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Longitudinal association between 
toenail zinc levels and the incidence 
of diabetes among American young 
adults: The CARDIA Trace Element 
Study
Jong Suk Park1,2, Pengcheng Xun1, Jing Li1, Steve J. Morris3, David R. Jacobs4, Kiang Liu5 & 
Ka He1

Data on primary prevention of zinc status and diabetes risk are sparse and inconsistent. Of note, the 
previous studies measured either dietary zinc intake with questionnaire or zinc status in serum or hair. 
Toenail zinc levels are reliable biomarkers of a relatively long-term exposure. A total of 3,960 American 
young adults, aged 20–32 years, free of diabetes at baseline in 1987 when toenail clippings were 
collected, were examined for incident diabetes through 2010. Toenail zinc levels were measured with 
an inductively-coupled-plasma mass spectroscopy method. Incident diabetes cases were identified 
by fasting or non-fasting plasma glucose levels, oral glucose tolerance tests, hemoglobin A1C levels, 
and/or antidiabetic medications. During the 23-year follow-up, 418 incident diabetes occurred. After 
adjusted for age, sex, ethnicity, study center, body mass index, education, smoking status, alcohol 
consumption, physical activity, family history of diabetes, homeostasis model assessment of insulin 
resistance, and other dietary and non-dietary potential confounders, the hazard ratio of incident 
diabetes comparing the highest to the lowest quartile of toenail zinc levels was 1.21 (95% CI: 0.90–1.63; 
Ptrend = 0.20). Findings from this study do not support the hypothesis that zinc status is inversely and 
longitudinally associated with the incidence of diabetes in American young adults.

The prevalence of diabetes mellitus is increasing rapidly all over the world and has become a major public health 
concern. Many factors including diet have been recognized to be associated with the risk of diabetes. Zinc is an 
essential micronutrient, which is important for cellular growth and maintenance of biological processes. Zinc lev-
els in pancreatic islet cells are tightly regulated, so that dysregulation of zinc metabolism could affect the synthesis 
and secretion of insulin as well as glycemic control1–3. Thus, it has been hypothesized that zinc status is inversely 
related to diabetes risk.

Previous studies investigated zinc status in diabetic patients and findings were controversial. Some studies 
showed no difference in zinc levels between diabetic patients and apparently healthy controls4,5, while other stud-
ies reported that diabetes was strongly associated with zinc deficiency3,6–8. Data on primary prevention of zinc sta-
tus and diabetes risk are sparse and inconsistent. Two cohort studies reported that dietary zinc intake is associated 
with lower risk of type 2 diabetes9,10. Recently, another cohort study found that higher serum zinc was associated 
with higher risk of type 2 diabetes11. However, another cohort study conducted in a Chinese population found 
no association between dietary zinc intake and hyperglycemia12. To date, one Cochrane review based on three 
intervention studies found that zinc supplementation was not related to incidence of diabetes13.
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Of note, the previous studies either measured dietary zinc intake with questionnaire or zinc status in serum 
or hair. Because of the large variation, questionnaire may not be able to capture zinc intake. Also, the exposure 
time frame reflected by serum zinc is relatively short14. Human hair has been used as a biomarker of zinc status 
in the studies of diabetes15,16. However, hair analysis is prone to be affected by cosmetic procedures such as dye-
ing, bleaching and permanent waving that alter trace element content in hair17. In fact, hair as a biomarker for 
assessing trace element status has been questioned18–20. By contrast, toenail zinc levels are reliable biomarkers of 
a relatively long-term exposure and have been used in other studies21–23. In addition, study has indicated a good 
reproducibility of toenail zinc level over a 6-year period24.

Therefore, we prospectively investigated toenail zinc levels in relation to the incidence of diabetes in a large 
cohort of American young adults using data from the Coronary Artery Risk Development in Young Adults 
(CARDIA) Study.

