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Abstract: Profiling the metabolic processes performed by bacteria is vital both for understanding
and for manipulating ecosystems for industrial or research purposes. In this study we aim to
assess the bacterial functional diversity in termite mound soils with the assumption that significant
differences will be observed in the functional diversity of bacteria between the termite mound soils
and their surrounding soils and that each environment has a distinguishing metabolic profile. Here,
metagenomic DNA extracted from termite mound soils and their corresponding surrounding soils,
which are 10 m apart, were sequenced using a shotgun sequencing approach. Our results revealed
that the relative abundances of 16 functional categories differed significantly between both habitats.
The α diversity analysis indicated no significant difference in bacterial functional categories within
the habitats while the β diversity showed that the bacterial functional categories varied significantly
between the termite mound soils and the surrounding soil samples. The variations in soil physical and
chemical properties existing between the two environments were held accountable for the differences
in bacterial functional structure. With the high relative abundance of functional categories with
unknown function reported in this study, this could signify the likelihood of getting novel genes from
termite mound soils, which are needed for research and commercial applications.
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1. Introduction

Termite mound soils account for about ten percent of African soils in tropical environments [1].
The termites’ activities during mound construction have a considerable impact on soil morphology
such as the formation of subsurface horizons, soil structures, soil aeration, aggregation, and texture [2].
This may in turn have an effect of the bacterial diversity in termite mound soils [1]. Some bacteria
isolated from termite mound soils could serve as potential materials for the following: Antimicrobial
production [3,4], bioremediation [5], bio-filtering [6], biofertilizers, and biocontrol [7]. The presence
of these bacteria may lead to an increase in soil fertility and crop production, health improvement,
and environmental sustainability [8].

Harry, et al. [9] have reported that termite mound soils are hotspots for bacteria concentration
and high nutrient concentrations were held accountable for it. Termite mound soils have been
reported to have high amounts of soil organic matter as well as phosphorus and nitrogen [10].
The physiochemical parameters of termite mounds and their surrounding soils are relatively
different [11]. Physical properties and the amount of soil organic matter (SOM) are strong factors that
determine microbial diversity [12]. Spain et al. [13] stated that the populations of bacteria are more
abundant in termite mound soils than their surrounding soils. This claim was reinforced by a study by
Kumar et al. [14], which reported that bacterial populations in closed and open termite mound soils
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were 65.5 × 105 cfu/g of soil and 75.5 × 105 cfu/g of soil, correspondingly, and they were higher than
the surrounding soil with 30.5 × 105 cfu/g of soil bacterial population.

While there is an increase in the knowledge of the compositional and structural diversity of
bacteria in termite mound soils, the same cannot be said of the functional diversity. Soil microbial
functional diversity is an essential pointer to evaluate ecological processes and functions [15] like
mineralization, decomposition, promotion of plant growth, and the release of atmospheric gases like
greenhouse gases [16,17]. Therefore, in this study we aim to assess the bacterial functional diversity in
termite mound soils. This research hypothesis assumes that significant differences will be observed
in the functional diversity of bacteria between the termite mound soils and their surrounding soils
and that each environment has a distinguishing metabolic profile. We also assumed that the bacterial
functional diversity will be driven by soil physicochemical parameters.

Considering the fact that surrounding soils are more dynamic, heterogeneous, and faced with
issues of lower nutrient concentrations than termite mound soils [10,18], bacteria in surrounding
soils have to rely on different carbon sources if they are to survive such habitats [19]. Thus, we
anticipated that there would be relatively higher abundances of genes relating to carbon sources like
the following: (a) carbohydrate metabolism, (b) amino acids and derivatives, (c) fatty acids, lipids,
and isoprenoids, and competitive related genes like (d) metabolism of aromatic compounds and (e)
motility and chemotaxis in the surrounding soil samples than the termite mound soils.

Termites in the mounds are usually faced with Metarhizium anisopliae (a fungal entomopathogen)
and they survive due to certain bacteria (like Streptomyces) which provide meaningful protection to the
colony through various processes driven by the products of core housekeeping genes [20]. Thus, we
also anticipated that there would be relatively higher abundances of genes relating to (a) virulence,
disease, and defense, (b) genes related to cell division, (c) DNA metabolism, (d) protein metabolism, (e)
phages, prophages, and transposable elements in in the termite mound soils than their surrounding
soil samples.

