGAGCCGACGATGAGTATGC, 0659usR

GAAGCTATCGGGGGTACCTTGCAAATACTTTGCCTCTGTTATCGTC and 0659dsF TGTCCCTGAAAAATTTCATCCTATTGAGCTAAGATTTAAACGAAAACTGCG, 0659dsR AATGCTCGGTTTCAGTGTCTGC primers, respectively, using *P. gingivalis* 33277 genomic DNA.

An ermF cassette was amplified from P. gingivalis 33277 [tp1 as described earlier (Simionato et al., 2006) GGTTACCCCCGATAGCTTCC using the ermF and ermR GGATGAAATTTTTCAGGGACA primers that contained 5' homology with the 0659usR and 0659dsF primers. The final PCR fusion product was purified using the New England Biolabs Monarch PCR and DNA cleanup kit. The amplicon was directly electroporated into P. gingivalis 33277 (Simionato et al., 2006). Recombinants were selected using TSB blood agar plates supplemented with yeast extract, hemin, menadione and erythromycin (10 ug/mL). Replacement of PGN 0659 was confirmed by real-time PCR using the following primers 0659-F -TACTCTCTGCTGCTATCCTAAGT and 0659-R CCTCCAACACCACATTCTTCT: 0658-F-GCTTCCGGTAGCGATGATAA CACCTCCACATACTCGTCATAC; and 0658R-0660-F-TGGCTTATCGTGGCTCTTTC and 0660-R- GGAGGATCTCTTCTGCATCAC.

To measure the effect of GELNs on growth, *P. gingivalis* and *S. gordonii* were cultured over 0-48 h in the presence or absence of different concentrations of GELNs (0-6.0 \times 10⁸ particles/ml) and

21

total lipids derived from these particles (LipdG) (see below). *P. gingivalis* and *S. gordonii* growth was determined by measuring optical density at 600 nm.

Culture of TIGK cells

Human telomerase immortalized keratinocytes (TIGKs) derived from the human gingival epithelium were maintained at 37°C and 5% CO₂ in Dermalife-K serum free culture medium (Lifeline Cell Technology, Carlsbad, CA).

Isolation and purification of ginger exosome-like nanoparticles (GELNs)

Ginger exosome-like nanoparticles (GELNs) were isolated and purified. Ginger was purchased from a local supermarket and washed with sterile PBS and the skin peeled away. Ginger was ground in a blender to obtain the juice and strained to remove the larger particles. Juice was sequentially centrifuged at 1000g for 10 min, 3000g for 20 min and 10,000g for 40 min to remove particles. The supernatant was then centrifuged at 150,000g for 2 h, the pellet was resuspended in sterile PBS and transferred to a sucrose step gradient (8%/15%/30%/45%/60%), followed by centrifugation at 150,000g for 2 h at 4°. The bands between the 8%/30% layer and 30%/45% layer were harvested separately and noted as ginger exosome-like nanoparticles (GELNs). The purified GELNs were fixed with 2% paraformaldehyde and imaged by electron microscopy (Zeiss EM 900). GELN size and concentration (particle number) was determined using a NanoSight NS300 (Malvern Instrument, UK) at a flow rate of 30 µl per minute. GELNs were also isolated from a commercially available ginger supplement (Super pure Ginger, The Synergy Company) after ginger supplement was suspended in PBS with the same procedure as described above.

GELN uptake assay

Bacterial uptake of GELNs was quantified by flow cytometry. In brief, *P. gingivalis* and *S. gordonii* were labelled with PKH67 (green) and GELNs were labelled with PKH26 (red) according to the manufacturer's protocol (Sigma). Fluorescent labeled bacteria (1×10^8) were incubated with fluorescent labeled GELNs (0- 6.0 × 10⁸ particles) for 1 h at 37°C in an an anaerobic chamber. The percentage of GELNs taken up by *P. gingivalis* or *S. gordonii* was quantified by flow cytometry.

Confocal microscopy

22

The interaction or uptake of GELNs by *P. gingivalis* was determined by confocal microscopy. Briefly, *P. gingivalis* and GELNs were labelled with PKH67 (green) and PKH26 (red), respectively, according to the manufacturer's protocol (Sigma). Fluorescent labeled *P. gingivalis* (1×10^8) was incubated with fluorescent labeled GELNs (6.0×10^8 particles) for 1 h at 37°C. The interaction of *P. gingivalis* and GELNs was visualized by confocal microscopy (Nikon).

