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Cabbages (Brassica oleracea L.) are an important vegetable crop around world, and cold temperature is among the most significant
abiotic stresses causing agricultural losses, especially in cabbage crops. Plant bZIP transcription factors play diverse roles in
biotic/abiotic stress responses. In this study, 119 putative BolbZIP transcription factors were identified using amino acid sequences
from several bZIP domain consensus sequences. The BolbZIP members were classified into 63 categories based on amino acid
sequence similarity and were also compared with BrbZIP and AtbZIP transcription factors. Based on this BolbZIP identification and
classification, cold stress-responsive BolbZIP genes were screened in inbred lines, BN106 and BN107, using RNA sequencing data
and qRT-PCR. The expression level of the 3 genes, Bol008071, Bol033132, and Bol042729, was significantly increased in BN107 under
cold conditions and was unchanged in BN106. The upregulation of these genes in BNI07, a cold-susceptible inbred line, suggests that
they might be significant components in the cold response. Among three identified genes, Bol033132 has 97% sequence similarity
to Bra020735, which was identified in a screen for cold-related genes in B. rapa and a protein containing N-rich regions in LCRs.
The results obtained in this study provide valuable information for understanding the potential function of BolbZIP transcription

factors in cold stress responses.

1. Introduction

Cabbage (Brassica oleracea L.) plants represent one of the
major vegetable crops grown worldwide. Most crops of B.
oleracea and its sister species Brassica rapa produce a range of
phytochemicals with diverse functions for plant defense such
as polyphenolic compounds, carotenoids, and glucosinolates
[1, 2]. The draft genome sequences of B. oleracea (with the
CC genome) and B. rapa (with the AA genome) were recently
published [3, 4]. A total of 66.5% (34,237) of B. oleracea genes
and 74.9% (34,324) of B. rapa genes were clustered. In total,
5,735 B. rapa-specific genes and 9,832 B. oleracea-specific
genes among 45,758 protein coding genes were identified.
The availability of published genome sequence for these
crop plants facilitates studies of structural and functional
genomics in agronomically important species.

Plant bZIP transcription factors play diverse roles in
developmental and physiological processes and biotic/abiotic

stress responses such as ABA signaling for osmotic stress
responses during vegetative growth [5], seed germination
and flowering time [6], glucose-ABA signaling [7], sugar
signaling during metabolism [8], lipid stress responses [9],
response to zinc deficiency [10], salicylic acid- (SA-) depen-
dent plant systemic defense responses and the activation of
jasmonic acid- (JA-) and ethylene (ET-) dependent defense
mechanisms [11], anthocyanin accumulation during photo
morphogenesis [12], floral patterning [13], auxin-mediated
histone acetylation related AtbZIP11 [14], and ABA signaling
related to stress tolerance [15]. As the focus of recent studies
due to their importance as regulator of responses to the
biotic and abiotic stresses, bZIP transcription factors have
been identified in diverse plants. Based on the presence of
the UARR and LCRs, 136 bZIPs were identified in B. rapa;
64 were found in cucumber based on predicted structural
features, 92 in sorghum through genome-wide identification
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and characterization, 89 in rice according to their DNA
binding specificity and amino acid sequences in basic and
hinge regions, 131 in soybean based on the basic region of
the bZIP domain and the presence of additional conserved
motifs, 75 in Arabidopsis according to sequence similarities
of their basic region and additional conserved motifs, and 141
in Hordeum vulgare [16-22]. However, little is known about
the genome-wide survey and expression patterns of bZIP
transcription factors in B. oleracea. Among the BolbZIPs,
the function of only one gene related with drought stress
and ABA has been reported. Expression of BolABI5 was
dramatically induced by drought stress and exogenous ABA
[23]. Heterogeneous expression of BolABI5 rescued the ABA-
insensitive phenotype of the Arabidopsis abi5-1 mutant during
seed germination, suggesting that BolABI5 likely functions in
positive regulation of plant ABA responses.