To test our hypotheses, the shotgun metagenomic sequencing approach, which is the direct
sequencing of the whole genomes found in a given ecological sample, was employed. Metagenomics
and high-throughput sequencing applications have made it much more possible to generate genetic
information of potential genes from bacteria. They also give a better understanding of the different
activities and processes carried out by soil bacteria, irrespective of their environment [21,22].

2. Materials and Methods

2.1. Study Sites and Soil Sampling

Soil samples of 50 g were collected from 1 m depth using a 5 cm diameter split tube auger
from four different termite mounds (about 2 m apart) from Braklaagte (T1) and four different termite
mounds (about 2 m apart) from Zeerust (T2). The termite mounds (Figure 1) were colonized by
Coptotermes species. For comparison purposes, four samples of corresponding surrounding soils from
Braklaagte (S1) and four samples of corresponding surrounding soils from Zeerust (S2), which were
10 m apart from the termite mounds were also collected. The soil samples were kept briefly in
cooler boxes filled with ice blocks during sampling and transportation and then moved to the
laboratory during the same day where they were stored in a fridge at 4◦C for 14 days for further
analysis (DNA isolation and physicochemical analysis). After soil analysis, the mean values of all
4 samples from each site (T1, T2, S1, and S2) were used for statistical analysis. Both Braklaagte
(25◦26′13.5′′ S 26◦05′50.4′′ E) and Zeerust (25◦27′11.2′′ S 26◦07′33.8′′ E) are in North West Province,
South Africa. North West Province is an inland province in South African that borders Botswana.
The background is demarcated by mountains in the north-east and it is distributed with shrubs and
trees. Its average temperatures vary from 3 to 21◦C and 17 to 31◦C in winter and summer, respectively.
The yearly rainfall of the area is approximately 360 mm, with most falling between October and April
(https://www.south-africa-info.co.za/country/article/511/an-overview-of-the-north-west-province).
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Figure 1. Termite mounds colonized by Coptotermes species. 

2.2. Soil Analysis of Termite Mound Soils and Their Comparative Surrounding Soil Samples 

Soil properties were assessed within 14 days of sampling. The soil samples of 20 g were air dried, 
ground, mixed well, and passed through a 2 mm sieve to remove rubble and solid wooden materials 
for soil analysis. Particle size analyses were done via the hydrometer technique [23]. The United States 
Department of Agriculture (USDA) particle size classes, namely sand (2.0–0.05 mm), silt (0.05–0.002 
mm), and clay (<0.002 mm), were followed for assigning textural classes. Soil pH in distilled water 
were measured using a pH-meter in a 1:2.5 soil:water ratio and the total nitrogen was determined by 
the Kjeldhal method according to the procedures used by Muwawa et al. [24]. Exchangeable calcium 
(Ca), magnesium (Mg), and potassium (K) were analyzed after extraction using 1M ammonium 
acetate method at pH 7.0. Exchangeable Ca and Mg in the extracts were read using an atomic 
absorption spectrophotometer (AAS), whereas exchangeable K was read by a flame photometer [11]. 
Available phosphorus (P) was determined spectrophotometrically while organic carbon was 
determined using the dichromate digestion [25]. 

2.3. Metagenomic DNA Extraction and Sequencing 

A PowerSoil DNA isolation kit (MoBio Laboratories, Inc., Carlsbad, CA, USA) was used to 
extract whole microbial DNA from 0.25 g each of the soil samples collected from the termite mounds 
and their corresponding surrounding soils, following the manufacturer’s procedure. All datasets 
were produced by whole-metagenome shotgun sequencing at Molecular Research LP (MR DNA, 
Shallowater, TX, USA). The concentration of the DNA was measured by fluorescence using the 
Quant-iT PicoGreen dsDNA kit (Invitrogen, Carlsbad, CA, USA). Fluorescence was assessed on a DQ 
300 fluorometer (Hoefer Scientific Instruments, San Francisco, CA, USA). A total of 50 ng of DNA 
from each sample was used to prepare the libraries using a Nextera DNA Sample Preparation Kit 
(Illumina). Library insert size was determined by an Experion Automated Electrophoresis Station 
(Bio-Rad). The insert size of the libraries ranged from 300 to 850 bp (average 500 bp). Each library 
was loaded to a 600 Cycles v3 Reagent cartridge (Illumina) and the sequencing was performed using 
a 2 × 250 base pair sequencing run on the Illumina MiSeq 2500 platforms (San Diego, CA, USA). 