P. gingivalis invasion of epithelial cells

P. gingivalis invasion into oral epithelial cells was determined by an antibiotic protection assay *P. gingivalis* was grown to mid-log phase and incubated at 37°C for 3 h with or without GELNs (4.0 \times 10⁸ particles). Cells were collected by centrifugation for 10 min at 5000g and infected into TIGK cells at a MOI of 10 at 37°C for 1 h. Unbound bacteria were removed by washing with PBS and surface attached external non-invading bacteria were killed by incubation with gentamicin (300 µg/mI) and metronidazole (200 µg/mI) for 4 h. TIGK cells were washed with PBS and lysed with sterile distilled water. Intracellular *P. gingivalis* were plated, incubated anaerobically at 37°C for 7 days and CFUs determined. For the proliferation assay, after antibiotic treatment, cells were further incubated anaerobically for 24 h. RNA was extracted and subjected to real time PCR for 16s rRNA expression. The number of *P. gingivalis* was calculated using a standard curve derived from a known amount of *P. gingivalis*.

P. gingivalis attachment to epithelial cells

The amount of *P. gingivalis* attaching to the surface of gingival epithelial cells was determined. TIGK cells were cultured in 96-well plates for 24 h and fixed with 5% buffered formalin for 1 h, *P. gingivalis* treated with and without GELNs (as above) were reacted with the TIGK cells at a MOI of 10 for 1 h at 37°C. Cells were washed with PBS to remove non-adherent bacteria and incubated with *P. gingivalis* whole-cell antibodies (1:10,000) for 1 h at 37°C. After washing, binding was detected with a secondary horse radish peroxidase (HRP)-anti-rabbit antibody (1:5,000) with 3,3′,5,5′-tetramethylbenzidine substrate (Sigma), and the results at 450 nm recorded.

For confocal microscopy, the secondary antibody for *P. gingivalis* was Alexa 568-conjugated IgG (1: 5000). Nuclear staining was performed with DAPI for 15 min and localization of *P. gingivalis* was visualized by confocal microscopy (Nikon).

Gingipain proteolytic activity

The proteolytic activity of arginine-specific (Rgp) and lysine specific (Kgp) gingipain was measured. *P. gingivalis* was cultured to mid-log phase and treated with and without GELNs (2.0- 4.0×10^8 particles /ml) for 6 h. The bacterial cells were collected by centrifugation at 5000g for 10 min, washed and lysed with Bugbuster reagent (Millipore Sigma, Burlington, MA, USA). The chromogenic *p*-nitroanillide substrates N-benzoyl-L-arginine-pNA or toluenesulfonyl-glycyl-prolyl-L-lysine-pNA (Sigma) were used to measure RgpA/B and Kgp, respectively. Bacterial cell lysates (50 µl) were pre-incubated with assay buffer (200 mM Tris-HCl, 5 mM CaCl₂, 150 mM NaCl and supplemented with 10 mM cysteine) in a 96-well plate and 0.5 mM of specific substrate was added to each well. The rate of substrate hydrolysis and accumulation of p-nitroanillide was monitored spectrophotometrically at 405 nm. The enzyme activity was calculated and given as mOD/min/µl.

RNA isolation and quantitative real time PCR (qRT-PCR)

Total RNA was isolated from *P. gingivalis* and TIGK cells using TRIzol reagent according to the manufacturer's protocol (Invitrogen). RNA (1 μ g) was converted into cDNA with an iScript cDNA synthesis kit (Bio-Rad, Hercules, CA). cDNA samples were amplified with Sso Fast green super mix in CFX96 Real–time PCR system (Bio-Rad). mRNA expression was quantified by the $\Delta\Delta$ Ct method using 16 S rRNA expression as an internal control for bacterial gene expression and GAPDH expression as an internal control for mouse and human gene expression. All primers were purchased form Eurofins MWG Operon and primers are listed in Supplementary Table 6.

Western blot

P. gingivalis was incubated anaerobically at 37°C for 6 h with or without GELNs (0-4.0 × 10⁸ particles /ml). Total cell lysates were prepared in Bugbuster lysis reagent with protease and phosphatase inhibitors (Roche). Cell lysates were separated by SDS-PAGE (4-15% gradient gel) and transferred onto nitrocellulose membranes. After transfer, membranes were probed with primary polyclonal antibodies specific for FimA or Mfa1 at 1:1000 for 1 h at room temperature. The membrane was incubated with secondary antibodies conjugated to Alex-647 (Eugene, OR, USA) at 1:10,000 for 1 h at room temperature. Bands were visualized and analyzed based on band intensity on an Odyssey Imager (Licor Inc, Lincoln, NE, USA).

