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Abstract
Objective
To show the potential of a resource consisting of a genealogy of the US record linked to
National Veterans Health Administration (VHA) patient data for investigation of the genetic
contribution to health-related phenotypes, we present an analysis of familial clustering of VHA
patients diagnosed with Alzheimer disease (AD).

Methods
Patients with AD were identified by the International Classification of Diseases code. The Ge-
nealogical Index of Familiality method was used to compare the average relatedness of VHA
patients with AD with expected relatedness. Relative risks for AD were estimated in first- to
fifth- degree relatives of patients with AD using population rates for AD.

Results
Evidence for significant excess relatedness and significantly elevated risks for AD in relatives was
observed; multiple pedigrees with a significant excess of VHA patients with AD were identified.

Conclusions
This analysis of AD shows the nascent power of the US Veterans Genealogy Resource, in early
stages, to provide evidence for familial clustering of multiple phenotypes, and shows the utility
of this VHA genealogic resource for future genetic studies.
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The US Veterans Genealogy Project links a genealogy of the
United States with medical data for Veterans who use the
Veterans Health Administration (VHA) system. While still in
its infancy, at a current size of 63 million individuals with
genealogy data linked to 810,632 VHA patients, it is already
sufficiently large for investigation of familial clustering for
many health-related phenotypes.1 With a resource that allows
identification of individuals with a phenotype of interest, and
for which biological relationships are known, it is possible to
test for an underlying genetic predisposition.2 This resource
provides a unique opportunity to explore evidence for many
phenotypes and to identify a rich resource of extended high-
risk pedigrees.

Using this unique VHA resource still under creation, we
present analysis of close and distant relationships among
individuals diagnosed with Alzheimer disease (AD). This
analysis of familial clustering in a population of US Veterans
shows significant evidence for excess relatedness, significantly
elevated risks in relatives, and identifies multiple extended
high-risk pedigrees, confirming evidence supporting a genetic
contribution to AD and displaying the potential of a powerful
new national resource for predisposition gene identification.

Methods
US veterans genealogy
Genealogic data for over 63 million individuals gathered from
public sources have been linked to a US genealogy. This re-
source is currently based on collected genealogy data that to
date focused on Alaska, Arizona, Colorado, Idaho, Hawaii,
Kansas, Montana, Nebraska, Nevada, New Mexico, North
Dakota, South Dakota, Oklahoma, Oregon, Utah, Wash-
ington, Wyoming, and Massachusetts. Original sources used
to compile the genealogy data include vital records, church
records, censuses from 1850 to 1940, published genealogies,
cemetery records, including gravestone inscriptions, family
trees shared publicly online, oral history, and a variety of other
sources used by genealogists to compile family trees. The
demographic data for over 11 million Veterans using the VHA
System was record-linked to this US genealogy data using
GenMergeDB (pleiades-software.com), which has been used
to create, and link records to, multiple genealogic resources
for decades.1 Over 810,000 VHA patients were record-linked
to a unique individual in the genealogy using name, birthdate,
and relationship data. After record linking was accomplished,
no individual identifying data were used. The most important
genealogic data for individuals are that for ancestors. We se-
lected those VHA patients who linked to good ancestral data

to allow more precise matching of controls; ancestral data
allow us to identify more distantly related individuals in the
same generation. Of the 810,632 VHA patients with linked
genealogy data, 184,658 patients have genealogy data for at
least 8 of their immediate ancestors, including at least both
parents, all 4 grandparents, and at least 2 great grandparents
(many patients have muchmore genealogy data). These VHA
patients with at least 8 of their immediate ancestors were
analyzed here.

Standard protocol approvals, registrations,
and patient consents
Access to health data for the (unidentified) VHA patients with
linked genealogy was approved by the University of Utah and
Salt Lake Veterans Affairs Institutional Review Board, and
approval was obtained from an oversight committee for the
VHA resource.