Methods
The CARDIA study is a multi-center, prospective study to investigate risk factors for cardiovascular disease in 
American young adults. The detailed information on the study design and protocol has been published25. Briefly, 
5,114 African American and Caucasian men and women, aged 18–30 years, were enrolled from 4 US cities  
(Birmingham, AL; Chicago, IL; Minneapolis, MN and Oakland, CA) from 1985 to 1986. Seven follow-up exam-
inations have been conducted in 1987/88, 1990/91, 1992/93, 1995/96, 2000/01, 2005/06, and 2010/11. About 
68.4% (3,499/5,114) of participants in the original cohort returned in 2010/11 examination, which resulted in 
an average follow-up rate of 94.6% between two adjacent visits. The study design, data collection, and analyses 
were approved by the institutional review boards at all the participating institutions: the University of Alabama 
at Birmingham, the University of Minnesota, Northwestern University, and Kaiser Permanente, and written 
informed consent was obtained from all participants. And all the methods were carried out in accordance with 
the approved guidelines.

Study population. Study population is 4,362 CARDIA participants who provided toenail clippings in 
1987/88. At baseline, we excluded participants who had diabetes (n =  11); participants with missing data on 
important covariates (n =  182) [including glucose (n =  66), alcohol consumption (n =  1), body mass index (BMI) 
(n =  2), magnesium and long chain n-3 polyunsaturated fatty acid (LCn-3PUFAs) intake (n =  98), and family 
history of diabetes (n =  15)]; those who had insufficient information for defining incident diabetes during the 
follow-up (n =  3); and women who were pregnant at any examination (n =  206). After these exclusions, a total of 
3,960 participants remained in the analysis.

Assessment of toenail zinc. Toenail clippings were collected with a stainless-steel clipper from all 10 toes 
by the participants themselves during the clinical examination in 1987 and stored. All toenail clippings were 
processed with a washing procedure in a sonicator with deionized water. Toenail zinc levels were measured by 
the Inductively-Coupled-Plasma Mass Spectroscopy method at the University of Missouri Research Reactor26. 
Toenail samples were analyzed in random order by the laboratory personnel blinded to other clinical measures. 
The coefficient of variation in duplicated subsamples for the toenail zinc measure was 6.5% in the present study. A 
study showed that Spearman correlation coefficient for the reproducibility of toenail zinc over 6 years was 0.5824.

Assessment of glucose, insulin, HOMA-IR, OGTT, and HbA1c. Fasting plasma glucose and insulin 
levels were determined by the hexokinase ultraviolet method and radioimmunoassay, respectively, at exam years 
0, 7, 10, 15, 20, and 25. To assure comparability of plasma glucose and insulin across examinations, they were 
recalibrated, which was described in detail previously27. Homeostasis model assessment of insulin resistance 
(HOMA-IR) was calculated as glucose (mmol/L) ×  insulin (mU/L)/22.5. Two-hour plasma glucose levels were 
measured from a standard 2-hour oral glucose tolerance test (OGTT) at years 10, 20 and 25. Glycated hemoglobin 
(HbA1c) was assessed using a Tosoh G7 high performance liquid chromatography instrument (Tosoh Bioscience) 
at years 20 and 25. The inter-assay CVs were 2.0–3.0%.

Ascertainment of diabetes. At any follow-up examination, participants with one or more of the follow-
ings were determined as having incident diabetes: 1) fasting plasma glucose ≥ 7.0 mmol/L; 2) non-fasting plasma 
glucose ≥ 11.1 mmol/L; 3) postprandial 2-hour plasma glucose ≥ 11.1 mmol/L from an OGTT; 4) HbA1c ≥ 6.5% 
(≥ 48 mmol/mol); or 5) reported use of antidiabetic medications, which were verified by medication names28.

We could not clearly distinguish diabetes type, because some participants were young at diagnosis and used 
insulin as treatment. Therefore, we used the term “diabetes” rather than “type 2 diabetes”, but the great majority 
of cases were type 2 diabetes.