24

Lipid extraction and TLC analysis

Total lipids from GELNs were extracted with chloroform:methanol (2:1, v/v). GELNs was mixed with chloroform:methanol and vortex the mixture. Centrifuge at 2000 xg for 10 min and carefully remove bottom layer contains lipids and dried under nitrogen. Then, thin layer chromatography (TLC) was performed. HPTLC-plates (silica gel 60 with concentrating zone, 20 cm × 10 cm; Merck) were used for the separation. Aliquots of concentrated lipid samples extracted from GELNs were separated on HPTLC-plates and the plates developed with chloroform:methanol:H₂O (65:25:4). After drying, lipids were stained using iodine vapor. The plate was imaged with an Odyssey Scanner.

Lipid oxidation measurement: Lipid oxidation was measured by quantification of malondialdehyde (MDA) 200 µl of lipids derived from GELNs and GELN lipids extracted from TLC plates were mixed with 400 µl of TBA reagent containing Trichloroacetic acid (15%), HCI (0.2N), thiobarbuitric acid (0.37%) with 0.03% butylated hydroxytoluene (BHT). The sample was kept in boiling water bath for 15 min and samples cooled down to room temperature. The samples were centrifuged for 10 min at 1000g. The absorbance of the solution at 535 nm was determined. The concentration of MDA was calculated using standard MDA.

Lipidomic analysis

Lipid samples extracted from GELNs were submitted to the Lipidomics Research Center, Kansas State University (Manhattan, KS) for analysis. The lipid composition was determined using a triple quadrupole mass spectrometer (Applied Biosystems Q-TRAP, Applied Biosystems, Foster City, CA). The data are reported as concentration (nmol/mg GELNs) and percentage of each lipid in total signal for the molecular species determined after normalization of the signals to internal standards of the same lipid class.

Preparation of GELN RNA libraries and sequencing

Small RNA libraries were generated with 100 ng of total RNA from GELNs and TruSeq Small RNA Library Preparation Kits (Illumina) according to the manufacturer's instructions. Following PCR amplification (16 cycles), libraries between 140 and 160 bp in size were gel purified and resuspended in ultrapure water (11 µl). Equal amounts of libraries were pooled and sequenced on an Illumina HiSeq 2500, followed by demultiplexing and fastq generation with CASAVA v1.8.4. Raw fastqs were adapter and quality score trimmed with cut adapt v1.10. with a minimum length of 15 nucleotides. MicroRNAs were identified using the sRNABench Pipeline (version 05/14). A core set of plant miRNAs from miRBase v21 was used as a reference and this set included all 14 plant species with at least 200 mature microRNA sequences annotated in miRBase. Within the sRNABench pipeline, mapping was performed with bowtie (v0.12.9) and microRNA folding was predicted with RNAfold using the Vienna package (v2.1.6).

Delivery of miRNA into P. gingivalis

GELNs miRNAs aly-miR-159a-3p, gma-miR166u, gma-miR166p and gma-miR319a were packaged into lemon-derived lipid nanoparticles. Total lipids were extracted from lemon-derived exosome-like nanoparticles. 20 nM of miRNA was added to 100 nM of lemon lipids in 0.9% NaCl and PEI (2 µg/ml), and this mixture was sonicated in a water bath to make a lipid nanoparticles-miRNA complex. The complex was centrifuged at 36,000 rpm for 1 h and the unbound RNA content in the supernatant was measured. *P. gingivalis* was treated with the RNA bound lipid nanoparticles for 24 h.

2DLC-MS/MS analysis and its data analysis

P. gingivalis was incubated anaerobically with PBS in the presence or absence of GELNs (4.0 × 10^8 particles/ml) for 24 h. Bacterial media was collected by centrifugation and filtered (0.22 µm) to remove bacterial cells. To extract polar metabolites for 2DLC-MS/MS analysis, 500 µL of culture medium was lyophilized, then redissolved in 100 µL 20% acetonitrile. After 3 min of vigorous vortex mixing, the sample was centrifuged at 12,000g at 4°C for 20 min. The supernatant was collected and used for 2DLC-MS/MS analysis.