2.4. Metagenome Annotation And Data Analysis 

The raw sequences of each of the metagenomes were uploaded to the metagenomics rapid 
annotation online server (MG-RAST) at http://www.mg-rast.org [26]. In the MG-RAST server, the 
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2.2. Soil Analysis of Termite Mound Soils and Their Comparative Surrounding Soil Samples

Soil properties were assessed within 14 days of sampling. The soil samples of 20 g were air
dried, ground, mixed well, and passed through a 2 mm sieve to remove rubble and solid wooden
materials for soil analysis. Particle size analyses were done via the hydrometer technique [23].
The United States Department of Agriculture (USDA) particle size classes, namely sand (2.0–0.05 mm),
silt (0.05–0.002 mm), and clay (<0.002 mm), were followed for assigning textural classes. Soil pH
in distilled water were measured using a pH-meter in a 1:2.5 soil:water ratio and the total nitrogen
was determined by the Kjeldhal method according to the procedures used by Muwawa et al. [24].
Exchangeable calcium (Ca), magnesium (Mg), and potassium (K) were analyzed after extraction
using 1M ammonium acetate method at pH 7.0. Exchangeable Ca and Mg in the extracts were read
using an atomic absorption spectrophotometer (AAS), whereas exchangeable K was read by a flame
photometer [11]. Available phosphorus (P) was determined spectrophotometrically while organic
carbon was determined using the dichromate digestion [25].

2.3. Metagenomic DNA Extraction and Sequencing

A PowerSoil DNA isolation kit (MoBio Laboratories, Inc., Carlsbad, CA, USA) was used to extract
whole microbial DNA from 0.25 g each of the soil samples collected from the termite mounds and their
corresponding surrounding soils, following the manufacturer’s procedure. All datasets were produced
by whole-metagenome shotgun sequencing at Molecular Research LP (MR DNA, Shallowater, TX,
USA). The concentration of the DNA was measured by fluorescence using the Quant-iT PicoGreen
dsDNA kit (Invitrogen, Carlsbad, CA, USA). Fluorescence was assessed on a DQ 300 fluorometer
(Hoefer Scientific Instruments, San Francisco, CA, USA). A total of 50 ng of DNA from each sample was
used to prepare the libraries using a Nextera DNA Sample Preparation Kit (Illumina). Library insert
size was determined by an Experion Automated Electrophoresis Station (Bio-Rad). The insert size of
the libraries ranged from 300 to 850 bp (average 500 bp). Each library was loaded to a 600 Cycles v3
Reagent cartridge (Illumina) and the sequencing was performed using a 2 × 250 base pair sequencing
run on the Illumina MiSeq 2500 platforms (San Diego, CA, USA).

2.4. Metagenome Annotation And Data Analysis

The raw sequences of each of the metagenomes were uploaded to the metagenomics rapid
annotation online server (MG-RAST) at http://www.mg-rast.org [26]. In the MG-RAST server,
the sequences were subjected to quality control. This comprises of dereplication—that is the removal
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of artificial sequences formed by sequencing artifacts, removing host specific species sequences,
ambiguous base filtering (removing sequences with >5 ambiguous base pairs with 15 phred score
cutoff) and a length filtering (removing sequences with a length of >2 standard deviation from the mean).
Following quality control (QC), sequences were annotated using the BLAT (the BLAST-like alignment
tool) algorithm [27] against the M5NR database [28], which provides nonredundant integration of
many databases. Bacterial classifications were performed by the SEED Subsystem (result shown in
supplementary Figure S1) and, also, functional categories assignments were performed by the SEED
Subsystems level 1, level 2, and level 3 databases. An e-value of 1e–5, a minimum identity of 60%, and a
maximum alignment length of 15 base pairs were the conditions used when the bacteria classifications
and functional gene categories were assigned. No further analyses were carried out on sequences that
failed annotation. Our focus was on bacteria, which were approximately 99% of the entire sequences.
Hence, we then discarded sequences obtained from viruses, archaea, and eukaryotes. To decrease the
effect of experimental noise/error, the normalized data option of MG- RAST was applied. The resulting
functional table was agglomerated accordingly to each functional level and unclassified reads were
retained for statistical purposes. Next, the abundances were transformed into percentages. After the
16 sequences were analyzed individually with MG-RAST, the mean values of the relative abundances
of all 4 samples from each site (T1, T2, S1, and S2) were used for statistical analysis. The quality
sequences are available from NCBI SRA dataset under the bioproject PRJNA526912 for termite mound
soil samples and PRJNA525146 for the surrounding soil samples.

