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Background: Advanced imaging techniques such as diffusion and functional MRI can

be used to identify pathology-related changes to the brain’s structural and functional

connectivity (SC and FC) networks and mapping of these changes to disability and

compensatory mechanisms in people with multiple sclerosis (pwMS). No study to date

performed a comparison study to investigate which connectivity type (SC, static or

dynamic FC) better distinguishes healthy controls (HC) from pwMS and/or classifies

pwMS by disability status.

Aims: We aim to compare the performance of SC, static FC, and dynamic FC (dFC) in

classifying (a) HC vs. pwMS and (b) pwMS who have no disability vs. with disability. The

secondary objective of the study is to identify which brain regions’ connectomemeasures

contribute most to the classification tasks.

Materials and Methods: One hundred pwMS and 19 HC were included. Expanded

Disability Status Scale (EDSS) was used to assess disability, where 67 pwMS who had

EDSS<2 were considered as not having disability. Diffusion and resting-state functional

MRI were used to compute the SC and FCmatrices, respectively. Logistic regression with

ridge regularization was performed, where the models included demographics/clinical

information and either pairwise entries or regional summaries from one of the following

matrices: SC, FC, and dFC. The performance of the models was assessed using the

area under the receiver operating curve (AUC).

Results: In classifying HC vs. pwMS, the regional SC model significantly outperformed

others with a median AUC of 0.89 (p <0.05). In classifying pwMS by disability status,

the regional dFC and dFC metrics models significantly outperformed others with a

median AUC of 0.65 and 0.61 (p < 0.05). Regional SC in the dorsal attention,

subcortical and cerebellar networks were the most important variables in the HC vs.

pwMS classification task. Increased regional dFC in dorsal attention and visual networks

and decreased regional dFC in frontoparietal and cerebellar networks in certain dFC

states was associated with being in the group of pwMS with evidence of disability.
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Discussion: Damage to SCs is a hallmark of MS and, unsurprisingly, the most accurate

connectomic measure in classifying patients and controls. On the other hand, dynamic

FC metrics were most important for determining disability level in pwMS, and could

represent functional compensation in response to white matter pathology in pwMS.

Keywords: multiple sclerosis, structural connectivity, functional connectivity, machine learning, predictive

modeling

1. INTRODUCTION

Multiple Sclerosis (MS) is a chronic disease characterized by
inflammatory and demyelinating lesions within the central
nervous system (Weinshenker et al., 1991). One key observation
is that the disease burden in the brain, as measured with
conventional imaging, is not always proportional to an
individual’s disability. Individuals can have identical lesion
volume and very different levels of disability (Barkhof, 2002),
making prognostication in this disease challenging. Advanced
neuroimaging techniques may enable us to better understand the
neuropathological mechanisms of MS, how they cause disability
in MS and how the brain may compensate for this pathology.
Brain connectivity network analysis, or connectomics, provides
a promising tool with which to map the effect of MS-related
pathology and to potentially capture reorganization mechanisms
in response to pathology. Inflammation, demyelination, and
axonal loss in people with MS (pwMS) disrupts the brain’s
structural connectome (SC), which may contribute to some of
the changes observed in the brain’s regional activation patterns,
or functional connectome (FC) (Rocca et al., 2010, 2012, 2018;
Roosendaal et al., 2010; Tona et al., 2014; Schoonheim et al.,
2015).

Previous studies have used SC and FC separately or together
to identify differences between pwMS and healthy controls (HC),
to compare different clinical categories of MS, and to classify
pwMS by disability or cognitive impairment level (Richiardi

et al., 2012; Kocevar et al., 2016; Zhong et al., 2017; Saccà et al.,
2018; Zurita et al., 2018; Has Silemek et al., 2020). It has been
shown that alterations in the SC and/or FC in particular networks

are associated with motor and cognitive impairment in pwMS
(Faivre et al., 2012; Rocca et al., 2012; Basile et al., 2014; Filippi
et al., 2015; Kuceyeski et al., 2015, 2018). SC damage may cause
an upregulation of FC in specific networks as a compensatory

mechanism in the early stages of MS, which then wanes in the
later stages of the disease. In particular, the Expanded Disability
Status Scale (EDSS) threshold of 3 was previously identified
as the cut-off for functional reorganization and adaptation in
MS (Hawellek et al., 2011; Faivre et al., 2012; Tommasin et al.,
2018). Two individuals with the same pattern of SC damage
may have different disability levels depending on where they are
in the trajectory of compensatory FC, thus, FC may be more
informative of disability than SC in this case.