The bZIP domain includes a basic region and a leucine
zipper located on a contiguous a-helix. An N-x7-R/K motif
comprising ~16 amino acids constitutes the basic region,
which binds DNA containing a nuclear localization signal.
The leucine zipper is composed of leucine residue repeat and
is positioned precisely at nine amino acids towards the C-
terminus from the arginine in the basic region, creating an
amphipathic helix. To bind DNA, two subunits adhere via
interactions between the hydrophobic sides of their helices,
which create a superimposed coiled-coil structure for homo-
or/and heterodimerization. Plant bZIPs preferentially bind
to specific sequences, namely, the A-box (TACGTA), C-
box (GACGTC), and G-box (CACGTG), but there are also
examples of nonpalindromic binding sites [21].

In this study, we identified 119 BolbZIP proteins using the
consensus sequence of several bZIP proteins and classified
them based on specific amino acid sequence, unique amino
acid repeat regions (UARRs), and low complexity regions
(LCRs). Additionally, transcriptome analysis related to cold
stress responses using RNA sequencing provided valuable
information for research into stress tolerance and molecular
breeding in B. oleracea.

2. Materials and Methods

2.1. Database Searches for bZIP Transcription Factors in
B. oleracea. The AtbZIP, BrbZIP, and BolbZIP amino acid
sequences obtained from TAIR (http://www.arabidopsis
.org/), BRAD (http://brassicadb.org/brad/), and Bolbase
(http://ocri-genomics.org/bolbase/). To confirm the presence
of bZIP domain, UARR and LCRs in putative AtbZIP,
and BrbZIP and BolbZIP proteins, the Motif scan tool
(http://myhits.isb-sib.ch/cgi-bin/motif_scan), SMART tool
(http://smart.embl-heidelberg.de/), and Batch CD-search
tool (http://www.ncbinlm.nih.gov/Structure/bwrpsb/bwrpsb
.cgi) were used. bZIP proteins that showed the presence of
a bZIP domain, UARR, and LCRs with confidence (E-value
< 0.1) in the Motif scan tool and Batch CD-search tool were
used for further analyses. Next, LCRs were identified using
the SMART tool.

2.2. Plant Material and Cold Treatment. Seeds of B. oleracea
(inbred lines “BN106” and “BN107”) were germinated in soil
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and then grown for approximately 3 weeks in a growth cham-
ber at 25°C under long day condition (16 h day/8 h night). For
cold treatment, the 5-week-old plants were transferred to a
4°C growth chamber under continuous light conditions. The
plants were then treated with cold temperature at 4°C for 6 h,
followed by 0°C for 2 h. Further, the plants were subjected to
freezing treatment at —2°C for 2 h followed by 4°C for 6 h.

2.3. RNA Extraction and cDNA Synthesis. Total RNA was
isolated from plant tissues using an RNA extraction kit (Qia-
gen, USA) according to the manufacturer’s protocol. Total
RNA was treated with RNase-free DNase (Promega, USA) to
remove the genomic DNA contamination. The quality of total
RNA was checked using a nanoDrop Spectrometer (nD-1000
Spectrophotometer, Peqlab) and agarose gel electrophoresis.
c¢DNA was then synthesized using Superscript II reverse-
transcriptase (Invitrogen), after which 5 uL (about 2 ug) total
RNA and 1uL of oligo dT (500 pg/mL) were mixed in the
reaction tube and then heated at 65°C for 10 min. The enzyme
was then added into the tube and incubated at 42°C for
50 min. Finally, the reaction tube was incubated at 70°C for
15 min to inactivate the enzyme.