All samples were analyzed on a Thermo Q Exactive HF Hybrid Quadrupole-Orbitrap Mass Spectrometer coupled with a Thermo DIONEX UltiMate 3000 HPLC system (Thermo Fisher Scientific, Waltham, MA, USA). The UltiMate 3000 HPLC system was equipped with a hydrophilic interaction chromatography (HILIC) column and a reverse phase chromatography (RPC) column. The HILIC column was a SeQuant® ZIC®-cHILIC HPLC column (150 × 2.1 mm i.d., 3 µm) purchased from Phenomenex (Torrance, CA, USA). The RPC column was an ACQUITY UPLC HSS T3 column (150 \times 2.1 mm i.d., 1.8 μ m) purchased from Waters (Milford, MA, USA). The two columns were configured in parallel 2DLC mode.

For 2DLC separation, the mobile phase A for RPC was water with 0.1% formic acid and the mobile phase A for HILIC was 10 mM ammonium acetate (pH adjusted to 3.25 with acetate). Both RPC and HILIC used the same mobile phase B, acetonitrile with 0.1% formic acid. The RPC gradient was 0 min, 5% B, hold for 5.0 min; 5.0 min to 6.1 min, 5% B to 15% B; 6.1 min to 10.0 min, 15% B to 60% B, hold for 2.0 min; 12.0 min to 14.0 min, 60% B to 100% B, hold for 13.0 min; 27.0 min to 27.1 min, 100% B to 5% B, hold for 12.9 min. The HILIC gradient was 0 to 5.0 min; 6.0 min to 6.1 min, 35% B to 5% B, hold for 16.9 min; 23.0 min to 23.1 min, 5% B to 95% B, hold for 16.9 min. The flow rate was 0.4 mL/min for RPC and 0.3 mL/min for HILIC. The column temperature was 40°C for both columns. The injection volume was 2 μ L.

To avoid systemic bias, the samples were analyzed by 2DLC-MS in a random order. All samples were first analyzed by 2DLC-MS in positive mode followed by 2DLC-MS in negative mode to obtain the full MS data of each metabolite. For quality control purposes, a pooled sample was prepared by mixing a small portion of the supernatant from each sample and was analyzed by 2DLC-MS after injection of every six biological samples. The pooled sample was also analyzed by 2DLC-MS in positive mode and negative mode to acquire MS/MS spectra for metabolite identification.

For 2DLC-MS data analysis, MetSign software was used for spectrum deconvolution, metabolite identification, cross-sample peak list alignment, normalization, and statistical analysis. To identify metabolites, the 2DLC-MS/MS data of pooled sample were first matched to our inhouse MS/MS database that contains the parent ion m/z, MS/MS spectra, and retention time of 187 metabolite standards. The thresholds used for metabolite identification were MS/MS spectral similarity \geq 0.4, retention time difference \leq 0.15 min, and m/z variation \leq 4 ppm. The 2DLC-MS/MS data without a match in the in-house database were then analyzed using Compound Discoverer software (Thermo Fisher Scientific, Inc., Germany), where the threshold of MS/MS spectra

have a match were then matched to the metabolites in our in-house MS database using the parent ion m/z and retention time. The thresholds for assignment using the parent ion m/z and retention time were \leq 4 ppm and \leq 0.15 min, respectively.

Transmission Electron Microscopy

P. gingivalis and *S. gordonii* were treated with PBS or GELNs (6.0×10^8 particles/ml) for 3 h. Bacterial cells were collected by centrifugation (5000 g, 10 min) and resuspended in 10 mM Tris (pH7.8) and fixed with 2% formaldehyde and 1% glutaraldehyde. The bacterial suspension (20 µl) was applied to a formvar-coated copper grid (200 mesh, Electron Microscopy Science, PA), air dried and negatively stained with 0.5% ammonium molybdate. Bacterial morphology was observed with a transmission electron microscope (Thermo-Fisher TEM Tecnai Spirit) at 80 kV and images were collected with an AMT XR60 digital camera.

Outer membrane permeability assay (EtBr influx assay)

P. gingivalis was grown to mid-log phase and washed with binding buffer (25 mM MES pH 6.0, 25 mM NaCl). *P. gingivalis* was treated for 2 h at 37°C with or without GELNs (0- 6.0×10^8 particles/ml) and then ethidium bromide (0.5 μ M) was added. The fluorescence of the Et-Br-nucleic acid complex was immediately measured in a fluorescence spectrophotometer (Molecular Device) with excitation and emission wavelengths of 545 and 600 nm, respectively. The widths of the slits were 5 and 10 nm, respectively.