An individual’s FC is usually obtained by correlating regional
Blood Oxygenation Level Dependent (BOLD) signals acquired
over the entire functional MRI (fMRI) scan; however, this “static”
FC derivation does not consider the fluctuations in the brain

network topology that can occur over time (Biswal et al., 1995;
Damaraju et al., 2014). Dynamic FC (dFC) approaches allow
assessment of the varying topology of FC over time by using
sliding windows to assess dynamic FCs (Allen et al., 2014). There
is increased interest in using dFC to investigate pathological
mechanisms in psychiatric disorders, and stroke (Damaraju et al.,
2014; Rashid et al., 2016; Sambataro et al., 2017; Mennigen et al.,
2018; Bonkhoff et al., 2020, 2021). In MS, recent studies have
used dFC to (1) compare clinically isolated syndrome (CIS)
patients to HC (Rocca et al., 2019), (2) analyze relationships with
information processing speed in relapsing-remitting (RR) pwMS
(van Geest et al., 2018), and (3) classify cognitively impaired vs.
preserved pwMS (d’Ambrosio et al., 2019; Eijlers et al., 2019).
However, no study to date has performed a rigorous analysis of
the relative contributions of multi-modal imaging data including
SC, static FC, and dynamic FC in classifying HC vs. pwMS
and/or pwMS by disability status. Understanding the relative
contributions of the various modalities may provide insight into
disability-relevant disease or compensatory mechanisms.

Therefore, the principal aim of the present study was to
compare the performance of either pairwise or regional SC,
FC, and dFC metrics in classifying (1) HC vs. pwMS and (2)
pwMS who had no disability vs. those who had evidence of
disability. The secondary aim was to identify the most important
pairwise and regional connections as well as dFC metrics for the
classification tasks. Diffusion and resting-state functional MRI
were used to compute the SC and FC matrices, respectively. We
hypothesized that models including SC could best distinguish
HC from pwMS, as white matter lesions impacting SC networks
are a hallmark of the disease. Furthermore, we hypothesized
that models containing FC and/or dFC would best distinguish
disability levels in pwMS as this modality likely is sensitive
to functional compensation mechanisms that may underlie
disability in MS. Overall, our goal is to better understand
mechanisms of pathology and resilience in MS, knowledge which
could be used to improve the accuracy of prognoses and even
develop novel therapies to reduce disability.

2. MATERIALS AND METHODS

2.1. Subjects
One hundred pwMS ( median age: 45.5 [36.7, 56.0], 66% females)
with a diagnosis of Clinically Isolated Syndrome (CIS)/MS based
on the 2010 McDonald criteria (Polman et al., 2011) [CIS = 7,
relapsing-remitting MS (RRMS) = 88, primary progressive MS
(PPMS) and secondary progressive MS (SPMS) = 5] and 19 HC
(median age: 45 [35, 49], 55% females) were included in our
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study. Seven people with CIS were included in the group of
pwMS as they are likely an early form of MS, they were all in
the no disability group (EDSS < 2). MRIs and demographic data
were collected (age, sex, and race for both HC and pwMS, clinical
phenotype, and disease duration for pwMS). All subjects with
SC and FC networks available were included in our study and a
power analysis was not performed prior to the statistical analysis.
Participants were excluded if they had contraindications to MRI
or had ever been diagnosed or were currently on medication for
a neurological or psychological disorder (other than a diagnosis
of or medication for treatment of MS for the pwMS group, of
course). The spinal cord lesion category was estimated from the
patient’s clinical radiology report, with 0 indicating those with
no spinal lesions, 1 indicating those with one spinal lesion or 2
indicating those with more than one spinal lesion. The EDSS
is the most frequently used disability scale in MS and captures
mostly themotor functioning. EDSS ranges from 0 to 10 with 0.5-
unit increments, where 0 indicates no disability and the increase
in EDSS indicates higher level of disability. EDSS was used to
quantify disability in our study, where an EDSS of 2 was used
as a threshold to categorize disablity status: no disability (EDSS
< 2) vs. evidence of disability (EDSS ≥ 2). This group division
was based on EDSS values of 0–1.5 representing some abnormal
signs in neurological examination but no functional impairment
is appreciated. This was a cross-sectional study, and the MRIs
and demographics/clinical data were collected the same year.
All studies were approved by an ethical standards committee
on human experimentation and written informed consent was
obtained from all patients.