2.4. RNA Sequencing. Two cabbage lines, BN106 and BNI07
which exhibit different sensitivity to cold stress, were used
for RNA sequencing. Total RNA was extracted from leaves
of BN106 and BNIO7 at 2 h in 0°C. The total RNA was isolated
using TRIzol reagent (Invitrogen, USA) following the manu-
facturer’s instructions. Total RNA (20 ug) from each sample,
BN106_22°C and BN107_22°C (control) and BN106_0°C and
BN107_0°C (treated), were used for Illumina sequencing
(33 G 101 bp paired-end reads; Seeders, Republic of Korea).
Transcripts of unigenes assembled from the total reads were
validated by direct comparison with gene sequences in the
Phytozome 15 (https://phytozome.jgi.doe.gov/pz/portal. html)
using BLASTx (threshold E-value < le '%). The number of
mapped clean reads for each unigene was counted and nor-
malized using the DESeq package in R on two independent
biological replicates. From the differentially expressed gene
dataset, the transcripts of bZIP transcription factors were
analyzed for up- and downregulated differentially expressed
genes. BolbZIP sequence and RNAseq database sequences
were aligned to each other using ClustalW with default
parameters (http://www.genome.jp/tools/clustalw/).

2.5. RT-PCR and qRT-PCR. Quantitative real-time PCR
(qQRT-PCR) and reverse transcription PCR (RT-PCR) were
conducted using cDNA from cold treated plants using
primers specific for the BolbZIP gene (see Table S1 in Supple-
mentary Material available online at http://dx.doi.org/10.1155/
2016/4376598). RT-PCR was conducted using cDNA of plants
exposed to cold and freezing temperatures (22°C, 4°C, 0°C,
and —2°C). The PCR procedure involved predenaturation at
95°C for 5 min followed by cycles of denaturation at 95°C for
305, annealing at 60°C for 30 s, extension at 72°C for 30 min,
and then a final extension for 5min at 72°C. qRT-PCR was
conducted by subjecting the samples to initial denaturation
at 95°C for 10 min followed by 40 cycles of 95°C for 20's, 60°C
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FIGURE 1: Distribution of BolbZIP genes onto the nine assembled B. oleracea chromosomes. Graphical (scaled) representation of physical
locations for each BolbZIP gene on B. oleracea chromosomes (numbered C01-C09). Chromosomal distances are given in Mbp.

for 20's, 72°C for 30's, and final extension at 72°C for 2 min.
An actin primer set for B. oleracea was used for normalization
of RT-PCR and qRT-PCR.

3. Results

3.1. Identification of bZIP Transcription Factors in B. oleracea.
To search for bZIP transcription factors in B. oleracea, we
used the conserved bZIP domain consensus sequences (Table
S2) of several proteins as BLASTP queries against the Brassica
database (http://brassicadb.org/brad/). In addition, homol-
ogy searches using 136 BrbZIP proteins were performed [16].
A total of 126 BolbZIP candidates were initially obtained
with a probability E-value threshold of 0.05. To confirm the
presence of a bZIP domain in the selected bZIP proteins,
domain searches were performed with several tools (see
Section 2). After exclusion of the proteins lacking a bZIP
domain, 119 putative BolbZIP transcription factors were
identified. The position of each candidate BolbZIP gene in B.
oleracea chromosome data available at Bolbase (Version 1.0)
was then determined.

Among 119 candidate BolbZIP genes, 112 were mapped on
chromosomes C01-C09 (Figure 1). 14 genes of BolbZIP were
mapped on CO01, 12 genes on C02, 15 genes on C03, 23 genes
on C04, 8 genes on CO05, 7 genes on C06, 10 genes on C07,
12 genes on CO08, and 11 genes on C09. In particular, 20%
of the BolbZIP genes mapped to chromosome 4 (Table S3).
In addition, 7 genes were found in scaffolds that have yet
been mapped to chromosomes. Bol024237 was anchored on
Scaffold000093, Bol019052 on Scaffold000133, Bol016607 on
Scaffold000153, Bol004200 on Scaffold000329, Bol003614 on
Scaffold000345, Bol001886 on Scaffold000417, and Bol000879
on Scaftold000492.