Measurement of other covariates. Age, gender, ethnicity, education level, smoking status, and alco-
hol consumption were self-reported, obtained by interview or self-administered questionnaire. Smoking sta-
tus was classified into three groups: never, former, and current smokers. Alcohol consumption was classified 
into four groups according to total daily intake: never, 0.1–9.9, 10–19.9, and ≥ 20 g/day. Body weight and height 
were directly measured in light clothes without shoes, BMI was calculated as weight (kg) divided by height 
squared (m2). Physical activity was assessed using the CARDIA Physical Activity History Questionnaire, an 
interviewer-based self-report of frequency of participation in each of 13 categories of sports and exercise over 
the previous 12 months. A score of 100 exercise units (EU) is approximately equivalent to participation in vigor-
ous activity for 2–3 hours/week during 6 months of the year29,30. Family history of diabetes was defined as either 
mother or father having diabetes.
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Assessment of zinc intake and other dietary factors. Briefly, we collected dietary data, including zinc 
intake and assessed three times at baseline, exam years 7 and 20, using a validated interviewer-administered 
CARDIA Diet History Questionnaire. Information on supplement use was also collected. Zinc intake represented 
the sum of dietary zinc intake and zinc supplementation. The details of dietary assessment and validation in 
CARDIA have been described previously31,32.

Statistical analysis. Distributions of baseline characteristics categorized by quartiles of toenail zinc levels 
were described by mean (standard deviations), median (inter-quartile ranges), or percentage, whichever was 
proper. The difference across categories of toenail zinc concentration was compared using analysis of variance, 
Kruskal-Wallis test, or chi-squared test as appropriate.

We calculated the incidence of diabetes according to the quartiles of toenail zinc levels. Participants contrib-
uted to person-time from the baseline to the time when a case was identified, a participant was censored, or the 
end of the study, whichever came first. Cox proportional hazards models were used to estimate the hazard ratios 
(HRs) and 95% confidence intervals (CIs) of the incident diabetes. Owing to the limited literature on this research 
topic, potential confounders were identified mainly based on statistical tests and our previous knowledge in stud-
ying zinc in relation to other health end points. We considered several sequential models in the main analysis: 
The initial analysis (model 1) was adjusted for age, sex, ethnicity, study center, BMI and baseline HOMA-IR. In 
model 2, we further adjusted for education, smoking status, alcohol consumption, physical activity, and family 
history of diabetes. In model 3, we additionally adjusted for intakes of LCn-3PUFAs and magnesium, and toenail 
levels of selenium, mercury and chromium. Continuous variables were created using the median values in each 
quartile for trend tests.

In addition, we explored possible interactions between toenail zinc concentrations and pre-specified poten-
tial effect modifiers by adding corresponding multiplicative interaction terms in the models, followed by the 
likelihood ratio test. If the interaction was statistically significant, we reported stratified results. Moreover, we 
did several sensitivity analyses to test the robustness of our results. First, we substituted waist circumference for 
BMI in the models. Second, because the cutoff point of fasting glucose for defining diabetes was changed from 
140–126 mg/dL in 1997, we used a cutoff point of 140 mg/dL at exam years before 1997. Third, considering diabe-
tes may also cause the change in zinc metabolism, we excluded the baseline HOMA-IR from the model.

All analyses were carried out by using SAS 9.4 (SAS Institute, Inc., Cary, NC, USA). All tests were two sided 
and P ≤  0.05 was considered statistically significant.

Results
A total of 3,960 participants were divided into four groups according to their toenail zinc concentrations. Baseline 
clinical and biochemical characteristics of the study population were presented in Table 1. The median values of 

Characteristics

Quartiles of toenail zinc levels

Total P value†Q1(lowest) Q2 Q3 Q4 (highest)

n 991 994 986 989 3,960 –

Toenail zinc (μg/g) 31.20 (22.40–37.70) 49.60 (46.60–52.40) 61.10 (58.50–64.40) 77.50 (71.40–87.10) 55.50 (42.80–67.50) –

Toenail selenium (μg/g) 0.80 (0.72–0.90) 0.83 (0.75–0.92) 0.86 (0.77–0.95) 0.86 (0.78–0.96) 0.84 (0.75–0.94) < 0.01