The differences between the physicochemical parameters were determined by one-way analysis of
variance (ANOVA) for the comparison of means with Tukey’s pairwise comparison test for significance
level (p-value < 0.05). Pielou evenness and Shannon diversity indices were assessed for each of the
samples and these indices were compared between habitats using a Kruskal–Wallis test. All these
analyses were done using PAST version 3.20 [29]. The β diversity was depicted using the principal
coordinate analysis (PCoA) based on a Euclidean distance matrix and the one-way analysis of similarities
(ANOSIM), via 999 permutations, was used to test for differences in community composition between
the groups of samples [30]. The principal component analysis (PCA) based on a Euclidean distance
matrix was used to show how these functional categories were distributed between the termite
mound and the surrounding soil samples. To find the environmental variables that best explained
functional gene composition, we performed canonical correspondence analysis (CCA) and we applied
a forward selection of environmental variables and the Monte Carlo permutation test, with 999 random
permutations, was used for the significance test. All of the environmental variables listed in Table 2
were included in the CCA analysis as explanatory variables. The PCoA, PCA, and CCA were plotted
via CANOCO 5 (Microcomputer Power, Ithaca, NY). The heatmap was drawn using the Shinyheatmap
with z-score transformed relative abundance of functional gene categories [31].

3. Results

3.1. Metagenome Sequencing and Sequence Processing

Examination and annotation of output data were done using the metagenomics rapid annotation
online server at http://www.mg-rast.org. The output file after QC contained an average sum of 6,802,220
(T1) and 6,422,685 (T2) retained sequence reads with an average G + C content of 61.25% for the termite
mound soil samples, while an average sum of 7,327,766 (S1) and 6,916,304 (S2) sequence reads with
an average G + C content of 66.25% were retained for the surrounding soil samples. Of the sequence
reads that passed QC, 2,558,335 (T1) and 2,324,880 (T2), the sequence reads from termite mound soils
contained predicted proteins with known functions while 2,780,323 (S1) and 2,635,204 (S2) sequence
reads from surrounding soil samples contained predicted proteins with known functions. Furthermore,
3,958,147 (T1) and 3,366,939 (T2) sequence reads from termite mound soils contained predicted proteins
with unknown functions while 4,258,648 (S1) and 3,985,927 (S1) sequence reads from surrounding soil
samples contained predicted proteins with unknown functions.

http://www.mg-rast.org
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3.2. Functional Analysis Associated with Termite Mound Soils and Their Surrounding Soil Samples

In this study, at Seed Subsystem level 1 hierarchical gene annotation, twenty-eight (28) major
functional categories related to bacteria were found in both termite mound soils and surrounding
soil samples, although with different relative abundances. Of the 28 functional categories, 16 differed
significantly (p-value < 0.05) between the termite mound soils and the surrounding soil samples
except for cell division and cell cycle (CDC), cell wall and capsule (CC), clustering-based subsystems
(CS), cofactors, vitamins, prosthetic groups, pigments (CVPGP), DNA metabolism (DNA), nitrogen
metabolism (N), nucleosides and nucleotides (NN), potassium metabolism (K), respiration (R),
secondary metabolism (SM), sulfur metabolism (S), and stress response (SR) (Figure 2 and Table S1).
The most predominant functional categories in termite mound soils were iron acquisition and
metabolism (Fe), membrane transport (MT), phages, prophages, transposable elements, plasmids
(PPTP), phosphorus metabolism (P), protein metabolism (PM), RNA metabolism (RNA), and virulence,
disease, and defense (VDD). However, sequences associated with carbohydrate metabolism (CHO),
amino acids and derivatives (AA), fatty acids, lipids, and isoprenoids (FLI), metabolism of aromatic
compounds (MAC), and motility and chemotaxis (MC) were more abundant in surrounding soil
samples (Figure 2). miscellaneous (M), regulation and cell signaling (RC), photosynthesis (PHO),
and dormancy and sporulation (DS) were also significantly different (p-value < 0.05) between the
termite mound soils and the surrounding soil samples. Principal component analysis (PCA) was
conducted to show how these functional categories were distributed between the termite mound soils
and their surrounding soil samples (Figure 3).