3.2. Classification of BolbZIP Transcription Factors. We have
classified the BolbZIP transcription factors based on amino
acid sequence similarity to 136 BrbZIP and 75 AtbZIP
proteins previously reported (Table 1) [16]. For the majority

of bZIP proteins, we found orthologous groups including
counterparts from each species, although occasionally no
BrbZIP or AtbZIP homologs were found. AtbZIP and BrbZIP
homologs of the BolbZIP proteins are summarized in Table 1.
The proteins were divided into 63 categories based on the
amino acid sequence similarity (Table1). Most categories
included two or three BolbZIP and BrbZIP proteins but
a single AtbZIP. Analysis of the amino acid sequences
revealed that the similarity between BolbZIP, BrbZIP, and
AtbZIPs ranged from 50% to 90%. Several BolbZIP proteins
showed over 90% similarity to the corresponding AtbZIP.
For example, the similarity among Bol010308, At3g12250, and
At5g06950 was 91-94%. For other genes, the closest homologs
(with over 90% amino acid homology) were between the
BolbZIP and the BrbZIP such as Bol004832 and Bra004689.
BolbZIP proteins were also classified according to the method
by Hwang et al. [16] based on UARRs and LCRs, which
were further divided into 9 groups: glutamine (Q), aspartic
acid (D), proline (P), asparagine (N), serine (S), glycine
(G) rich domain, transmembrane (Tm) domain, LCRs only,
and no LCRs except bZIP domain (Table 2, Tables S4 and
S5). BolbZIP proteins and their orthologs from B. rapa and
A. thaliana were found in the same groups. For example,
BolbZIP of category 1 and its homologs Bra004550 and
At2g46270 were classified into group 3A. LCRs of group
11 (only LCRs present) bZIP proteins composed single and
mixed repeat natural amino acids. Group 12 contained bZIP
proteins with no LCRs or specific amino acid-rich regions.

3.3. Candidate BolbZIP Genes for Responses to Cold Stress. To
identify BolbZIP genes that might function in responses to
cold stress, we carried out comparative analysis of the expres-
sion of BolbZIP gene in two B. oleracea inbred lines, cold-
tolerant BNI06 and cold-susceptible BN107. BolbZIP genes
were selected from an RNA sequencing dataset based on their
annotations and their expression profiles were analyzed (data
not shown). Among the 119 BolbZIP genes, the expression
of 41 genes was remarkably changed in responses to cold
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TABLE 2: Number of bZIP transcription factors in each group based on UARR and LCRs.
Group Classification domain bZIP number in B. oleracea bZIP number in B* rapa bZIP number in A. ihaliana
(Hwang et al.”) (Hwang et al.”)

Group 1 Q-rich domain 13 16 10

Group 2 D-rich domain 0 4

Group 3 P-rich domain 12 12

Group 4 N-rich domain 5 9

Group 5 S-rich domain 13 18 14

Group 6 G-rich domain 2

Group10  Transmembrane domain 4 4

Group 11 Several LCRs 38 41 17

Group 12 No LCR or UARR 27 26 13

Total — 119 136 73

*See reference [16].

