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Introduction: One reason athletes train their trunk muscles is that the body’s trunk

stability has been shown to prevent injury. However, the relationship between body trunk

muscle thickness, particularly that of deep muscles, and athletic performance remains

to be clarified.

Purpose: We aimed to explore the relationship between 100-m sprint performance

and the sizes of the trunk stabilizing muscles, the psoas major muscle (PM), transversus

abdominis (TA), and multifidus muscle (MM), in collegiate sprinters.

Methods: Fourteen male sprinters belonging to a university athletics club participated

in this study. The thicknesses of the TA and MM were measured using an ultrasonic

diagnostic apparatus (ProSound C3; Aloka, Tokyo, Japan). The cross-sectional area

of the PM was assessed by a magnetic resonance imaging apparatus (Vantage Elan;

ToshibaMedical Systems, Tokyo, Japan). The relationship between these anthropometric

parameters and the 100-m sprint time was analyzed by Spearman’s correlation

coefficient, multi- regression analysis, and the change-point regression model.

Results: The sizes (mean± SD) of the muscles were: PM, 43.074± 7.35 cm2; TA, 4.36

± 0.72mm; and MM, 3.99 ± 0.48 cm. The mean 100-m sprint time was 11.00 ± 0.48 s.

Spearman’s correlation analysis revealed that the 100-m sprint time had a significant

moderate negative correlation with TA (ρ = −0.691, p < 0.01) and a low negative but

not significant correlation with MM (ρ = −0.327, p = 0.28), whereas PM did not show

a significant or in-negligible correlation. The change-point regression model found the

change-points in the 100-m sprint time and the thickness of the TA and MM at 4.70mm

(95% CI: 4.00–5.43mm) and 3.84 cm (95% CI: 3.28–4.31 cm), respectively. The sprint

time decreased with an increase in the thickness of the muscles up to the change-points,

whereas it did not change even if the muscles became thicker than the change-points.

The change-points were consistently observed when the thickness of the muscles was

normalized by body mass.
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Conclusion: Sprint performance for 100-m was found to be associated with TA and

MM thickness in a biphasic manner. As muscle thickness increased, the sprint time

decreased, followed by a plateau phase.

Keywords: multifidus muscle, transversus abdominis, sprint performance, change-point regression model,

collegiate athletes

INTRODUCTION

The athletic 100-m sprint is one of the most popular events at
the Olympic Games, where leading sprinters from around the
world compete. Evaluation of the top 100-m sprinters shows that
the key factors affecting 100-m sprinting performance are high
sprinting speed and abilities to generate explosive acceleration
and maintain high sprinting speed (Majumdar and Robergs,
2011). Additionally, anteroposterior force/power and horizontal
force have been reported to be involved in the sprinting speed
up to 40m (Rabita et al., 2015). The factors that generate these
forces are classified as controllable and uncontrollable factors: the
controllable elements primarily include height, limb length, and
cross-sectional muscle area (Rabita et al., 2015).

In recent years, the body trunk has attracted attention in terms
of performance improvements and injury prevention (Zattara
and Bouisset, 1988; Leetun et al., 2004) Indeed, the muscles
located in the body trunk are at the center of all motor chains and
are important for the stability of the spine and pelvis (Putnam,
1993). In addition, the trunk muscles play an important role
in providing proximal stability for distal mobility and limb
functions during sporting activities (Kibler et al., 2006; Reed
et al., 2012). In particular, the deep trunk muscles, including the
transversus abdominis (TA) and multifidus muscle (MM), are
involved in the stability of the trunk and are activated prior to
the movement of the limbs (Hodges and Richardson, 1997a) in
order to support the limb’s power during motor chain activity
(Butcher et al., 2007; Jamison et al., 2012). In addition, the psoas
major muscle (PM) is suggested to stabilize the trunk as well
as hip flexion (Santaguida and McGill, 1995). Therefore, deep
trunk muscles provide a fundamental basis for the strength of the
extremities, by acting in advance of other muscles, and thus affect
sports performance.