Toenail mercury (μg/g) 0.19 (0.11–0.32) 0.20 (0.12–0.36) 0.23 (0.14–0.40) 0.24 (0.13–0.41) 0.21 (0.12–0.37) < 0.01

Toenail chromium (μg/g) 0.47 (0.21–1.01) 0.55 (0.25–1.22) 0.54 (0.28–1.15) 0.63 (0.34–1.43) 0.55 (0.26–1.21) < 0.01

Age (year) 26.60 ±  3.70 26.96 ±  3.57 27.28 ±  3.53 27.29 ± 3.61 27.03 ±  3.61 < 0.01

Female (%) 54.39 49.30 51.42 53.69 52.20 0.09

African American (%) 56.91 51.51 43.81 39.23 47.88 < 0.01

Current smoker (%) 19.48 21.83 21.10 21.54 20.98 0.58

Physical activity score (EU) 288 (140–510) 336 (179–541) 328 (179–532) 327 (190–556) 322 (168–535) < 0.01

Education (year) 14.06 ±  2.19 14.16 ±  2.32 14.29 ±  2.46 14.44 ±  3.63 14.24 ±  2.72 0.01

BMI (kg/m2) 25.07 ±  5.64 25.15 ±  5.29 25.10 ±  5.10 25.45 ±  5.52 25.19 ±  5.39 0.36

FH of diabetes (%) 29.57 27.57 26.27 27.91 27.83 0.44

Insulin (μU/mL) 10.88 ±  7.55 11.22 ±  9.13 10.30 ±  7.91 10.37 ±  7.06 10.69 ±  7.96 0.03

Glucose (mg/dL) 81.09 ±  8.60 81.89 ±  8.50 82.52 ±  8.12 81.78 ±  7.88 81.82 ±  8.30 < 0.01

HOMA-IR (μU/mL · mg/dL) 1.56 ±  1.15 1.62 ±  1.39 1.50 ±  1.25 1.50 ±  1.08 1.55 ±  1.22 0.07

Energy intake (kcal/day) 2798.51 ±  1349.55 2896.95 ±  1357.13 2861.47 ±  1337.46 2752.53 ±  1275.45 2827.41 ±  1330.99 0.07

Alcohol intake (ml/day) 3.39 (0.00–13.20) 5.07 (0.00–16.23) 6.09 (0.00–16.23) 5.41 (0.00–16.93) 5.07 (0.00–15.90) < 0.01

LCn-3PUFA intake (g/day) 0.12 ±  0.24 0.11 ±  0.14 0.12 ±  0.17 0.12 ±  0.15 0.12 ±  0.18 0.82

Magnesium intake (mg/day) 361.55 ±  179.65 395.19 ±  194.78 406.91 ±  214.33 402.61 ±  206.57 391.57 ±  199.95 < 0.01

Table 1.  Baseline characteristics by quartiles of toenail zinc levels, the CARDIA Trace Element Study, 
1987–2010 (n = 3,960)*. Abbreviations: BMI: body mass index; CARDIA: Coronary Artery Risk Development 
in Young Adults; EU: exercise unit; FH: family history; HOMA-IR: homeostatic model assessment–insulin 
resistance; LCn-3PUFA: long chain omega-3 polyunsaturated fatty acid. *Data are medians (inter-quartile 
ranges), means ±  standard deviations or proportions. †P values are for any difference across the quartiles of 
toenail zinc levels by using analysis of variance, Kruskal-Wallis test, or chi-squared test as appropriate.
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toenail zinc across quartiles were 31.2, 49.6, 61.1, and 77.5 μg/g. Compared with participants in the lowest quartile 
of toenail zinc concentrations, those in the highest quartile were slightly older and more likely to be Caucasians, 
exercised more, drank more, had a higher education level, and higher levels of fasting glucose, toenail selenium, 
mercury and chromium, and lower levels of fasting insulin. In addition, participants with higher toenail zinc 
levels consumed more magnesium.