2.2. Image Acquisition, Processing, and
Connectome Extraction
MRI data were acquired on a 3T Siemens Skyra scanner (Siemens,
Erlangen, Germany) with a 20-channel head-neck coil and a 32-
channel spine-array coil. Anatomical MRI (T1/T2/T2-FLAIR, 1
mm3 iso-voxel), resting-state fMRI (6 min, TR = 2.3 s, 3.75 ×

3.75× 4 mm voxels) and diffusion MRI (55 directions HARDI, b
= 800, 1.8 × 1.8 × 2.5 mm voxels) acquisitions were performed.
Sagittal STIR images were acquired for identification of spinal
lesions (TR = 3.5 s, TI = 220 ms, TE = 45 ms, in-plane resolution
0.43 mm, FOV = 22 mm, slice thickness 3 mm). Multi-echo
2D GRE fieldmaps were collected for use with both fMRI and
diffusionMRI (0.75× 0.75× 2mm voxels, TE1 = 6.69ms,△TE =
4.06 ms, number of TEs = 6). The white and gray matter surfaces
were checked for each subject on Freesurfer and hand-edited with
control points and reconstruction editing if necessary.

White matter (WM) and gray matter (GM) were segmented
and GM further parcellated into 86 regions of interest (68 cortical
and 18 subcortex/cerebellum) using FreeSurfer (Fischl and Dale,
2000). As described elsewhere (Kuceyeski et al., 2016), fMRI
preprocessing included simultaneous nuisance regression and
removal of WM and cerebrospinal fluid (CSF) effects (Hallquist
et al., 2013), followed by band-pass filtering (0.008–0.09 Hz)
using the CONN v18b toolbox (Whitfield-Gabrieli and Nieto-
Castanon, 2012) and SPM12 in Matlab. Nuisance regressors
included 24 motion parameters (6 rotation and translation,

temporal derivatives, and squared version of each) and the top
5 eigenvectors from eroded masks of both WM and CSF. The
mean fMRI signal over all voxels in a region was calculated and
the mean regional time series correlated (Pearson’s correlation)
between every pair of regions to obtain pairwise FC matrices.
Regional FC node strengths were calculated by taking the sum of
the columns in the FCmatrix after removing the negative entries.

Diffusion MRI was interpolated to isotropic 1.8 mm voxels,
and then corrected for eddy current, motion, and EPI-distortion
with the eddy command from FSL 5.0.11 (Andersson and
Sotiropoulos, 2016) using the outlier detection and replacement
option (Andersson et al., 2016). MRtrix3Tissue (https://3Tissue.
github.io), a fork of MRtrix3 (Tournier et al., 2019) was
used to estimate a voxel-wise single-shell, 3-tissue constrained
spherical deconvolution model (SS3T-CSD) and then compute
whole-brain tractography for each subject. The SC matrix was
constructed by taking the sum of the SIFT2weights of streamlines
connecting pairs of regions and then dividing by the sum of the
two regions’ volumes. In addition to the pairwise SC measures,
regional SC node strength was quantified by taking the sum of
each of the columns in the SC matrix.

2.3. Dynamic FC Analysis
Dynamic FC matrices were calculated using a tapered, sliding
window approach in the GIFT toolbox (http://mialab.mrn.org/
software/gift) (Allen et al., 2014; Damaraju et al., 2014). The
BOLD time series that were extracted from 86 regions of
FreeSurfer atlas (same atlas used for static FC and SC analysis)
were used as an input to the GIFT toolbox. As suggested by
Allen et al. (2014) and previous studies (Bonkhoff et al., 2020,
2021), dFC between two regional time courses was computed
using a sliding window approach with a window size of 22 TR
(50.6 s) in steps of 1 TR (2.3 s). A rectangular window of 22 time
points convolved with a Gaussian of 3 TR (6.9 s) was used for
tapering along the edges, resulting in 153 tapered time windows
per subject. Once the dFC matrices were calculated, k-means
clustering was applied to all dFC matrices to identify clusters
of reoccurring dFC states. The elbow criterion, i.e. the ratio of
within-cluster to between-cluster Manhattan (L1) distances, was
used to identify the optimal number of clusters. The following
metrics were extracted from the dFC analysis: (1) mean dwell
time in each state (= how long the individual remains in a
state once they transition to it), (2) transition probability from
one dFC state to another between two consecutive time points,
and (3) the number of overall state transitions in the scan. We
extracted individuals’ cluster centroids for each of the dFC states
as the mean dFC of each dFC assigned to a particular cluster.
Further, we took the node strength of the individuals’ cluster
centroids as a “regional dFC” measure (after removing negative
entries in the dFC). Network-level interpretations were enabled
by assigning each of the 86 gray matter regions to one of the
7 Yeo functional networks, plus a subcortical and a cerebellum
network (Yeo et al., 2011).