Hibbs et al. (2008) suggested that an improvement of sports
performance requires muscle hypertrophy in the trunk muscles.
Only weak-to-moderate correlations were found between the
core strength assessed by the endurance of the torso stabilizing
muscles and sports performance (e.g., sprint run and jump;
Nesser et al., 2008; Okada et al., 2011), which seems to negate
the importance of core strength training for improving sports
performance. However, this research assessed the endurance of
the deep trunk muscles instead of hypertrophy. As such, it
is necessary to evaluate morphological muscle hypertrophy in
deep trunk muscles and determine their relationship with sports
performance. The association of sprint performance with the
size of the PM located in the deep part of the trunk has been
previously reported (Hoshikawa et al., 2006; Ema et al., 2018),
and most previous studies on sports performance and trunk
muscles evaluated functional muscle strength and trunk stability
(Nesser et al., 2008; Sharrock et al., 2011; Shinkle et al., 2012).

Thus, the relationship between deep trunk muscle morphology
and sports performance has not been investigated for other
muscles. Based on the above findings, we hypothesized that the
100-m sprint performance correlates with the size of the deep
trunk muscle.

Therefore, in this study, we aimed to explore the relationship
between 100-m sprint performance and the cross-sectional area
of PM and muscle thicknesses of the TA andMM associated with
trunk stability in collegiate sprinters.

MATERIALS AND METHODS

Participants
The participants of this study were 14 male sprinters who
belonged to a university athletics club. Their age, height, and
body weight (mean± SD) were 20.1± 1.8 years, 172.0± 5.2 cm,
and 65.6 ± 4.8 kg, respectively. Prior to the experiment, they
were informed of the purpose, methods, and possible risks of
this study. All participants provided written consent. This study
was conducted with the approval of the Juntendo University
Graduate School Ethics Committee (Approval number: #23-85).

Muscle Thickness
Muscle thickness was measured using an ultrasonic diagnostic
apparatus (ProSound C3; Aloka, Tokyo, Japan) using the Bmode.

TA

For the TA, participants lay on their backs and opened their
lower limbs so that their thighs were parallel, with both shoulder
joints at a 20–30 degrees transposition. The probe was placed at
an inward position from the intersection point on the umbilical
line and the underline of the lordosis (Hodges and Richardson,
1997b). The thickness (mm) of the TA was measured while
confirming the image (Figure 1).

MM

For the MM, participants lay in prone position and set the thighs
parallel. The probe of the ultrasonic diagnostic device was placed
on the side of the spinous process of the L4–L5 intervertebral
joint, and the longitudinal image of MM was confirmed parallel
to the spine (Hides et al., 1995). The thickness (cm) of the MM
was measured while confirming the image (Figure 2).

Cross-Sectional Area of the PM
A 1.5-T magnetic resonance imaging apparatus (Vantage Elan;
Toshiba Medical Systems, Tokyo, Japan) was used for large
psoas muscle cross-sectional imaging. T2-weighted images (FE
method, TE: 90ms, TR: 2,500ms, matrix: 160 × 256, FOV: 320
× 32mm, slice thickness 5mm) of the central horizontal cross
section between the fourth and fifth lumbar vertebrae were taken
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FIGURE 1 | Measurement site of the transverse abdominis.

FIGURE 2 | Measurement site of the multifidus muscle.

(Hoshikawa et al., 2006). The cross-sectional area (cm2) was
calculated using image analysis software (OsiriX, 5.8.2, Pixmeo,
Bernex, Switzerland). The sum of the left and right legs was used
for the analysis.

Statistical Analysis
All data are expressed as the mean ± SD, with the exception
of 95% confidential interval (95% CI). For continuous variables,
correlations were reported as Spearman product moment
correlations. The statistical significance was set at p < 0.05.
Mukaka’s rule was used for the interpretation of the size of the
correlation coefficient (Mukaka, 2012).

A change-point regression model (CPRM) was used to
identify the optimal splitting point of the linear regression line
(Hayamizu et al., 2009; Matsui et al., 2011). We estimated the
point at which the time of the 100-m sprint became saturated
using the CPRM. Akaike’s information criterion (AIC) is a
statistical value to express the goodness-of-fit in a model by
imposing a penalty for increasing the number of parameters
(Akaike, 1998). We used AIC to assess the goodness-of-fit in
the models between the simple regression model and the CPRM
for determining the presence/absence of the saturated points.

TABLE 1 | Characteristics of the study participants.

95% CI

Mean ± SD Lower Upper

Age years 20.1 ± 1.9 19.0 21.2

Height cm 172.0 ± 5.2 168.9 175.2

Body weight kg 65.6 ± 4.8 62.7 68.5

100-m sprint time (season best) s 11.0 ± 0.5 10.7 11.3

Psoas major (Cross-sectional area) cm2 43.1 ± 7.4 38.6 47.5

Transversus abdominis (thickness) mm 4.4 ± 0.7 3.9 4.8

Multifidus muscle (thickness) cm 4.0 ± 0.5 3.7 4.3

TABLE 2 | Spearman’s correlation coefficients between 100-m sprint time and

anthropometric parameters.