Cytoplasmic membrane integrity assay

The cytoplasmic membrane depolarization of *P. gingivalis* was measured by using a membrane potential sensitive fluorescent dye diSC₃-5. Mid-logarithmic phase *P. gingivalis* was washed with 5 mM sodium HEPES buffer, pH 7.4, containing 20 mM glucose, and resuspended to an OD₆₀₀ of 0.05 in the same buffer. The cell suspension was incubated with 0.4 μ M diSC₃ until a stable reduction of fluorescence was achieved. KCI was added to a final concentration of 0.1 M to equilibrate the cytoplasmic and external K⁺ concentration. *P. gingivalis* was treated for 2 h at 37°C with or without GELNs (6.0 x 10⁸ particles /ml). Changes in fluorescence were recorded using an F-4500 fluorescence spectrophotometer (Hitachi, Japan) with an excitation wavelength of 622 nm and an emission wavelength of 670 nm.

Lipid nanoparticles preparation

Total GELN lipids were extracted with chloroform:methanol (2:1, v/v) Thin layer chromatography (TLC) was performed with a PA (34:2) standard. The corresponding PA band was excised from the TLC plate and the remaining bands were pooled together. GELN total lipids, PA depleted lipids and PA (34:2) were completely dried under a stream of nitrogen gas and overnight dry under vacuum. The lipid film was suspended in HBS running buffer (20 mM HEPES, 150 mM NaCl, pH 7.4), gently vortexed and sonicated for 10 min until a clear solution was formed. The lipid nanoparticle suspension was extruded through a polycarbonate membrane filter syringe with a pore size of 100 nm. The size of the lipid nanoparticles was confirmed using a NanoSight NS300 (Malvern Panalytical Inc, MA, USA). Total lipids were determined by measuring total phosphate level (Baginski et al., 1972).

HPLC analysis of TAG

Total lipids were extracted from GELNs and lipid nanopartilces made from GELNs lipid. The samples were dissolved in methanol and 10 µl of sample was injected for high-performance liquid chromatography (HPLC) analysis with 380 ELSD detection system (Agilent Technologies). The HPLC analysis was performed on an Agilent 1260 Infinity system equipped with an Agilent 300SB-C8 column (4.6 x 250 mm, 5 µm) connected to a guard column, with the following parameters: mobile phase A: water; mobile phase B: methanol; gradient: 10% B in first 5 min, increase to 95% B in 10 min, hold 95% B for 5 min and then back to 10 % B in 5 min; flow rate: 1.0 ml/min; Column temperature was controlled at 37°C. ELSD setting include evaporator temperature 30°C, nebulizer temperature 30°C, gas flow rate 1.2 SLM and 350 kPa for nitrogen pressure with flow rate was 1 ml/min. The standard glyceryl trinoleate (cat: T9517) was purchase from Sigma.

Surface Plasmon Resonance (SPR)

SPR experiments were conducted on an OpenSPRTM (Nicoya, Lifesciences, ON, CA). All experiments were performed on a LIP-1 sensor (Nicoya, Lifesciences). Tests were run at a flow rate of 20 µl/min using HBS running buffer (20 mM HEPES, 150 mM NaCl, pH 7.4). First, the LIP-1 sensor chip was cleaned with octyl β -D-glucopyranoside (40 mM) and CHAPS (20 mM). Liposomes (1 mg/ml) were injected on the sensor chip for 10 min until stable resonance was

obtained. After immobilization of lipid nanoparticles, the surface was blocked with BSA (3%) in running buffer. After a stable signal was obtained, *P. gingivalis* total cell lysates (5 µg/ml of protein) were run over the immobilized liposomes. A negative control test was also performed by injecting protein onto a blank sensor chip to check for non-specific binding. After 10 min, the lipid nanoparticle binding protein was eluted using NaOH (200 µM). The eluted protein was subjected to LC-MS proteomic analysis for identification of GELN lipid nanoparticles and PA binding proteins. The sensograms were analyzed using TraceDrawer kinetic analysis software.

Lipid nanoparticle pull down assay

GELN lipid interactions with HBP35 were further confirmed using a lipid nanoparticle pull down assay. GELN lipid nanoparticles were fluorescently labelled with PKH26 in vesicle buffer (50 mM Tris-HCI (pH 7.5) and 150 mM NaCl). The labelled nanoparticles were incubated with biotin-HBP35 peptide (100 µM) for 2 h at 4°C with rotation in vesicle buffer. The lipid-protein complex was pulled down by streptavidin magnetic beads. The complex was washed thoroughly and the presence of lipid nanoparticles in the complex confirmed by flow cytometer. The number of lipid nanoparticles in the complex was determined using a Nanosight 300 and the quantity of lipid nanoparticles was determined by fluorescence intensity measured in a fluorescence spectrophotometer (Molecular Device) with excitation and emission wavelengths of 551 and 567 nm, respectively.