Although the construction of the US genealogy to date has
focused on genealogy sources with life events in the Western
states, and the resource represents less than 25% of the final
US genealogy to be created, VHA patients born in every state
have been identified. Among the 810,632 Veterans who link
to the genealogy, there are patients identified in all the 18
VHA Veterans Integrated Service Networks (VISNs or
regions) across the United States. Of the 46% of the 810,632
linked VHA patients who have VISN data available, the largest
numbers of linked VHA patients were in VISN 16 (South
Central: 29,907), VISN 8 (Sunshine: 28,299), VISN 23
(Midwest: 25,618), and VISN 19 (Rocky Mountain: 23,291),
and the smallest numbers of linked patients were in VISN 5
(Capitol: 7,740), VISN 2 (Upstate New York: 7,813), and
VISN 3 (New York, New Jersey: 8,876). Among the 810,632
Veterans who link to the genealogy, there are 154,213 female
patients (19%); among the 184,658 patients with good an-
cestral data, 15% are female. A wide age range of VHA patients
linked to genealogy data, with birth years ranging from the
early 1900s to the 1990s. The birth year distribution of the
810,632 VHA patients who linked to any genealogy differed
slightly from that of the 184,658 VHA patients who had
deeper ancestral genealogy data. Among the 810,632 linked
VHA patients, 11% were born before 1911, compared with
14% of the 184,658 VHA patients who linked to ancestral
data; 16% of all 810,632 VHA patients who linked to gene-
alogy data were born in the 1960s to the 1990s, compared
with 9% of the 184,658 VHA patients with ancestral data.
These differences might be expected, given that males have
higher record linking rates than females because of fewer
name changes and that individuals born less recently can be
expected to have more descendants.

Glossary
AD = Alzheimer disease; CI = confidence interval;GIF = Genealogical Index of Familiality; ICD = International Classification of
Diseases; PTSD = posttraumatic stress disorder; RR = relative risk; TBI = traumatic brain injury; UPDB = Utah Population
Database; VHA = Veterans Health Administration; VISN = Veterans Integrated Service Network.
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VHA patients diagnosed with AD
The VHA has used an electronic medical record system at
most VHA medical centers for inpatient and outpatient care
since 1994. These records provide a rich source of phenotype
data on the 11 million Veterans who use the system. In-
ternational Classification of Diseases (ICD) Revision 9 coding
was used to identify patients with AD (331.0).

Genealogical Index of Familiality
The Genealogical Index of Familiality (GIF) test is a well-
established method for testing for excess relatedness. It was
developed for use with the Utah Population Database
(UPDB), the first US genealogic resource used in research,2,3

and has previously been used to establish evidence for many
disease phenotypes, e.g., all cancer,4,5 asthma mortality,6 ro-
tator cuff disease,7 lumbar disc disease,8 Alzheimer mortality,9

and prostate cancer,10 among others. A similar method has
been used to establish evidence for familial clustering for
a variety of medical conditions in the Icelandic Genealogy
resource.11

The GIF statistic is a measure of the average pairwise re-
latedness for a set of individuals, for example, all VHA patients
with AD. The pairwise relatedness is measured using the
Malécot coefficient of kinship,12 which is computed from
genealogy information to estimate genetic relatedness for
a pair of individuals. The coefficient of kinship estimates the
probability that 2 alleles at a locus are identical by descent
(inherited from a common ancestor) in a pair of individuals.
All possible paths of relatedness are considered in the calcu-
lation. Most pairwise relationships in a large population-based
genealogy are genetic distance = 0 (unrelated). For related
pairs, the genetic distance increases with genetic distance, for
example, for parent and offspring = 1, for siblings or for
grandparent/grandchild = 2, for avunculars = 3, for first
cousins = 4, for second cousins = 6, and, similarly, for more
distant relationships. The GIF statistic is multiplied by 105 for
ease of presentation.