During the 23 years of follow-up, 418 incident cases of diabetes were identified, including 265 cases deter-
mined by fasting glucose criteria and 3, 48, 62 and 40 cases determined by non-fasting glucose, 2-hour glucose 
after OGTT, HbA1c and anti-diabetic medication use criteria, respectively.

A non-significant association was found between toenail zinc levels and the incidence of diabetes after adjust-
ment for demographic and major lifestyle variables, including BMI (Table 2). As compared with participants in 
the lowest quartile of toenail zinc, the fully adjusted hazard ratios of incident diabetes from the second to the 
fourth quartiles were 1.14 (95% CI: 0.85, 1.52), 1.17 (95% CI: 0.87, 1.59), and 1.21 (95% CI: 0.90, 1.63), respec-
tively (P for linear trend =  0.20).

We further explored the association between dietary zinc intake and diabetes risk. Similarly, no significant 
association was observed (Appendix Table). After multivariable adjustment, the hazard ratios of incident dia-
betes across quartiles of dietary zinc intake were 1.00 (reference), 1.03 (95% CI: 0.76, 1.39), 0.97 (95% CI: 0.67, 
1.42), and 1.27 (95% CI: 0.81, 2.01), respectively (P for linear trend =  0.23). Since two previous studies reported 
an inverse association between dietary zinc intake and incidence of diabetes9,10, we pooled the results from these 
two studies with our findings. The combined hazards ratio of diabetes was 0.85 (95% CI: 0.57, 1.26) compared the 
highest to the lowest zinc intake group.

Our findings were not materially modified by race, sex and weight status (data not shown). In the sensitivity 
analyses, the results were not appreciably changed when we substituted waist circumference for BMI in the mod-
els. In addition, the findings remained when we used different definitions of diabetes based on the time period of 
the examination. Moreover, excluding baseline HOMA-IR from the model did not change the results materially, 
either (data not shown).

Conclusions
In this large cohort study, we prospectively investigated toenail zinc concentration and dietary zinc intake in 
relation to the incidence of diabetes among American young adults. No significant associations were observed 
between toenail zinc or dietary zinc intake and diabetes incidence during 23 years of follow-up.

Previous studies found that serum zinc levels in people with diabetes were lower than that in people without 
diabetes in the control group6–8. The possible explanations were that urinary excretion of zinc might increase and 
intestinal reabsorption of endogenous zinc might be impaired in people with diabetes33,34. A systematic review 
published in 2012 summarized data from 3 studies on type 1 diabetes and 22 studies on type 2 diabetes, and 
concluded that zinc supplementation has beneficial effects on glycemic control35. However, in apparently healthy 
individuals, no significant reduction in glucose concentration following zinc supplementation was observed36–38, 
which is generally consistent with our findings. In addition, clinical trials have failed to demonstrate that zinc 
supplementation will reduce the incidence of type 2 diabetes mellitus12.

To date, two cohort studies examined the longitudinal association between dietary zinc intake and the inci-
dence of type 2 diabetes9,10. Using data from the Nurses’ Health Study, Sun et al. reported that zinc intake was 
inversely associated with incidence of type 2 diabetes, though the generalizability may be limited by the fact that 
the great majority of participants are white nurses9. Findings from Sun et al. were supported by a study among 
8,921 Australian women, aged 45–50 years, with 6 years of follow-up10. Nevertheless, when we pooled the results 
from these two studies with findings in our study, no significant association was found between dietary zinc 

Quartile of toenail zinc levels

P for  
linear trend†

Q1 
(lowest) Q2 Q3 Q4 (highest)