Proteomic sample preparation

GELN binding proteins of *P. gingivalis* were identified by LC-MS proteomics. Briefly, GELNs were labelled with biotin using an EZ-Link[™] Sulfo-NHS-Biotinylation Kit according to the manufacturer's protocol (Thermo Fisher Scientific, San Jose, CA, USA). Biotin labelled GELNs were incubated with *P. gingivalis* for 1 h at room temperature with rotation. Biotin was pulled down by streptavidin magnetic beads (Thermo Fisher Scientific) and the beads were washed thoroughly with PBS to remove unbound protein. The protein bound magnetic beads were suspended in lysis buffer (2% SDS, 100 mM DTT, 20 mM Tris-HCl pH 8.8) at 95°C for 20 min. Protein was collected from supernatants after centrifugation and the concentration estimated using a Protein Assay Kit (Bio-Rad, Hercules, CA, USA). Protein aliguots (50 mg) were diluted into 4% SDS / 0.1M Tris-HCl

pH8.5 and 1M DTT and were processed according to the filter-aided sample preparation (FASP) method as described (Teng et al., 2017). The digested, ultra-filtered samples were trap-cleaned with C18 PROTO[™], 300Å Ultra MicroSpin columns, lyophilized by vacuum centrifugation, redissolved into 16 µl of 2% v/v acetonitrile, and concentrations estimated based on absorption at 205 nm using a Nanodrop 2000 (Thermo Fisher Scientific).

Liquid chromatography-mass spectrometry (LC-MS) data analysis

Proteome Discoverer v1.4.1.114 (Thermo Fisher Scientific,) was used to analyze the data collected by the mass spectrometer. The database used in Mascot v2.5.1 and SequestHT searches was the 2/17/2017 version of the *P. gingivalis* proteome from UniprotKB (Proteome ID UP000236566). Scaffold was used to calculate the false discovery rate using the Peptide and Protein Prophet algorithms. Proteins were grouped to satisfy the parsimony principle. The proteins were clustered based on differential expression and heat maps representing differentially regulated proteins by GELNs were generated using software R.

Monotypic biofilm assay.

P. gingivalis biofilm was quantified using a microtiter plate assay. Saliva was collected in a sterile centrifuge tube on ice from healthy donors. DTT was added to a 2.5 mM final concentration, then centrifuged at 5,000 g for 10 min at 4°C. The clarified saliva supernatant was transferred, and 3 volumes of sterile distilled water added, and the 25% saliva was filtered through a 0.22 μ m pore size filter. 96-well polystyrene cultured plate (Corning Inc., Corning, NY) was pre-coated with 25% saliva and incubated at 37°C for overnight. *P. gingivalis* strains were grown to mid-log phase (OD₆₀₀ = 0.8) and aliquots (200 μ I) of samples were anaerobically incubated in the 25% saliva-coated wells with and without ginger exosomes like nano particles (4.0 × 10⁸ particles/mI) for 24 h. A sample (100 μ I) of each cell culture was measured by optical density at 600 nm to assess planktonic bacterial growth. After discarding the planktonic bacterial cells in the wells, bacterial cells bound to the wells were gently washed three times with PBS, air dried, and then stained with 200 μ I of 1% (w/v) crystal violet for 15 min. After washing twice with PBS and then with sterile

water to remove excess dye, the cell-bound dye was eluted using 200 µl of 95% ethanol. The absorbance was measured at 540 nm using 96-well plate reader (Molecular device).