The GIF test compares the average pairwise relatedness of
a group of individuals to the expected average relatedness,
which is estimated for a group of similar individuals in the
population. The expected average pairwise relatedness for
a set of VHA patients can be estimated for a randomly selected
set of matched controls for the cases from the population of all
VHA patients with linked genealogy data; controls are
matched to cases for sex and 5-year birth year cohort. To
estimate the mean expected pairwise relatedness, 1,000 sets of
matched VHA controls were randomly selected and analyzed.
The empirical significance of the GIF test was obtained by
comparing the case GIF statistic to the distribution of the
1,000 control GIF statistics. This comparison of average
pairwise relatedness tests whether the VHA patients with AD
have significantly higher relatedness than expected in the
VHA population. The GIF test does not allow determination
of whether the familial clustering observed is due to envi-
ronmental factors, genetic factors, or some combination. To

consider whether familial clustering might primarily be due to
shared exposures or behavior among close relatives, rather
than shared genetics, the GIF method includes a distant re-
latedness test (dGIF). The dGIF test is performed as for the
GIF test, but all relationships closer than third degree are
ignored. Thus, the dGIF test ignores relationships most af-
fected by shared environment or behavior and tests for the
presence of excess distant relatedness only. Significant evi-
dence for excess distant relatedness is strongly suggestive of
a genetic contribution. The GIF statistic summarizes average
pairwise relatedness in a single measure.

The contribution to the GIF statistic can be quantified sep-
arately for the different genetic distances observed among
pairs of cases and controls (figure 1). The genetic distance
measure represents, for example, 1 for parent/offspring, 2 for
siblings or grandparent/grandchild, 3 for avunculars or simi-
lar, 4 for first cousins or similar, 6 for second cousins or
similar, and so forth.

RRs in relatives
The estimation of relative risk (RR) in relatives provides
a more traditional mechanism for identifying evidence for
a genetic contribution. A genetic contribution to a phenotype
is supported when both close and distant relatives show evi-
dence of elevated risk. First-degree relatives include parents,
siblings, or offspring; second-degree relatives are the first-
degree relatives of first-degree relatives (e.g., uncle, grand-
mother); third-degree relatives are the first-degree relatives of
second-degree relatives (e.g., first cousin, great grandchild),
and so forth. RRs were estimated for first- to fifth-degree
relatives of VHA patients diagnosed with AD as follows; all
relatives considered were also VHA patients. All 184,658
patients in the VHA genealogy with genealogy data including
at least 8 of 14 immediate ancestors were assigned to one of 67
cohorts based on birth year (in 5 years groups) and sex. The
cohort-specific rate of AD was estimated as the number of AD
cases in each cohort divided by the total number of linked
VHA patients in the cohort. Expected numbers of first-degree
relatives with AD were estimated by counting the number of
relatives, all of whom were VHA patients with genealogy data,
by cohort (without duplication), multiplying by the rate of
AD in each cohort, and summing over all cohorts. Observed
numbers of AD cases among relatives were counted without
duplication. RRs were estimated for each degree of relation-
ship (= observed/expected AD patients); 95% confidence
intervals (CIs) for the RR were calculated using standard
methods.13

High-risk pedigrees
To identify high-risk pedigrees for AD, all relationships
among all VHA patients with AD were analyzed. Consider-
ation of all ancestral vectors allowed identification of clusters
of related cases; the nearest common ancestor was identified
for each independent cluster of related patients with AD. No
completely overlapping clusters were considered, but some
cases appeared in more than 1 cluster (or pedigree). For
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a given founder of a cluster of related patients, the number of
observed AD cases among the descendants of the founder
who were VHA patients was counted. To estimate the
expected number of patients with AD among the descendants,
all linked VHA patients among the descendants were counted
by cohort; the number of linked VHA patients in each cohort
was multiplied by the cohort-specific rate for AD (estimated
as described above) and summed over all cohorts. A com-
parison of the number of observed to expected linked AD
cases among the descendants in each cluster (pedigree) was
made; if a significant excess of AD patients was observed (p <
0.05), the pedigree was termed high-risk.