ρ p

Psoas major (cross-sectional area) −0.226 0.46

Transversus abdominis (thickness) −0.691 <0.01

Multifidus muscle (thickness) −0.327 0.28

Analyses were performed using R3.3.1 (R Core Team, 2018)
and GraphPad Prism 6 software (GraphPad Software, San Diego,
CA, USA).

RESULTS

The characteristics of the study participants are shown inTable 1.
The cross-sectional area of the PM and thicknesses of TA and
MM were 43.074 ± 7.35 cm2, 4.36 ± 0.72mm, and 3.99 ±

0.48 cm, respectively. The mean 100-m sprint time was 11.00
± 0.48 s. Spearman’s correlation analysis found that 100-m
sprint time had a significant moderate negative correlation with
thickness of TA (ρ = −0.691, p < 0.01) and a low negative but
not significant correlation with thickness of MM (ρ = −0.327,
p= 0.28), whereas PM did not show a significant or in-negligible
correlation (Table 2).

The scatter plot of the 100-m sprint time and the thickness
of the TA and MM depicted a biphasic relationship. Specifically,
the sprint time decreased depending on the muscle thickness to
a certain level, but the time became constant when the thickness
became beyond a certain change-point. Therefore, we examined
the CPRM for the presence of the change-points. The AICs of
the CPRM were smaller than those of the simple regression
model in both cases, which confirmed the presence of the change-
points. The change-points of the TA and MM were estimated
to be 4.70mm (95% CI: 4.00–5.43mm) and 3.84 cm (95% CI:
3.28–4.31 cm), respectively (Figure 3). The change-points were
consistently observed when the thickness of the TA and MM
was normalized by body mass: 0.98 mm/kg1/3 (95% CI: 0.78–
1.00 mm/kg1/3) for TA and 0.79 cm/kg1/3 (95% CI: 0.65–0.93
cm/kg1/3) for MM (Figure 4). The stability of the change-points
was confirmed by leave-one-out cross-validation, in which data
sets were analyzed after excluding one participant’s data for each
analysis. As this study had 13 participants, we analyzed 13 data
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FIGURE 3 | Mean profiles of the change-point regression model for the 100-m sprint time and the thickness of the TA and MM.

FIGURE 4 | Mean profiles of the change-point regression model for the 100-m sprint time and the thickness of the TA and MM normalized by body mass.

sets in the same manner for TA and MM with and without
normalization by body mass.

In contrast, no change-point was observed between sprint
time and cross-sectional area of PM with and without
normalization by body mass (results not shown).

DISCUSSION

This study aimed to explore the relationship between the 100-
m sprint time and the morphology of the deep trunk muscles
in collegiate athletes. Sprint time exhibited a change-point at
which the time decreased as the muscle thickness of the TA and
MM increased, followed by a plateau phase; even if they became
thicker. Thus, thickness of the trunk muscles did not show a
simple linear correlation with the 100-m sprint time.

In this study, no correlation was found between the cross-
sectional area of the PM and 100-m sprint time. Some

studies have investigated junior athletes to demonstrate the
association between the cross-sectional area of the PM and
sprint performance (Hoshikawa et al., 2006; Tottori et al., 2018).
Tottori et al. (2016) investigated sprinters and mid-distance
runners of the same age as the present study; however, their

sprint performance levels were lower compared with those of the

participants of this study. In addition, the PM size of participants

in this study (21.5 ± 3.7cm2) was larger than those measured

by Hoshikawa et al. (2006) (17.1 ± 2.6 cm2) and Tottori et al.

(2018) (8.6 ± 2.4 cm2). Kubo et al. (2011) reported that there

was no relationship between sprint acceleration ability and cross-

sectional area of PM, which is similar to the findings obtained
in this study. Ema et al. (2018) demonstrated the importance
of the PM, investigating the relation between actual running
motion and muscle volume (not muscle size). Therefore, the
muscle volume of PM instead of muscle size could be associated
with sprint performance. Because there are few studies focusing
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on muscle volume, further research on sprint performance and
muscle volume of PM should be conducted in adult sprinters with
high sprint performance.