2.4. Mass Univariate Analysis
First, demographics and clinical variables were tested for
differences between the groups [(1) HC vs. pwMS and (2) pwMS
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who had no disability (EDSS < 2) vs. evidence of disability
(EDSS ≥ 2)] using Chi-squared test for qualitative variables,
Wilcoxon rank-sum test for quantitative variables. As a post-hoc
analysis, ANOVA was applied to compare the age, EDSS, and
phenotypes between twoMS disability groups A t-test was used to
compare pairwise entries in static FC and dFC summary metrics,
while Wilcoxon rank-sum test was performed to compare SC
values between groups. Only pairwise connections in the SC that
were non-zero in more than half of the controls were tested
for differences between groups to minimize the effect of false
positives in the tractography results. Differences were considered
significant when p < 0.05 after Benjamini-Hochberg (BH)
correction for multiple comparisons (Benjamini and Hochberg,
1995). All statistical analyses and graphs were performed using
R (www.r-project.org), version 3.4.4 and Matlab (https://www.
mathworks.com/) version R2020a.

2.5. Classification Analysis
Logistic regression with ridge regularization was used to classify
(1) HC vs. pwMS and (2) pwMS who had no disability (EDSS
< 2) vs. evidence of disability (EDSS ≥ 2). The classification
models used demographics/clinical information (sex, age, race,
disease duration, clinical phenotype, and spinal lesion burden
category) and one of the pairwise or regional imaging data: SC,
FC, dFC. For the HC vs. pwMS classification, only sex, age,
and race were used as demographics/clinical variables. Figure 1
shows the overall workflow of the study including the input
datasets (SC, FC, and dFC in addition to the demographics and
clinical variables) that were used in the various models.

The models were trained with outer and inner loops of k-
fold cross-validation (k = 5) to optimize the hyperparameters
and test model performance. The folds for both inner and outer
loops were stratified to ensure that each fold contained the
same proportion of subjects in the two classes as the original
dataset. The inner loop (repeated over 5 different partitions of the
training dataset only) optimized the set of hyperparameters that
maximized validation AUC. A model was then fitted using the
entire training dataset and those optimal hyperparameters, which
was then assessed on the hold-out test set from the outer loop.
The outer loop was repeated for 100 different random partitions
of the data (see Supplementary Figure 5). The median of AUC
(over all 5-folds × 100 iterations = 500 test sets) were calculated
to assess the performance of the models. In addition to the
AUC results; sensitivity, specificity, balanced accuracy (average
of sensitivity and specificity), and F1 scores ( TP

TP+1/2×(FP + FN)
)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives are
also provided to compare the results of the current study with
previous findings. The classification performance of different
models were compared using a permutation test (David, 2008).
Differences were considered significant when p < 0.05 after BH
correction for multiple comparisons (Benjamini and Hochberg,
1995).

When the data contains class imbalance, models may tend to
favor the majority class. Due to the class imbalance in our data
(19 HC vs. 100 pwMS and 67 pwMS with no disability vs. 33
pwMS with evidence of disability), the over-sampling approach

Synthetic Majority Over-sampling Technique (SMOTE) (Chawla
et al., 2002) was used to obtain a balanced training dataset during
the cross-validation. SMOTE compensates for imbalanced
classes by creating synthetic examples using nearest neighbor
information and has been shown to be among the most robust
and accurate methods with which to control for imbalanced
data (Santos et al., 2018).

We considered feature weights in the ridge classification
method to be the average parameter coefficient over all 500
models (100 partitions of the data × 5-folds). Feature weights
of the pairwise connections were represented using a circle
plot and summarized at a network level, while feature weights
of the regional connections were illustrated via glass brains
and summarized at a network level via circle plots. Important
connectomic features were identified as those that had both large
group differences (via the mass univariate statistical tests) and
large feature weights from the ridge classifier (Tian et al., 2021).

3. RESULTS

3.1. Patient Characteristics
Table 1 shows the subjects’ demographic and clinical information
including sex, age, disease duration, EDSS, and spinal cord lesion
number. Age and sex were not significantly different between
HC and pwMS (corrected p > 0.05 for both). Unsurprisingly,
pwMS who had no disability were younger (corrected p < 0.05)
and had a trend toward shorter disease duration (corrected p =
0.06) compared to pwMS who had evidence of disability. The
phenotype and disability groups were not independent (corrected
p < 0.05), where the pwMS who had CIS phenotype were
included in the no disability group and those who had progressive
disease were included in the evidence of disability group. The
F-values obtained with the ANOVA for the age was 16.65 (p <

9.17e-05), for the EDSS 143.3 (p< 2e-16), and for the phenotypes
7.67 (p < 0.0008). However, the two disability groups did not
have a significant difference in sex ratio, number of spinal cord
lesions, and brain lesion volume (corrected p > 0.05 for all).