Results
In the VHA resource, 4,117 Veterans with genealogy for at
least 8 immediate ancestors and who had an ICD-9 code
indicating AD were identified; 194 (5%) were female. Table 1

summarizes the results of the GIF analysis for AD. The GIF
test summary includes the sample size (n), GIF statistic for
cases (case GIF), mean GIF statistic for 1,000 sets of controls
(mean control GIF), empirical significance for comparison of
overall GIF (empirical GIF p), distant GIF statistic for cases
(case dGIF), mean dGIF statistic for controls (mean control
dGIF), and empirical significance for comparison of dGIF
(empirical dGIF p). The average pairwise relatedness for the
4,117 patients with AD was higher than expected for the VHA
patient population (p < 0.001). When relationships closer
than third degree (first cousins) were ignored, the average
pairwise relatedness of the patients with AD was still elevated
over expected relatedness (dGIF p < 0.001).

Figure 1 shows the contribution to the GIF statistic by the
pairwise genetic distance for cases compared with averages for
the 1,000 sets of matched controls. The effect of some data
censoring based on the nature of the VHA data available can
be observed in figure 1. Data censoring is present because

Table 1 GIF analysis in the VHA genealogy resource

Disease (ICD-9 code) n

Mean

Empirical GIF p

Mean

Empirical dGIF pCase GIF Control GIF Case dGIF Control dGIF

AD (331.0) 4,117 0.23 0.15 <0.001 0.15 0.11 <0.001

Matched AD controls 4,117 0.15 0.15 0.449 0.10 0.11 0.720

Prostate cancer (185) 12,695 0.18 0.14 <0.001 0.12 0.10 0.003

Parkinson disease (332) 3,850 0.22 0.15 0.001 0.15 0.11 0.002

Random set of patients 5,000 0.09 0.13 1.000 0.06 0.09 1.000

Bold values indicate statistical significance.
Abbreviations: AD = Alzheimer disease; GIF = Genealogical Index of Familiality; ICD = International Classification of Diseases.

Figure 1Contribution to the GIF statistic by pairwise genetic distance for cases comparedwith the average for 1,000 sets of
matched controls
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diagnostic data for VHA patients were available only from
1994 to present. Because medical diagnosis was only available
for slightly more than 20 years (1994–2017), and because AD
is typically diagnosed in older ages, AD-affected relatives who
are in the same generation (e.g., first degree: siblings or third
degree: cousins) are the most likely to be observed; affected
relatives in different generations (which includes all second-
and fourth-degree relatives, e.g., a grandparent and grand-
child) are unlikely to be observed in this narrow window. As
the resource increases in size and years of data, this censoring
will be lessened.

To validate that control matching and selection represented
the VHA population and to demonstrate the overall baseline
relatedness of VHA patients, we randomly selected 1 set of
matched controls for the 4,117 patients with AD (termed
“matched AD controls” in table 1); we treated this set of
randomly selected VHA patients as a set of “cases” and per-
formed GIF analysis to determine whether this single set of
controls differed from 1,000 sets of matched controls (se-
lected to match the single set of matched AD controls). This
original set of controls for patients with AD did not differ in
expected relatedness from the set of 1,000 sets of matched
controls (GIF p = 0.449, dGIF p = 0.720, table 1).

Using the same methods, we also performed GIF analyses for
VHA patients diagnosed with 2 other common phenotypes
(prostate cancer and Parkinson disease) for purposes of
comparison to AD and for comparison of results for these
phenotypes reported from other resources. Prostate cancer
cases were identified with ICD-9 code 185, and Parkinson
disease cases were identified with ICD-9 code 332. The overall
GIF test and the distant dGIF test showed significant excess
relatedness for both phenotypes (table 1). These analyses
confirm previously published evidence of significant excess
relatedness for both close and distant relationships for these 2
phenotypes from population-based genealogy resources in
Utah,4,5,14 Iceland11 and Scandinavia.15 In addition, to dem-
onstrate that not all sets of VHA patients show greater than
expected excess relatedness, we randomly selected 5,000 VHA
patients with genealogy data and no associated phenotype.
Results for the GIF analysis of this random set of patients
indicate no excess relatedness (table 1).