Animal infection

Animal infection with *P. gingivalis* was carried out as described previously (Kuboniwa et al., 2017). Female 10-12-week-old C57BL/6 mice were obtained from Jackson Laboratories, maintained in groups and housed in micro isolator cages. Mice were a fed standard diet with water ad libitum and kept on a 12 h light and dark cycle. Animal care was performed following the Institute for Laboratory Animal Research (ILAR) guidelines and all animal experiments were done in accordance with protocols approved by the University of Louisville Institutional Animal Care and Use Committee (Louisville, KY). Before oral inoculation, mice were initially treated with sulfamethoxazole (800 µg/ml) and trimethoprim (400 µg/ml) ad libitum in water for ten days at twoday intervals. The mice were divided into four groups (five animals per group): control (uninfected) provided regular water, P. gingivalis infected provided regular water, P. gingivalis infected and provided GELNs containing water, control (uninfected) provided GELNs in water. P. gingivalis was suspended in 1 ml of 2% carboxymethylcellulose (CMC) and orally inoculated into mice at twoday intervals over a ten-day period. Mice were given GELN (4.0 x 10⁸ particles /ml) ad libitum in drinking water. To enumerate the colonization of *P. gingivalis*, oral samples were collected along the gingiva of the upper molars using a sterile polyester-tipped applicator at one, two and three weeks after the final bacterial infection. Total genomic DNA was isolated from these samples using a QIAamp DNA isolation kit (Qiagen) and amplified by qPCR with primers to 16s rRNA Forward 5'-AGGAACTCCGATTGCGAAGG-3' and reverse 5'-TCGTTTACTGCGTGGACTACC-3. Numbers of *P. gingivalis* were calculated using a standard curve derived from known amounts of P. gingivalis. Forty-two days after the last infection, mice were euthanized and skulls were subjected to µCT scan (SKYSCAN 1174, Bruker). Bone loss was assessed by measuring the distance between the alveolar bone crest and the cementoenamel junction at 14 predetermined points on the maxillary molars. For bone volume analysis, a region of interest (ROI) was drawn manually on the axial planes, between the medial root surface of the first molar and distal root surface of the third molar. A three-dimensional image was generated from the ROI. All root volumes were excluded from the ROI to calculate the total volume (TV). The bone volume fraction (BV/TV) was calculated for each sample.

Histology and immunofluorescence staining

Oral tissue specimens were decalcified with 0.5 M EDTA (pH 7.4) for 3-4 weeks and processed for paraffin embedding. Tissue samples were cut at 5 µm thickness and stained with hematoxylin. For immunofluorescence analysis, tissue sections were subjected to antigen retrieval by boiling the slides in antigen unmasking solution (Vector laboratories) for 10 min according to the manufacturer's instructions. Sections were blocked with 5% BSA in PBS for 1 h at room temperature and incubated with the primary antibodies (1: 100) anti-rabbit-CD3, anti-CD45 or F4/80 at 4°C overnight. After extensive washing with PBS, tissue sections were incubated with Alexa 568-conjugated IgG and Alexa 488-conjugated IgG (1: 5000 dilution) for 1 h at room temperature. Nuclear staining was performed with DAPI for 15 min and images were captured by confocal microscopy (Nikon). To determine the number of osteoblasts, the sections were incubated with anti-rabbit-RUNX2 antibody (1:100) overnight at 4°C. HRP-conjugated anti-rabbit (1:5000) was used as secondary antibody and DAB chromogen was used as substrate. The slides were counterstained with hematoxylin. Similarly, the number of osteoclasts was determined using sections stained with TRAP (Sigma) according to manufacturer's protocol. The slides were counterstained with hematoxylin. The number of osteoblasts and multinucleated osteoclasts was counted manually.

Statistical analysis

Values are shown as mean \pm SD for three independent experiments. Statistical analysis was performed with GraphPad Prism 6. Comparison of multiple experimental groups was performed using the one-way Analysis of Variance test. A *t*-test was used to compare the means of two groups. *P* values of < 0.05 were considered to be statistically significant. Appropriate sample sizes were calculated to ensure statistical significance could be determined.

SUPPLEMENTAL REFERENCES:

33

Baginski, E.S., Epstein, E., and Zak, B. (1972). The measurement of serum total phospholipids. Annals of clinical laboratory science *2*, 255-267.

Bender, R.A. (2012). Regulation of the histidine utilization (hut) system in bacteria. Microbiology and molecular biology reviews : MMBR *76*, 565-584.

Christgen, S.L., and Becker, D.F. (2018). Role of Proline in Pathogen and Host Interactions. Antioxidants & redox signaling.

Conner, R.M., and Hansen, P.A. (1967). Effects of valine, leucine, and isoleucine on the growth of Bacillus thuringiensis and related bacteria. Journal of invertebrate pathology *9*, 12-18. Cozzone, A.J. (2005). Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. Journal of molecular microbiology and biotechnology *9*, 198-213.

Cusumano, Z.T., and Caparon, M.G. (2015). Citrulline protects Streptococcus pyogenes from acid stress using the arginine deiminase pathway and the F1Fo-ATPase. Journal of bacteriology *197*, 1288-1296.

Delavier-Klutchko, C., and Flavin, M. (1965). Role of a Bacterial Cystathionine-Beta-Cleavage Enzyme in Disulfide Decomposition. Biochimica et biophysica acta *99*, 375-377.