At SEED Subsystem level 2 hierarchical gene annotation, the function unknown category was the
most abundant across all samples. Their relative abundances were 20.71% (T1) and 21.08% (T2) in
termite mound soils and 20.65% (S1) and 20.19% (S2) in surrounding soil samples. This was followed
by protein biosynthesis and the relative abundances were 5.01% (T1) and 5.37% (T2) in termite mound
soils and 4.98% (S1) and 4.99% (S2) in their surrounding soil samples (Figure 4).
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3.3. α and β Diversity of the Functional Categories of both Soil Samples

The functional diversity at SEED Subsystem level 1, measured using the Shannon index and
the evenness index, did not differ significantly (p > 0.05) among the termite mound soils and the
surrounding soil samples (Table 1). A Kruskal–Wallis test revealed that the level of diversity difference
between the soil samples from the mounds was not significant (p = 0.97) while the level of diversity
difference between the surrounding soil samples was also not significant (p = 0.92). The principal
coordinate analysis (PCoA) plot was used to visualize the samples based on relative abundances of
annotations within Subsystems level 1 (Figure 5). The analysis of similarity (ANOSIM) showed that
p = 0.01, R = 0.58.

Table 1. Diversity and evenness estimation of the functional categories of soil samples at SEED
Subsystem level 1.

T1 T2 S1 S2 p-Value

Shannon_H 2.86 ± 0.16 2.87 ± 0.16 2.85 ± 0.16 2.84 ± 0.16 0.99
Evenness_eˆH/S 0.62 ± 0.06 0.63 ± 0.06 0.62 ± 0.07 0.61 ± 0.07

Mean ± standard deviation (n = 4). p-values based on Kruskal–Wallis test.
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3.4. Physiochemical Characterization of the Termite Mound Soils and Their Surrounding Soil Samples

From the soil analysis, it was observed that the soil pH levels (T1 = 5.10 and T2 = 4.48) in termite
mound soils were significantly (p-value < 0.05) more acidic than the pH (S1 = 5.80 and S2 = 5.38) in their
corresponding surrounding soil samples. The sand, clay, K, Ca, and N contents differed significantly
(p-value < 0.05) among both habitats. The clay, Ca, and K contents were all significantly (p-value < 0.05)
higher in termite mound soils than the surrounding soil samples, while the sand and N contents were
significantly (p-value < 0.05) higher in surrounding soil samples than the termite mound soils (Table 2).
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Table 2. Soil analysis of termite mound soils and their comparative surrounding soils.

Soil Property T1 T2 S1 S2

Sand (%) 65.00 ± 8.29a 47.75 ± 23.60b 72.00 ± 17.66c 76.50 ± 3.00d
Silt (%) 9.00 ± 2.94a 19.75 ± 11.38a 11.75 ± 12.87a 10.25 ± 0.96a

Clay (%) 26.00 ± 6.27a 33.25 ± 13.52a 16.25 ± 4.50b 13.25 ± 3.20c
K (mg/L) 393.50 ± 120.33a 427.50 ± 57.93a 216.75 ± 48.40b 184.50 ± 27.72c
Ca (mg/L) 1879.50 ± 587.38a 2237.75 ± 318.91a 1493.50 ± 456.59a 1108.50 ± 160.48b
Mg (mg/L) 575.00 ± 262.32a 622.25 ± 60.84a 349.75 ± 159.70a 330.25 ± 138.75a

pH 5.10 ± 0.33a 4.48 ± 0.46a 5.80 ± 0.32b 5.38 ± 0.39c
N (%) 0.09 ± 0.03a 0.10 ± 0.03b 0.59 ± 0.47c 0.25 ± 0.04d

P (mg/L) 0.25 ± 0.50a 0.75 ± 0.50a 0.00 ± 0.00a 0.00 ± 0.00a
OC (%) 0.31 ± 0.42a 0.10 ± 0.00a 0.11 ± 0.0a 0.11 ± 0.01a

Mean ± standard deviation (n = 4). Mean values in a same row with different letters (a, b, c, and d) were significantly
different (p-value < 0.05) based on Tukey’s pairwise significant difference test.