treatment, whereas 78 genes of them showed no significant
changes in their expression. BolbZIP genes with significantly
different expression were determined in 4°C-treated sample
base on fold change (FC) >2 and <0.5 relative to 22°C-
treated sample. Cold treatment at this temperature caused the
upregulation of 18 genes in BN106 and of 7 genes in BNI07,
whereas 15 genes were downregulated in BN106 and 8 genes
were in BNI07 by cold treatment. In total, the expression
of 21 genes was upregulated and 20 genes downregulated
by cold treatment (Table 3). In addition, 6 genes were not
showing any expression within BNI06 lines and therefore
not calculated (Table 3). Finally, 47 BolbZIP genes’ expression
level was confirmed using quantitative real-time PCR (qRT-
PCR) (Table 3). To obtain detailed expression for the putative
cold-response BolbZIP genes thus identified, QRT-PCR was
carried out using samples from plants treated at several
temperatures (22°C, 4°C, 0°C, or —2°C). Totally, 25 BolbZIP
genes with significantly different expression were selected
based on fold-changes (FC) >3 and <0.5 relative to the control
sample (22°C). Most of the tested genes were significantly
upregulated by cold treatment except Bol021255. Among 25
tested genes, 22 genes are displayed in Figure 2 and three
genes by RT-PCR in Figure 3. We were not able to determine
the analogous relative expression for the latter three genes
because they were not expressed in the 22°C treated sample.
The expression levels of several BolbZIP genes were compa-
rable between the two lines. However, no significant change
in the expression of Bol008071, Bol033132, and Bol042729
was observed in response to cold treatment in BNIO06,
whereas these genes were upregulated at all temperatures
in BNIO7 (Figure 2(a)). By contrast, Bol009713, Bol013712,
Bol016432, and Bol022925 were upregulated in BNI106, but
not in BNIO7 (Figure 2(b)). The increased expression of 17
BolbZIP genes was more pronounced after severe cold treat-
ment at 4°C, 0°C, and —2°C (Figure 2(c)) and one gene was
downregulated by cold treatment in both BNI06 and BN107
(Figure 2(d)). Homologs of cold stress-response BrbZIP
genes were included in the qRT-PCR [16]. These expression
patterns are summarized in Figure 4. Moreover, several genes
including Bol016432, Bol022925, Bol026864, Bol027732, and
Bol028975 displayed differential expression between cold

(4°C) and freezing (-2°C) temperature. The expression level
of the 3 genes, Bol00807I, Bol033132, and Bol042729, was
significantly increased in BN107 under cold conditions and
was unchanged in BNI06. Among three genes, Bol033132 has
97% sequence similarity to Bra020735 which was previously
reported gene. Two proteins, Bol033132 and Bra020735,
contained N-rich regions in LCRs (Figure 5(a)). Moreover,
Bol042729 included the N-containing LCR (Figure 5(b)). We
suggest the possibility that BolbZIP proteins as well as BrbZIP
proteins containing N-rich regions might be involved in cold
stress response.

4. Discussion

It was known that B. rapa and B. oleracea genomes are highly
similar in their gene structure, but there still exist species-
specific genes in two species. Hence this study was carried out
in B. oleracea and identified 119 BolbZIP proteins and placed
them into 63 categories according to sequence similarity
(Table 1). To identify the bZIP proteins in B. oleracea, a few
bZIP domain consensus sequences of several species were
used (Table S2). It is possible that this approach could lead
us to underestimate the number of bZIP proteins present,
despite the high number of BolbZIP proteins we identified. To
address this, other search methods or more detailed consen-
sus sequences for bZIP proteins in plants could be examined.
In Arabidopsis, bZIP proteins were classified into different
groups and subfamilies according to sequence similarities
in their basic region and additional conserved motifs in
order to elucidate the likely function of the proteins [21].
In rice, Nijhawan et al. [19] published 89 bZIP transcription
factor-encoding genes based on DNA binding specificity and
amino acid sequences in basic and hinge regions. Recently
BrbZIP and AtbZIP proteins were divided into 9 groups
based on their UARR and LCRs, which are highly enriched
in one or a few amino acids [16]. In this study, 119 BolbZIP
proteins were categorized into 63 groups and also classified
according to UARR and LCRs based on the classification
method of Hwang et al. [16]. In addition, the sequence
similarity of the bZIP proteins of B. oleracea, B. rapa, and
A. thaliana was analyzed. Most of homologs were found to
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FIGURE 2: Relative expression levels of 22 BolbZIP genes in cabbage inbred lines cold-tolerant BN106 and cold-susceptible BN107 under cold
stress conditions. 5-week-old plants were treated at 4°C, 0°C, and —2°C. The actin transcript levels were used for normalization. Values shown
are relative to transcript levels in the 22°C treated plants. Error bars indicate standard deviation. (a) Genes showing no significant relative
expression change in BN106 and upregulating at all temperatures in BN107. (b) Genes showing upregulation at all temperatures in BN106 and
no significant relative expression change in BNI07. (c) Genes showing greater upregulation at lower temperatures in BN106 and BN107. (d)
Genes showing downregulation in response to cold in BN106 and BN107.
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FIGURE 3: RT-PCR analysis of three BolbZIP genes in response to cold. These genes showed no expression in 22°C-treated cabbage inbred
lines BN106 and BNI07. The actin transcript levels were used as an internal control.
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FIGURE 4: Heat map representation of cold-responsive expression of BolbZIP and BrbZIP genes. The expression pattern of the BolbZIPs and
their closest BrbZIP homologs in response to cold (4°C) and freezing (—2°C) stresses are shown. Heat map was generated using up- and
downregulated gene expression data from qRT-PCR and RT-PCR results.
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FIGURE 5: Amino acid sequences of Bol003312 and Bol042749 and their homologs. (a) An alignment of the amino acid sequences of Bol033132
and two homologs, Bra020735 and At3g30530. Conserved sequences of bZIP domain are highlighted using gray shade in the basic and leucine
zipper regions. (b) An alignment of the amino acid sequences of Bol042729 and two homologs, Bra025144 and At2g04038.