RRs in relatives
Estimated RRs for AD among relatives of patients with AD
who are also VHA patients are shown in table 2, which dis-
plays degree relatedness, total number of relatives among
linked VHA patients (n), observed number of relatives with
AD who were VHA patients (obs), expected number of rel-
atives with AD who were VHA patients (exp), RR, signifi-
cance (p value), and 95%CI for the RR (95%CI). RRs for AD
were significantly elevated among first- (RR = 1.82) and fifth-
degree relatives (RR = 1.22) of patients with AD who were
VHA patients and were elevated (RR = 1.06), but not sig-
nificantly (p = 0.380), among third-degree relatives. RR
results for second- and fourth-degree relatives are affected by

data censoring issues, as discussed previously. This is apparent
when, for example, the different types of first-degree relatives
are considered separately; 558 of the 882 first-degree relatives
identified were siblings, whereas only 274 were children and
50 were parents. Because only 5% of the VHA AD patients
were female, comparisons of effects by sex were not possible.
For example, all the 41 affected sibling pairs observed were
brothers, and both of the observed affected children of af-
fected parents were sons.

High-risk pedigrees
Two hundred forty-five high-risk AD pedigrees were identified
(p < 0.05), with at least 2 and up to 117 related VHA AD
patients. Figure 2 shows an example high-risk AD pedigree
identified in the VHA genealogy resource; only the descending
lines to the VHAADpatients are shown. The pedigree includes
6 related VHA AD patients, only 1.2 AD cases were expected
among the descendants who were VHA patients (p = 0.0012).
The pedigree founder was born in Pennsylvania in the late
1700s and has almost 6,000 descendants in the genealogy; 67
descendants are VHA-linked patients.

Discussion
The VHA Genealogy Resource is a unique resource that
continues to grow and improve. We used this partially con-
structed US genealogy of over 63 million individuals linked to
almost 1 million patient records representing all VHA local
areas to show the potential for genetic analyses, using AD,
a complex disease, as an example. The Alzheimer’s Associa-
tion (2015) has reported that AD is the sixth leading cause of
death in the United States. The annual cost of dementia in the
United States has been estimated to be $215 billion in 2010
and is expected to double by 2040.16 One study17 projected
13.8 million people diagnosed with AD dementia by 2050 in
the United States. Although old age is the primary risk factor
for AD, a genetic contribution to AD predisposition is also
well recognized.18 Mutations in AβPP, Presenilin 1, and
Presenilin 2 have been implicated in familial or early-onset
AD; the APOE e4 allele is a major genetic risk factor for AD;
and other genetic risk factors involving lipid metabolism and
immune function are recognized.19–22

Both traumatic brain injury (TBI) and posttraumatic stress
disorder (PTSD) have been linked to an increased risk of AD
and other dementias, and both are “signature injuries” of
individuals serving in the Iraq and Afghanistan conflicts.23,24

Although AD is recognized as an important public health
issue, the association of these military-related injuries with AD
makes it of particular importance among military health
issues. The association of TBI and PTSD with an increased
risk of AD suggests that it may be valuable to identify those
military personnel at high risk of AD and to develop inter-
ventions that could limit the progression or onset of disease.
The results of this analysis of the VHA population, in com-
bination with similar studies, suggest that there is a genetic
contribution to AD and that predisposition can already be
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recognized through knowledge of family history of AD. As AD
predisposition genes are identified, increased risk may also be
recognized by screening.

Our analyses demonstrate significant evidence for excess fa-
milial clustering of VHA patients with AD compared with
expected clustering in this population; significantly elevated
RRs for AD in both close and distant relatives were observed,
and many pedigrees with a significant excess of AD cases have
been identified. This combined evidence confirms a heritable
contribution to the observed familial clustering of AD. The
pedigrees we identified suggest a highly elevated risk among
some families. Such pedigrees are the ideal starting point for
whole-genome sequence–based approaches to the identifi-
cation and characterization of rare high-penetrance variants.

In addition to the evidence presented for excess relatedness of
individuals diagnosed with AD, using the samemethods, we have

replicated published evidence for excess familial relatedness for 2
other common phenotypes to generalize validation of the re-
source. The 2 common disease phenotypes examined (prostate
cancer and Parkinson disease) have previously been recognized
to have a heritable component in other populations. Analysis of
the VHA genealogy resource confirmed significant evidence for
excess relatedness for both phenotypes; these results additionally
validate the US VHA Genealogy Resource in terms of data
quality and power for analysis of familial clustering.