3.5. Influence of Environmental Factors on Bacterial Functional Category

The relationship between the measured soil parameters and the relative abundances within
bacterial functional categories at Subsystem level 1 were investigated using canonical correspondence
analysis. Three parameters, including sand, P, and Ca, were selected for CCA based on the significant
test (Figure 6) and, as shown in Table 3, the environmental factor that best explains variation in
functional gene composition.
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Figure 6. Canonical correspondence analysis (CCA) of functional categories and major soil chemical
parameters for both samples.

Table 3. Forward selection of environmental variables, which best explain variation in functional gene
composition (Subsystem level 1 genes) between samples.

Environmental Variable Explains % Contribution % Pseudo-F P

P 92.8 92.8 25.8 0.09
Ca 5.1 5.1 2.4 0.87

Sand 2.1 2.1 <0.1 1.

4. Discussion

Evaluating bacterial functional genes that take part in key biogeochemical processes is essential in
relating bacterial community structures to their potential ecological functions [18]. The SEED assembles
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metabolic pathways into a hierarchical structure where by the total genes essential for a particular
assignment are organized into subsystems. At the highest level of organization, the subsystems include
both anabolic and catabolic functions and at the lowest levels it includes specific pathways [32].

Our α diversity result showed that the functional diversity represented by the metagenomes in
both termite mound and surrounding soils approached its theoretical limit of 2.81 [33], showing that
most subsystems were represented in all of the samples. The evenness for the metagenomes was low
(around 0.61, Table 1), showing that there are a few dominant metabolisms (like carbohydrate and
amino acids and derivatives) in each environment. Differential dominant metabolisms suggest that
there are characteristic functional profiles of the metagenomes.

The bacterial functional categories did not differ significantly (p-value > 0.05) within the habitats
(Table 1). However, there were clear separations (the strength of the separation (R) = 0.58) between the
termite mound soils and the surrounding soil samples from our PCoA and 90.28% of the combined
PCoA axis 1 and 2 explained the community variation (Figure 5). This was tested with the analysis of
similarity (ANOSIM), which showed that the bacteria functional categories in termite mound soils and
their comparative surrounding soils varied significantly (p-value = 0.01).

To test the hypothesis that each environment has a distinguishing metabolic profile, a principal
component analysis (PCA) was conducted (Figure 3). Most of the variance between the termite
mound soils and the surrounding soil samples (c. 97.57%) was explained in this analysis, showing
that metagenomes are highly predictive of metabolic potential within an ecosystem. The position of
each metagenome in Figure 2 reflects the frequency combination of sequences associated with each
subsystem; the vector arrows show which metabolisms most strongly determined the distribution.
Using these as clues, it is possible to determine which metabolisms are important for the bacteria in each
environment relative to other environments. For example, subsystems involved in iron acquisition and
metabolism, phages, prophages, transposable elements, plasmids, phosphorus metabolism, protein
metabolism, RNA metabolism, regulation and cell signaling, RNA metabolism, and sulfur metabolism
placed the termite mound soil bacteria (T2) apart from the bacteria found within S1, S2, and T1.

From our results it was observed that each environment has a dominant functional gene category.
The predominant of sequences associated with carbohydrate metabolism, amino acids and derivatives,
fatty acids, lipids, and isoprenoids, metabolism of aromatic compounds, and motility and chemotaxis
in the surrounding soil samples were expected (Figure 2 and Supplementary Table S1). This is
because bacteria depend on the bioavailability of carbon, which is a major factor for their growth and
metabolism [34]. This became evident with most of the sequences related to central carbohydrate
metabolism, disaccharides, and oligosaccharides (Figure 4) and the large number of metabolic pathways
involved in the carbon cycle, like the serine glyoxylate cycle, were most abundant across S1 and S2
samples (Supplementary Figure S2A). Gianoulis et al. [35] explained that bacteria mostly utilize amino
acids as sources of energy in areas with limited plant nutrients and organic matter. Dhembare [10]
and Deke, Adugna, and Fite [11] have previously revealed that termite mound soils were richer in
plant nutrients such as calcium, phosphorus, magnesium, potassium, and organic matter, than their
surrounding soils. This became clear from our soil analysis, which showed that termite mound soils
were richer in phosphorus, calcium, magnesium, and potassium than the surrounding soil samples
(Table 2). With these low nutrient concentrations in the surrounding soils [36], it is likely that high
abundances of competitive related genes, such as motility and chemotaxis, will be advantageous for
bacteria thriving in such habitats, as it would help them to move, communicate, and rapidly acquire
available nutrients.