Previous studies have demonstrated the relationship between
sprint performance and the extensor-flexor strength of the knee
or hip (Alexander, 1989; Dowson et al., 1998). Hoshikawa et al.
(2006) reported that 100-m sprint time was dependent on the
PM-to-quadriceps femoris ratio rather than their absolute sizes.
Another recent study found that the sizes of the thigh and
PM, particularly the rectus femoris, may play an important role
during the swing phase of sprinting (Ema et al., 2018). However,
Spearman’s correlation analysis showed that, instead of the PM,
the deep trunk muscles, TA and MM had significant correlations
with sprint performance. The TA and MM are classified as local
muscles. The contraction of the TA enhances intra-abdominal
pressure and thoracolumbar fascia tension (Cresswell et al.,
1992). Elevated intra-abdominal pressure and thoracolumbar
fascia tension work together to stabilize the spine (Gracovetsky
et al., 1977). In addition, the contraction of the MM controls
segments of the lumbar spine (Panjabi et al., 1989). Therefore, the
TA and MM both might contribute toward stabilizing the spine
and pelvis by controlling the intra-abdominal pressure (Cresswell
et al., 1992), thoracolumbar fascia tension (Gracovetsky et al.,
1977; Cresswell et al., 1992), and lumbar segments (Panjabi et al.,
1989), and maintain the pelvis in an optimal position or posture
for the running motion (Barr and Lewindon, 2014).

The activities of the muscles located from the shoulder to
the pelvis have been shown to be important for transferring
power from the larger torso to the smaller limbs (Stephenson
and Swank, 2004). In addition, the 5,000m running time of
healthy adults was reported to improve with upper body training
(Sato and Mokha, 2009). In contrast, some reports negate the
importance of trunk training in sports performance (Nesser
et al., 2008; Okada et al., 2011). However, previous studies
have not investigated the thickness of deep trunk muscles.
Here, we measured the muscle thickness of the deep trunk
muscles to determine the importance of the trunk muscles in
sprint performance.

Our findings demonstrated the existence of a change-point in
the relationship between 100-m sprint time and the thickness
of the TA and MM in both the actual thickness and thickness
normalized by body mass. A possible reason for the change-
point is the relationship between sprint time and physical load.
In the sprint time up to 10.6 s, maintenance of trunk stability
by the TA and MM contributes to performance; while in the
time faster than 10.6 s, the increased physical load requires
the contribution of other muscles in addition to TA and MM,
e.g., abdominal oblique muscles and erector spinae. In fact, the
anthropometric features of the 100-m finalists at the Olympics
and World Championships apparently differ from those of
the participants of this study. The mean height, body weight,
body mass index, and 100-m sprint time were 176 ± 3.6 cm,
76.7 ± 6.4 kg, 25.5 ± 2.3 kg/m2, and 9.96 ± 0.5 s at the
Beijing Olympics (2008); 177.3 ± 6.4 cm, 79.0 ± 8.0 kg, 22.5
± 2.2 kg/m2, and 9.91 ± 0.10 s at the Berlin World Athletics
Championships (2009); and 179.4 ± 8.1 cm, 80.4 ± 8.2 kg, 24.9
± 1.5 kg/m2, and 9.86 ± 0.10 s at the London Olympics (2012)
(Krzysztof and Mero, 2013). However, limited research makes

it difficult to interpret this finding on local muscles and sprint
performance. Accordingly, it is necessary to confirm whether
the change-point can be observed in sprinter groups whose
competition levels are higher/lower than the participants of
this study.

The present study has some limitations. As we assessed
the members of a university athletics club, the number of
participants and diversity of their competition levels were
limited. In order to minimize the impact of the small number
of the participants, we performed leave-one-out cross-validation
in CPRM and confirmed that stable results were obtained
among the participants. However, further studies are warranted
to validate the results. The extensor-flexor strengths of trunk
muscles were not measured. The muscle strength can be
estimated from muscle thickness (Muraki et al., 2013). However,
in trunkmuscles, the relationship between thickness and strength
is not significant, suggesting that trunk muscle thickness may not
directly affect muscle strength (Ishida et al., 2019). Therefore,
further studies are warranted to determine the relationship
of the TA and MM with sprint performance, considering
anthropometric and muscle function (strength and power).

In this study, the local muscles, TA and MM, were shown to
contribute to sprint performance for the first time. In addition,
the existence of change-points indicates that simply aiming for
the hypertrophy of these muscles would not be an effective
strategy. These findings should provide important implications
for sprint training.
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