There are limitations to this analysis. It is optimal to match
controls based on all characteristics that might affect record
linking or that are associated with the phenotype examined;
we know that birth year, sex, and birth state (Utah or not)
affect the overall relatedness of individuals in the similar
UPDB genealogic resource that represents the Utah pop-
ulation.2 For this analysis of the VHA resource, matching was
performed only for birth year and sex. Although the rate of AD

Table 2 Estimated RRs for AD among first-to fifth-degree relatives of patients with AD in the VHA genealogy resource

Degree relatedness n obs exp RR p Value 95% CI

First degree 882 45 24.7 1.82 0.0001 1.33–2.44

Sibling 558 41 20.6 1.99 4.7e25 1.43–2.70

Brother 527 41 20.1 2.04 2.8e25 1.46–2.77

Parent 50 2 1.9 1.05 1.000 0.13–3.78

Child 274 2 2.2 0.90 0.617 0.11–3.25

Son 231 2 2.2 0.93 0.637 0.11–3.37

Second degree 633 2 7.7 0.26 0.018 0.03–0.94

Grandparent 11 0 0.4

Grandchild 186 0 0.3 0.00 0.759

Father’s brother 28 0 1.1

Mother’s brother 27 1 1.2 0.86 0.674 0.02–4.77

Sister’s son 157 1 2.3 0.43 0.322

Brother’s son 133 0 1.6 0.00 0.213

Half-sibs 18 0 0.4 0.00 0.670

Father’s sister 2 0 0.1 0.00 0.931

Mother’s sister 3 0 0.03 0.00 0.967

Brother’s daughter 29 0 0.1 0.00 0.917

Sister’s daughter 39 0 0.2 0.00 0.820

Third degree 1,226 37 34.9 1.06 0.380 0.75–1.46

First cousins 984 37 33.4 1.11 0.289 0.78–1.53

Fourth degree 1,896 35 41.9 0.84 0.161 0.58–1.16

Fifth degree 4,517 152 124.6 1.22 0.016 1.03–1.43

Bold values indicate statistical significance.
Abbreviations: AD = Alzheimer disease; CI = confidence interval; exp = expected number of relatives with AD who were patients with VHA; obs = observed
number of relatives with AD who were patients with VHA; RR = relative risk.
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was similar (2%) in both the 810,632 VHA patients linking to
any genealogy and the 184,658 VHA patients with at least 8 of
their immediate ancestors, the VHA patients with at least 8 of
their immediate ancestors had a slightly lower rate of females
and represented a population born slightly later than all VHA
patients who linked to genealogy. It is not clear what effect
these slight differences might have had on the results. His-
torically, race data have not been stored for the majority of
demographic records in the VHA system, and so was un-
available. In future, as more data become available, we pro-
pose to use data including birth state, VISN, occupational
exposures, rank, and socioeconomic status, for example, for
matching.

Data censoring is also an issue for this resource. VHA cases
who fail to link to genealogy data are censored, as are di-
agnoses made outside the VHA system, or before 1994. This
censoring of cases might affect the estimation of rates of AD;
however, because rates were estimated for the entire linked
population of VHA patients and were only used as relative
comparisons, this censoring is not expected to affect results or
tests of hypotheses. The overall rate of AD among all VHA
patients with linked genealogy data was 2.2% (4,117/
184,658). AD rates ranged from ;5% among male patients
born before 1925 decreasing to 0.1% in male patients born in
the 1960s, with rates of ;3% in females born before 1925
decreasing to 0.1% in female patients born in the 1950s.