As expected, our study also revealed the predominant of sequences related to iron acquisition
and metabolism, virulence, disease and defense, phages, prophages, transposable elements,
and housekeeping genes (such as RNA metabolism and protein metabolism) in termite mound
soils. These functional genes are needed in order to provide meaningful protection to the termite’s
colony against fungal entomopathogens [20]. Sequences related to nitrogen, sulfur, and phosphorus
metabolism, which are linked with nutrient cycling, were recorded in both termite mound soils and the
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surrounding soil samples, though their relative abundance did not differ significantly (p-value > 0.05),
except for phosphorus metabolism. Soil bacteria are key drivers of soil nitrogen, sulfur, and the
phosphorus cycle [37] and this was confirmed with the presence of high relative abundances of metabolic
processes in nitrogen cycling (such as ammonia assimilation, nitrate and nitrite ammonification, nitric
oxide synthase, allantoin utilization, denitrification, and nitrogen fixation in both types of samples
(Figure S2C)), metabolic processes related to alkanesulfonate assimilation, sulfur oxidation, utilization
of glutathione, inorganic sulfur assimilation, galactosylceramide and sulfatide metabolism (Figure S2B),
and phosphate metabolism (Supplementary Figure S2D). Clustering based on subsystems, which have
been defined as functionally coupled genes with unknown functions by Castañeda and Barbosa [38]
and Uroz et al. [39], were the second most abundant functional category in this study. With the high
proportion of clustering-based on subsystems in the entire functional categories and the function
unknown in Subsystem level 2 (Figures 2 and 4 respectively), it shows the level of bacteria genes
present in soil whose functionalities are largely underexploited.

We also hypothesized that bacterial functional diversity will be driven by soil physicochemical
parameters. The canonical correspondence analyses (CCA) plot (Figure 6) indicated the functional
categories are likely dependent on the soil properties. The vector length of Ca (on the axis 1) positively
correlated with phosphorus metabolism, protein metabolism, membrane transport, virulence, disease,
and defense. On axis 2, the vector length of P positively correlated with carbohydrates, RNA
metabolism, iron acquisition and metabolism, and phages, prophages, transposable elements, plasmids,
but negatively correlated with motility and chemotaxis. The CCA result of the Subsystem level 1
functional category showed that P was the best predictor for functional category composition,
alone explaining 92.8% of the total variation (Table 3, Figure 6). Environmental factors have been
acknowledged as the main drivers of soil bacterial distribution with physicochemical parameters,
seen as a principal variable elucidating larger quotas of the variations in soil bacterial diversity and
structure [40,41]. Soil physical and chemical parameters have been reported to influence bacterial
functional categories [42]. This showed then that soil physicochemical parameters in this study,
influenced the relative abundance of bacteria functional categories in both environments.

5. Conclusions

This study, to our knowledge, represents a foremost effort to unveil the functional profile of
bacteria in termite mound soils using a shotgun metagenomic approach. Our metagenomic analysis
showed that termite mound soils and their surrounding soil samples housed similar bacteria functional
categories, of which the relative abundances of 16 functional categories differed significantly between
both habitats. Furthermore, our α diversity analysis showed no significant difference in bacterial
functional categories within both habitats, while the β diversity showed that bacterial functional
categories varied significantly between the termite mound soils and the surrounding soil samples.
We also reported the influence of physicochemical parameters on the relative abundances of the
functional categories in both environments. This study also revealed high relative abundances of
functional categories with unknown functions, signifying the likelihood of getting novel genes from
the metagenome. We therefore recommend more studies to further investigate the functional gene
categories in termite mound soils. This could help to unveil the ecological roles of these function
unknown categories, which may play a vital part in the biogeochemical cycle and industrial and
biotechnological processes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/9/637/s1,
Figure S1: Heatmap of bacterial phyla in termite mound soils and their corresponding surrounding soil samples,
Figure S2A: relative abundance of pathways involved in carbohydrate metabolism in both soil samples, Figure S2B:
relative abundance of pathways involved in sulphur metabolism in both samples, Figure S2C: relative abundance
of pathways involved in nitrogen metabolism in both samples, Figure S2D: relative abundance of pathways
involved in phosphorus metabolism in both samples, Table S1: Mean percentage of sequences similar to major
metabolisms in termite mound soils and the surrounding soils.
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