Deng, X., Chen, K., Luo, G.Z., Weng, X., Ji, Q., Zhou, T., and He, C. (2015). Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic acids research *43*, 6557-6567. El Qaidi, S., Yang, J., Zhang, J.R., Metzger, D.W., and Bai, G. (2013). The vitamin B(6) biosynthesis pathway in Streptococcus pneumoniae is controlled by pyridoxal 5'-phosphate and the transcription factor PdxR and has an impact on ear infection. Journal of bacteriology *195*, 2187-2196.

Ferla, M.P., and Patrick, W.M. (2014). Bacterial methionine biosynthesis. Microbiology *160*, 1571-1584.

Fuchs, G., Boll, M., and Heider, J. (2011). Microbial degradation of aromatic compounds - from one strategy to four. Nature reviews Microbiology *9*, 803-816.

Gillner, D.M., Becker, D.P., and Holz, R.C. (2013). Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry *18*, 155-163. Hammes, W., Schleifer, K.H., and Kandler, O. (1973). Mode of action of glycine on the biosynthesis of peptidoglycan. Journal of bacteriology *116*, 1029-1053.

Hart, G.W. (1982). The role of asparagine-linked oligosaccharides in cellular recognition by thymic lymphocytes. Effects of tunicamycin on the mixed lymphocyte reaction. The Journal of biological chemistry 257, 151-158.

Kolodkin-Gal, I., Romero, D., Cao, S., Clardy, J., Kolter, R., and Losick, R. (2010). D-amino acids trigger biofilm disassembly. Science *328*, 627-629.

Kuboniwa, M., Houser, J.R., Hendrickson, E.L., Wang, Q., Alghamdi, S.A., Sakanaka, A., Miller, D.P., Hutcherson, J.A., Wang, T., Beck, D.A.C., *et al.* (2017). Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nature microbiology *2*, 1493-1499.

Kutanovas, S., Stankeviciute, J., Urbelis, G., Tauraite, D., Rutkiene, R., and Meskys, R. (2013). Identification and characterization of a tetramethylpyrazine catabolic pathway in Rhodococcus jostii TMP1. Applied and environmental microbiology *79*, 3649-3657.

Liu, P., Zhang, H., Lv, M., Hu, M., Li, Z., Gao, C., Xu, P., and Ma, C. (2014). Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase. Scientific reports *4*, 5657.

Luo, S., and Levine, R.L. (2009). Methionine in proteins defends against oxidative stress. FASEB journal : official publication of the Federation of American Societies for Experimental Biology *23*, 464-472.

Meadows, J.A., and Wargo, M.J. (2015). Carnitine in bacterial physiology and metabolism. Microbiology *161*, 1161-1174.

Melander, R.J., Minvielle, M.J., and Melander, C. (2014). Controlling bacterial behavior with indole-containing natural products and derivatives. Tetrahedron *70*, 6363-6372.

Moura, A.P., Ribeiro, C.A., Zanatta, A., Busanello, E.N., Tonin, A.M., and Wajner, M. (2012). 3-Methylcrotonylglycine disrupts mitochondrial energy homeostasis and inhibits synaptic Na(+),K (+)-ATPase activity in brain of young rats. Cellular and molecular neurobiology *32*, 297-307. Muto, A., and Osawa, S. (1987). The guanine and cytosine content of genomic DNA and bacterial evolution. Proceedings of the National Academy of Sciences of the United States of America *84*, 166-169.

Rao, D.R., and Rodwell, V.W. (1962). Metabolism of pipecolic acid in a Pseudomonas species. I. alpha-Aminoadipic and glutamic acids. The Journal of biological chemistry 237, 2232-2238. Simionato, M.R., Tucker, C.M., Kuboniwa, M., Lamont, G., Demuth, D.R., Tribble, G.D., and Lamont, R.J. (2006). Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infection and immunity *74*, 6419-6428.

Teng, Y., Ren, Y., Hu, X., Mu, J., Samykutty, A., Zhuang, X., Deng, Z., Kumar, A., Zhang, L., Merchant, M.L., *et al.* (2017). MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nature communications *8*, 14448.

Viala, J.P., Meresse, S., Pocachard, B., Guilhon, A.A., Aussel, L., and Barras, F. (2011). Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella. PloS one *6*, e22397.

Wargo, M.J. (2013). Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Applied and environmental microbiology *79*, 2112-2120. Xiong, L., Teng, J.L., Botelho, M.G., Lo, R.C., Lau, S.K., and Woo, P.C. (2016). Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy. International journal of molecular sciences *17*, 363.