In addition, genealogy data may not always represent bi-
ological relationships. However, such censoring is assumed to
be independent of phenotype and equally affects both cases
and controls. Finally, the data set is limited to primarily males,
individuals who are part of groups who have shared genealogic
data, and veterans who used the VHA system; this is true of
both cases and controls, but may have affected results. The
familial clustering methods presented are very robust to data
censoring. Controls are VHA patients, matched for sex and
birth year, and are required to have linkage to genealogy data
of similar quality and quantity as cases. It is difficult to

conceive of a mechanism by which significant excess re-
latedness would exhibit itself in the VHA resource in the
absence of any true heritable component. Because of cen-
soring, it is much more likely that the evidence of excess
relatedness presented is conservatively estimated. The re-
latedness analysis of a set of matched controls considered as
cases and the results for the 5,000 random VHA patients with
no selected phenotype both demonstrated that the analysis
method appropriately observes no evidence for familial clus-
tering for these examples.

The methods presented are robust to misclassification of
cases. False negatives (missing identification of true VHA AD
cases) could result in failing to observe evidence for excess
relatedness; this did not occur. False positives, even at a very
high rate, could only affect this familial clustering analysis if
the assignment of the incorrect diagnosis of AD in a VHA
patient occurred more often among close and distant relatives
of AD cases than among all VHA patients. This is unlikely,
given the US-wide coverage of VHA patients represented and
the distance of the genetic relationships providing evidence of
excess clustering.

This VHA Genealogy Resource represents what we believe is
already the largest genealogy linked to phenotype data based
on its current size of over 63 million individuals and its linkage
to medical data for over 810,000 VHA patients. This resource
is still under construction; we estimate that the eventual size
of this US genealogy will exceed 300 million individuals, with
40%–60% of the 11 million VHA patients with demographic
data linked to genealogy. The analysis of the clustering of AD
presented here is 1 example of the utility of the resource for
genetic studies. The utility of this resource includes (1)
demonstration of evidence for a genetic contribution to pre-
disposition to many health-related phenotypes not commonly
observed in other populations; (2) identification and study of
high-risk pedigrees informative for predisposition gene iden-
tification; (3) estimation of family history–based risk of any
disorder of interest, which may be widely applicable to the US

Figure 2 Example high-risk AD pedigree identified in the VHA resource

Male founder has 2 marriages as does male grandson of the founder’s first marriage; fully shaded are AD cases.
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population; and (4) identification of both high- and low-risk
individuals for any phenotype of interest for epidemiologic
studies or clinical trials, among others. This resource may be
uniquely powerful for analysis of phenotypes that are rarely
observed and highly associated with military service and may
have an underlying genetic contribution (e.g., PTSD).

Clearly, this resource will improve in 2 distinct ways. Expan-
sion of the genealogy data to all states is in progress. Second,
there is enormous potential to refine the phenotypes ana-
lyzed. The use of ICD-9 diagnostic coding to identify indi-
viduals with a phenotype is not optimal; such coding has other
purposes than research and may misrepresent the phenotype
in both directions (false positives and false negatives). Future
analysis of this resource will dictate more refined phenotype
definitions. The Electronic Medical Records and Genomics
Network has demonstrated the benefit of more robust anal-
ysis using multiple components of the medical record.25 Use
of natural language processing algorithms from text data in
medical notes may allow better identification of phenotypes
on a large scale. The VHA is well positioned to take advantage
of these methods, specifically using the VHA Informatics and
Computing Infrastructure resource.

In conjunction with the recent Million Veterans Program
sponsored by the VHA, which is collecting and storing DNA
and demographic and risk data for 1 million VHA patients,
extremely powerful genetic studies will soon be possible. With
the future additions of genotypes, exposure data, and other
data that are envisioned, this VHA genealogy/phenotype re-
source will allow informative genetic studies that include re-
lationship data on an extremely large scale, including gene by
environment analyses, and analysis of other medical con-
ditions related to service, which cannot be studied in most
populations.

An initial genetic analysis of AD has been presented using
a powerful new and growing national resource linking gene-
alogy and medical data. AD was selected as the example
phenotype, given that it is a major health issue in the United
States and the world and may be an important issue for the
VHA in light of reported associations of AD with trauma. The
analyses confirmed evidence for an inherited component to
AD risk, identified a current resource of high-risk pedigrees
that could be used for predisposition gene/variant identifi-
cation, and confirmed the power and utility of this VHA re-
source for genetic studies of complex human disease.
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