3.2. Dynamic FC Results
Four clusters in the dynamic FC analysis was identified as
optimal (see Supplementary Figure 1). Figure 2 illustrates the
4 cluster centroids, or dynamic brain states (top panel), which
are also summarized in the bottom panel by averaging the
pairwise dFC values over Yeo network assignments separately
for both the positive and negative values. All states show strong
positive connections between ventral attention and somatomotor
and between dorsal attention and visual networks, while the
negative values vary more widely across the states. State 1
has more negative connections from ventral attention to visual
and limbic networks. State 2 shows overall smaller magnitude
negative connections and larger magnitude positive connections
compared to other states. State 3 has more negative connections
from fronto-parietal to somatomotor networks. State 4 differs
from other states with larger magnitude negative connections
from dorsal attention to default mode and ventral attention
networks. Figure 2 also depicts the mean dwell time and total
number of state transitions for HC, pwMS, pwMS who had no
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FIGURE 1 | The workflow of the study. Structural connectomes (SC), static functional connectomes (FC), and dynamic functional connectome (dFC) metrics were

used as input, in addition to the demographics/clinical variables, to the classification model (logistic regression with ridge regularization technique). The classification

performance of each model was assessed using the area under the ROC curve (AUC).

TABLE 1 | Subject demographics and clinical information.

Variable HC (n = 19) pwMS (n = 100) p-value pwMS: no disability pwMS: evidence of p-value

(n = 67) disability (n = 33)

Age 45 [35.55, 49.50] 45.50 [36.75, 56] 0.84 40 [35, 50] 56 [46, 58] 0.0001

Female (%) 11 (55) 66 (66) 0.49 46 (69%) 20 (61%) 0.56

Disease duration - 11 [7,16] - 10 [7,15] 13 [9,17] 0.06

EDSS - 1 [0, 2] - 0 [0, 1] 2 [2, 3] <2.2e-16

Number of spinal cord lesions - 1 [0,3] - 1 [0,3] 2 [0,3] 0.46

Phenotype - 7 CIS, 88 RRMS, 5 Progressive MS - 7 CIS, 60 RRMS 28 RRMS, 5 Progressive MS < 2.2e-16

Lesion volume (mm3 ) - 2,065 [717, 4,779] - 1,995 [734, 4,200] 2,482 [453, 7,788] 0.49

Values are presented as median [1st, 3rd quantile] for the continuous variables as the number/percent for sex and phenotype. The HC vs. pwMS as well as two disability groups of

pwMS were tested for differences; p-values shown are corrected for multiple comparisons.

disability, and pwMS who had evidence of disability. A Student’s
t-test was used to compare the dFC metrics between groups.
The pwMS who had disability had significantly higher dwell time
compared to those without disability in State 1 (p = 0.05). While

there was no significant difference in mean dwell time between
groups in other states or in number of state transitions (p >0.05
for both comparisons), the pwMS with disability tend to have
greater number of state transitions compared to HC and pwMS
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FIGURE 2 | The recurring dynamic FC brain states obtained with k-means clustering and the dFC metrics (dwell time and number of transitions). (A) (Top row) Heat

maps show the dynamic functional connectivity centroids for the four states, while [bottom two rows of (A)] the circle plots summarize the dFC centroids at a network

level with the positive and negative dFC entries averaged separately. The color bar of the circle plot is not symmetrical, as to better visualize the network-level values.

(B) The dFC metrics (mean dwell time and number of transitions) obtained for HC, pwMS, pwMS who had no disability, and pwMS who had evidence of disability.

DAN, Dorsal Attention; VAN, Ventral Attention; LIM, Limbic; FP, Fronto-Parietal; DMN, Default-Mode Network; SUB, Subcortex; CER, Cerebellum; VIS, Visual; SOM,

Somatomotor.

who had no disability. The transition probability between states
are presented in Supplementary Figure 2.

3.3. Mass Univariate Group Comparison of
Connectivity Measures
There were no significant differences in pairwise or regional
FC and dFC between HC vs. pwMS, however, 24 pairwise SCs
and 2 regions’ SC node strengths (left and right accumbens)
were significantly different between HC vs. pwMS after multiple
comparison correction, see Supplementary Figure 3. There were
no significant differences in pairwise and regional SC or FC
between pwMS who had no disability vs. had evidence of
disability (corrected p > 0.05 for all comparisons). However,
the regional dFC in the right superior parietal was greater in
pwMS who had evidence of disability compared to those without
disability (corrected p = 0.02; see Supplementary Figure 4).