have the same UARR and LCRs. UARRs were composed
of 6 amino acids including Q, D, P, N, S, and G in the B.
oleracea (Tables 2 and S4). This conservation of amino acid
composition suggests that these 6 amino acids are important
for biological functions and formation of protein structures
in bZIP proteins.

BolbZIP gene family members were physically mapped
to all the nine chromosomes of B. oleracea. Among them,
chromosome 04 was found to contain the highest number of
BolbZIP genes (21%), while chromosomes 05 and 06 harbored
the fewest (6-7%) (Figure 1, Table S3). In B. rapa, the highest
number of BrbZIP genes was detected in chromosome 09
(21%) [16]. Additionally, most BolbZIP genes were distributed
in the arm end of each chromosome. The clustered distri-
bution pattern of the BolbZIP genes on some chromosomes

might be indicated in significant regions evolutionarily. For
example, BolbZIP genes located on chromosomes 01, 02, 04,
07, and 08, and chromosomes 09 appear to be clustered at the
arm end in those chromosomes (Figure 1).

To screen for cold stress-responsive BolbZIP genes, we
tested the transcription patterns of BolbZIP genes enhanced
or decreased by cold treatment in two B. oleracea lines that
showed different cold tolerance [16]. Based on their expres-
sion patterns, the cold-responsive BolbZIP transcription
factors were divided into four groups (Figure 2). We found
that the expression of three genes, Bol008071, Bol033132,
and Bol042729, was upregulated in cold-susceptible BN107
but not changed in cold-tolerant BNI106. Additionally, when
compared with 6 genes published for significant BrbZIP
factors involved in the cold response, 4 BolbZIP genes
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(Bol004832, homologous to Bra000256, Bra004689, and
Bra003320; Bol033132, homologous to Bra020735; Bol018688,
homologous to Bra011648; and Bol021255, homologous to
Bra023540) showed similar patterns of expression in response
to cold treatment. For example, Bol033132 showed an expres-
sion pattern like that of its homolog Bra020735, indicating
that these genes might be conserved key regulator in cold
stress responses. Moreover, Bol033132 and Bol042729 encode
bZIP proteins that include the LCR containing amino acid N
or N-rich region (Figure 5, Tables S4 and S5). These results
indicated that the N-containing region of BolbZIP proteins
might be involved in cold stress responses. Although the
functions of the N-containing region are largely unknown,
the regions might be biologically active [24, 25]. This genome-
wide identification and expression profiling of bZIP proteins
from B. oleracea provides new opportunities for functional
analyses, which may be used in further studies for improving
stress tolerance in plants.
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