Toenail zinc (μg/g) < 42.9 42.9–55.4 55.5–67.5 > 67.6

No. of participants 991 994 986 989

No. of events 107 103 99 109

Model 1‡ 1.00 1.10 (0.83, 1.46) 1.13 (0.84, 1.52) 1.22 (0.91, 1.62) 0.18

Model 2§ 1.00 1.13 (0.85, 1.50) 1.15 (0.86, 1.56) 1.21 (0.90, 1.62) 0.20

Model 3|| 1.00 1.14 (0.85, 1.52) 1.17 (0.87, 1.59) 1.21 (0.90, 1.63) 0.20

Table 2.  Multivariable-adjusted HRs and 95% CIs for incidence of diabetes by quartiles of toenail zinc 
levels, the CARDIA Trace Element Study, 1987–2010 (n = 3,960)*. Abbreviations: BMI: body mass index; 
CI: confidence interval; HOMA-IR: homeostatic model assessment – insulin resistance; HR: hazard ratio; 
LCn-3PUFA: long chain omega-3 polyunsaturated fatty acid. *All models were constructed by using Cox 
proportional hazards model. †Medians of zinc in each quartile were used for testing the linear trend. ‡Model 
1: adjustment for age (continuous), gender, ethnicity (African American or Caucasian), study center, BMI 
(continuous) and baseline HOMA-IR (quartiles). §Model 2: model 1 with additional adjustment for education 
(continuous), smoking status (never smokers, former smokers, or current smokers), alcohol consumption (0, 
0.1–9.9, 10.0–19.9 or ≥ 20 g/day), physical activity (quartiles) and family history of diabetes (yes or no). ||Model 
3: model 2 with additional adjustment for intakes (quartiles) of LCn-3PUFAs and magnesium, and toenail 
elements (quartiles) including selenium, mercury and chromium.
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intake and diabetes risk. Of note, dietary zinc intake quantified by the food frequency questionnaire may not be 
able to capture the accurate zinc intake due to the relatively large variation of zinc content in food15.

In the present study, we do not find any significant association between toenail zinc concentration or dietary 
zinc intake and the incidence of diabetes. There may be a few possible explanations for the null findings: 1) 
random measurement errors in both toenail zinc and zinc intake may attenuate any potential association39,40;  
2) although the advantage of toenails as a long-term exposure biomarker of zinc status has been recognized15,24, 
one toenail zinc measurement at baseline may not reflect the changes in zinc status during the follow-up. Since 
the changes are likely to be non-differential, the possible association may be attenuated; 3) comparing to previous 
studies9–11, average zinc intake in the present study was substantially higher. For example, the average dietary 
zinc intake were 9.4 mg/day (median) in the Nurses’ Health Study9, and 10.66 mg/day (mean) in the Australian 
Longitudinal Study on Women’s Health10, while mean dietary zinc intake in our study was 16.7 mg/day. As a 
result, participants even in the lowest zinc group may have already obtained the maximal benefit, further increase 
in zinc status or intake may not provide additional benefit; and 4) a negative confounder, i.e. a factor with an 
opposite association with zinc status and incidence of diabetes, could bias any possible association towards the 
null. However, the likelihood should be small since we carefully considered a number of potential confounding 
factors in the analyses41.

The strengths of our study include a long-term prospective study design, a large cohort of young adults, and 
well balanced for gender and ethnicity. The previous cohort studies were conducted in Caucasian women or Asian 
population. Our study adds additional information on men and African American. Also, both zinc intake and 
toenail zinc concentration were measured and the results were consistent. In addition, our diabetes cases were 
not self-reported, but defined mainly based on fasting and non-fasting glucose levels, postprandial glucose levels 
from an OGTT and HbA1c measurements besides antidiabetic medications.

Our study also has limitations. First, the possibility of confounding from unknown or unmeasured factors 
cannot be completely excluded. Second, toenail zinc concentrations were only measured once at baseline. Thus, 
we were unable to study any change in zinc levels in relation to the incidence of diabetes. For example, if partici-
pants with low zinc levels at baseline increased zinc intakes later on, any possible association would be attenuated. 
Finally, the young participants in the present study were recruited from urban areas, the generalizability may 
be limited. However, the CARDIA sampling frame insures desired population balance at baseline, and thus the 
population can be considered representative of the baseline city populations.

In conclusion, in this cohort of American young adults, we did not find any significant longitudinal associa-
tion between toenail zinc levels or dietary zinc intake and the incidence of diabetes. Our results do not support 
the hypothesis that zinc may contribute to the reduction of diabetes risk.
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