PwMS with evidence of disability spent significantly more time
in dFC brain state 1 compared to those pwMS with no disability
(corrected p = 0.05), transition probability from state 4 to
3 trended toward greater values in HC compared to pwMS
(uncorrected p = 0.03), and transition probability from state 3
to 2 trended toward greater values in pwMS who had evidence
of disability compared to those with no disability (uncorrected p
= 0.01). There was no significant difference or trend in number
of transitions between HC vs. MS as well as between subgroups
of pwMS.

3.4. Classification Results
Figure 3 shows the distribution of AUC values (over the 500
hold-out test sets) for the models based on pairwise or regional
SC, FC, and dFC separately as well as the model including
dFC metrics for both classification tasks (HC vs. pwMS and
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FIGURE 3 | Classification analysis results. AUC values obtained from the models classifying (A) HC vs. pwMS and (B) pwMS according to their disability level. The

first three violin plots show the AUC results from the models including pairwise connectivity information. The number of the imaging variables was 3,655 for pairwise

SC and FC, while 14,620 (= 3655 × 4 dFC states) variables included in the pairwise dFC model. The next set of three violin plots show the AUC values from the

regional models where regional SC and FC models each included 86 imaging variables and the regional dFC model included 344 (= 86 × 4 dFC states) imaging

variables. The last model that included dFC metrics contained 21 imaging variables. The plots show the median (white dot), 1st and 3rd quartiles (black bar) over the

500 hold-out test sets. Asterisks indicate significant differences (p <0.05, BH corrected) in the distribution of AUC values between different models.

pwMS disability subgroups). Unsurprisingly, the AUC results
were generally higher for HC vs. pwMS classification than the
AUCs obtained for the pwMS subgroup classification. For the
HC vs. pwMS classification, the regional SC model performed
significantly better than all other models, with a median AUC
of 0.89. The regional models better classified HC and pwMS
than pairwise models. The regional dFC model (node strength of
the individual dFC cluster centroids) showed better classification
accuracy than pairwise FC and pairwise dFC cluster centroids.
For the classification of pwMS according to their disability level,
the median AUC values ranged between 0.59 and 0.65, where the
models that included regional dFC and dFC metrics performed
significantly better than other models.

Supplementary Figure 6 shows other performance metrics
(sensitivity, specificity, balanced accuracy, and F1) of all the
models in classifying HC vs. pwMS and pwMS by disability
level, respectively. Similar to AUC results, pairwise and regional
SC models have better performance than other models in
classifying HC vs. MS, while regional dFC and dFC metrics have
better performance in distinguishing between pwMS having no
disability vs. evidence of disability.

3.5. Feature Weights
Figure 4 depicts the scaled feature weights (relative to the
maximum magnitude feature weight) for the pairwise and
regional SC models that had the highest AUCs for the HC vs.
pwMS classification task. Weaker SC between visual and dorsal
attention/cerebellar networks and between somatomotor and
dorsal attention networks, and stronger SC between the dorsal
attention and subcortical networks were associated with being
in the group of pwMS. This largely agreed with the regional
SC feature weights showing weaker SC in regions of the dorsal
attention, subcortical and cerebellar networks were associated
with being in the group of pwMS.

The regional dFC (node strength) model that had the best
performance in classifying the pwMS into subgroups showed
that increased dFC in the dorsal attention and visual networks
of state 2, increased dFC in the default mode network of state
3, decreased dFC in the frontoparietal of state 2 and decreased
dFC in the cerebellum of state 3 were most strongly associated
with evidence of disability (see Figure 5). The univariate results
were in concordance with these results and increased dFC in
dorsal attention and visual networks of state 2 was found in
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FIGURE 4 | Relative feature weights of the SC models for the HC vs. pwMS classification task. The relative feature weights (scaled by the maximum magnitude

feature weight) for the variables used in the two models with the best classification performance in the HC vs. pwMS task: (A) pairwise SC and (B) regional SC (node

strength). The circle plots in (A) illustrate the positive (hot colors) and negative (cool colors) model feature weights, respectively, for the pairwise SC model, averaged

across the Yeo functional networks. The glass brain and radial plot figures in (B) show the relative feature weights from the regional SC (node strength) model, where

the redial plot shows the positive and negative values averaged over the Yeo functional networks. Negative values (cooler colors) indicate those connections where

larger values were associated with greater probability of being in the HC group while positive values (hotter colors) indicate those connections where larger values

were associated with greater probability of being in the pwMS group. DAN, dorsal attention; VAN, ventral attention; LIM, limbic; FP, fronto-parietal; DMN, default-mode

network; SUB, subcortex; CER, cerebellum; VIS, visual; SOM, somato-motor.

FIGURE 5 | Relative feature weights of the regional dFC model for the MS subgroup classification task. The relative feature weights (scaled by the feature weight with

maximum magnitude) of the variables used in classifying pwMS by disability status using (A) regional dFC (node strength) and (B) dFC summary metrics (top 10

important features). The glass brain and radial plots in (A) show the relative feature weights from the regional dFC model and summarize the average of the regional

dFC values over the Yeo functional networks (positive and negatives averaged separately). Negative values (cooler colors) indicate those connections where larger

values were associated with greater probability of being in the HC group while positive values (hotter colors) indicate those connections where larger values were

associated with greater probability of being in the pwMS group. DAN, dorsal attention; VAN, ventral attention; LIM, limbic; FP, fronto-parietal; DMN, default-mode

network; SUB, subcortex; CER, cerebellum; VIS, visual; SOM, somato-motor.
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pwMS who had evidence of disability compared to those without
disability (see Supplementary Figure 4). In the dFC metrics
model, dwell time in state 1, which was characterized by larger
magnitude negative FC from the ventral attention network to
several other networks, was the most important feature. This
agreed with the univariate group comparisons indicating a
significant increase in state 1 dwell time for pwMS with evidence
of disability.

4. DISCUSSION

In this study, we investigated the prediction ability of pairwise
or regional SC, FC and dFC as well as dFC metrics in
classifying HC vs. pwMS and pwMS who had no disability
vs. evidence of disability. Our main findings were that (1)
the regional SC (node strength) model had the highest AUC
when discriminating between HC and pwMS, but the regional
dFC and dFC metrics better distinguished pwMS into groups
defined by disability level, (2) the most important regional SCs
in distinguishing HC from pwMS were found in the dorsal
attention, subcortical, and cerebellar networks, while regional
dFC in the dorsal attention and visual networks were the most
important in classifying pwMS into disability groups, and (3)
mean dwell time in a state characterized by more negative
FC from ventral attention to several other networks was the
most important dFC metric for the classification of pwMS into
disability groups.

4.1. Comparison With Previous Studies
Using SC, Static FC, and Dynamic FC in MS
Previous studies have used statistical methods to differentiate
between pwMS and HC, and pwMS according to their disability
severity or phenotype (Richiardi et al., 2012; Leonardi et al.,
2013; Stamile et al., 2015; Kocevar et al., 2016; Muthuraman
et al., 2016; Ion-Mărgineanu et al., 2017; Zhao et al., 2017;
Zhong et al., 2017; Saccà et al., 2018; Zurita et al., 2018)
showed 82% sensitivity, similar to our results (median sensitivity
= 0.85), in distinguishing pwMS from HC using static FC
and/or lesion load. In one of the most similar studies to
date in sample size, availability of multi-modal data types and
nature of classification tasks, Zurita et al. (2018), showed that
using SC and static FC resulted in high accuracy of 87%
in classifying HC and pwMS but the accuracy of classifying
pwMS according to EDSS dropped to 63%. Here, we show
77% balanced accuracy (AUC of 0.89) in pwMS vs. HC and
60% balanced accuracy (AUC = 0.64) in classifying pwMS by
disability status. In contrast to our results, they found that
static FC was more important than SC in classifying HC and
pwMS. However, they did not investigate dynamic FC and
their dMRI acquisition only had 15 directions compared to
our higher resolution 55 directions acquisition, which likely
means our SC matrices had increased sensitivity to detecting
MS-related damage.

Ours is the first study to use dynamic FC to classify HC
vs. pwMS or pwMS by disability level using machine learning.
However, previous studies have investigated dFC differences

between HC vs. pwMS as well as associations with cognition.
One study showed that 50 CIS patients (47 of which converted
to MS) had similar dFC properties compared to controls at
baseline but one of the dFC measurements, the distance traveled
in dynamic state-space, increased in CIS/pwMS over 2 years to
levels above and beyond HC (Rocca et al., 2019). In another
recent study, dFC metrics were compared between (i) pwMS
and HC and (ii) pwMS with cognitive disability vs. preservation
(d’Ambrosio et al., 2019). There, they showed no differences
between HC and pwMS but pwMS without cognitive disability
showed increased dynamic fluidity compared to pwMS with
cognitive disability by exhibiting longer distance traveled in
dynamic state-space, more dynamic states visited, and more
frequent changes between states. A few limitations of that study
were that the data was collected across 7 sites; the authors discuss
this as having a non-negligible effect on the results. Still, both
of these studies indicate that, at least early on in the disease,
pwMS may compensate for MS-related damage by increased
dynamism of FC.

4.2. Structural Damage to the Dorsal
Attention Network Is Central in
Distinguishing HC vs. pwMS
It has been suggested (Tian et al., 2021) that the parameter
coefficients of the prediction models can be unreliable to assess
the feature importance. Therefore, similar to our recent work that
compared the prediction ability of observed vs. estimated SC and
FC networks in classifying pwMS by disability status (Tozlu et al.,
2021), here we report the important features that had high feature
weight from the classification models and that also showed a
larger difference in the mass univariate group comparisons.

Our study showed that the most discriminative pairwise
SCs in distinguishing HC from pwMS were found from
dorsal attention to subcortical and visual networks. SC node
strength in regions in the dorsal attention network were
also found to be important features in the HC vs. pwMS
classification, as this network had the highest feature weight
in the HC vs. pwMS classification model and the univariate
analysis showed a large difference in this network between
HC vs. MS. Connections between dorsal attention and other
networks (limbic and frontoparietal) also had greater feature
weights compared to other connections in the pairwise FC
model. The prominence of the dorsal attention network
in both analyses (classification and univariate analyses) is
in line with a previous study that compared dFC metrics
between HC and pwMS and found decreased dFC within
dorsal attention in pwMS compared to HCs (Huang et al.,
2019).

4.3. Dynamic FC Metrics May Capture
Compensatory Functional Upregulation in
pwMS
In our study, the univariate analyses showed decreased
pairwise structural connections between dorsal attention and
visual networks in pwMS with evidence of disability. The
univariate analysis as well as the feature weights from the
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classification models showed that increased dFC in the dorsal
attention network was associated with evidence of disability
in MS. Moreover, the right superior parietal region of the
dorsal attention network was the only region which was
significantly higher in the pwMS who had evidence of
disability compared to those without disability. We hypothesize
the dorsal attention network’s increased dFC in pwMS who
had evidence of disability could be the result of either
a pathological or compensatory upregulation of functional
coordination, in response to disease-related damage to SC,
i.e., the “less wiring more firing” phenomena (Daselaar et al.,
2015). This provides further evidence that MS is characterized
by damage to the SC but disability level within pwMS
may be more related to functional compensation, specifically
the level of dynamism of FC that is reflected in the
dFC measures.

4.4. Decreased Connectivity in the
Cerebellum Is Related to Disability
Our recent study that investigated the association between
structural disconnectivity due to paramagnetic rim lesions and
disability in MS showed that the cerebellum is one of the most
important regions for the classification of pwMS by disability
status and, further, that greater damage to the cerebellum is
related to worse disability in MS (Tozlu et al., 2020). Previous
studies have also shown the association between motor/cognitive
disability and altered FC in the cerebellum (Dogonowski et al.,
2014; Pasqua et al., 2020). Our results were in concordance with
these previous findings in that decreased connectivity in the
cerebellum was associated with evidence of disability in pwMS
in all regional models (SC and dFC of states 2 and 3).

4.5. Limitations
The main limitations of our study were the cross-sectional
nature and size of the sample. We were restricted to inferring
cross-sectional relationships of brain networks properties and
disability; a more clinically applicable model would be one
capable of predicting with reasonable accuracy future disability
for better patient management. There were only 33 pwMS who
had evidence of disability and 19 controls which limited the
ability to train robust models accurate in novel data. Future
work including larger, longitudinal datasets from a similar cohort
are required to validate the findings of the current study. EDSS
primarily captures physical disability, so this is likely what is
being mapped in this work. Future studies using more specific
measures of different types of disability including cognition
may allow further insights about brain-behavior relationships.
In addition, the MRI acquisition parameters could be improved
to obtain higher resolution information, including reducing the
TR of the fMRI scan, increasing the duration of the entire fMRI
scan, and increasing the number of b-values in the dMRI scan.
Finally, in our dFC analysis, the BOLD time series was divided
using a fixed window length; however, wavelet transforms may
allow different lengths for different frequency bands and will also
be explored in future studies.

5. CONCLUSION

In conclusion, regional SC proved to be the most discriminative
modality in classifying HC vs. pwMS, and pwMS exhibited
weaker SC within the dorsal attention network, cerebellum,
and subcortex. Furthermore, models including dFC metrics
outperformed others in classifying pwMS into disability status
categories; there, the most important regional dFCs were in the
dorsal attention and visual networks and the most important
dFC metric was dwell time in a state characterized by more
negative FC from ventral attention to other networks. These
results suggest that damage to SC are hallmarks of MS, while
dynamic FC may reveal functional connectivity differences
that are associated with varying levels of disability in pwMS.
Various brain connectivity network approaches may enable more
accurate prognoses and, possibly, a better understanding of
disease mechanisms, eventually leading to the development of
novel therapeutics.
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