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Abstract
Cav1.4 L-type Ca2+ channels are predominantly expressed in retinal neurons, particularly at the photoreceptor terminals 
where they mediate sustained Ca2+ entry needed for continuous neurotransmitter release at their ribbon synapses. Cav1.4 
channel gating properties are controlled by accessory subunits, associated regulatory proteins, and also alternative splicing. 
In humans, mutations in the CACNA1F gene encoding for Cav1.4 channels are associated with X-linked retinal disorders 
such as congenital stationary night blindness type 2. Mutations in the Cav1.4 protein result in a spectrum of altered functional 
channel activity. Several mouse models broadened our understanding of the role of Cav1.4 channels not only as Ca2+ source 
at retinal synapses but also as synaptic organizers. In this review, we highlight different structural and functional phenotypes 
of Cav1.4 mutations that might also occur in patients with congenital stationary night blindness type 2. A further important 
yet mostly neglected aspect that we discuss is the influence of alternative splicing on channel dysfunction. We conclude that 
currently available functional phenotyping strategies should be refined and summarize potential specific therapeutic options 
for patients carrying Cav1.4 mutations. Importantly, the development of new therapeutic approaches will permit a deeper 
understanding of not only the disease pathophysiology but also the physiological function of Cav1.4 channels in the retina.

Keywords  Calcium channel · Cav1.4 · Channelopathy · Channel modulation · Retinal disease · Congenital stationary night 
blindness type 2

Introduction

Cav1.4 L-type Ca2+ channels (LTCC, Cav1 family) are pre-
dominantly expressed in retinal neurons, particularly at the 
photoreceptor terminals. The LTCC identity in bipolar cells 
specifically is controversial but the presence of all Cav1 
subunits has been reported including Cav1.4 [14, 80, 117]. 
Cav1.4 expression has further been reported in dorsal root 

ganglia neurons, mast cells, and T-lymphocytes (for review, 
see [70]).

The gating properties of Cav1.4 channels [11, 53, 64] 
are perfectly suited to mediate sustained Ca2+ entry needed 
for continuous release of neurotransmitters at photoreceptor 
ribbon synapses in the dark [84, 102]. Upon light absorp-
tion in the photoreceptor outer segments, the closure of 
cGMP-gated cation channels hyperpolarizes the photore-
ceptors cells (below − 55 mV [110]). In the dark, photore-
ceptor membrane potential depolarizes (− 36 to − 40 mV) 
and thereby enhances tonic neurotransmitter (glutamate) 
release [24]. For such tonic release, only a few channels that 
activate rapidly at relatively negative voltages (< − 40 mV, 
[10, 34, 101]) and inactivate slowly are needed [10]. Indeed, 
heterologously expressed Cav1.4 LTCCs show fast activa-
tion and allow Ca2+ influx at membrane potentials negative 
to − 40 mV. In addition, Cav1.4 currents show slow volt-
age-dependent inactivation (VDI) with complete absence 
of Ca2+-dependent inactivation (CDI) [53, 84]. Of note, 
near physiological temperatures, inactivation kinetics were 
accelerated but the window current that may be seen as a 

This article is part of the special issue on Function and 
Dysfunction in Vertebrate Photoreceptor Cells in Pflügers 
Archiv—European Journal of Physiology

 *	 Alexandra Koschak 
	 alexandra.koschak@uibk.ac.at

1	 Institute of Pharmacy, Pharmacology and Toxicology, Center 
for Chemistry and Biomedicine, University of Innsbruck, 
Innrain 80‑82/III, 6020 Innsbruck, Austria

2	 Institute of General, Inorganic and Theoretical Chemistry, 
Center for Chemistry and Biomedicine, University 
of Innsbruck, Innrain 80‑82/III, 6020 Innsbruck, Austria

Published online: 1 July 2021/

http://orcid.org/0000-0001-5758-1166
http://orcid.org/0000-0002-6811-6283
http://orcid.org/0000-0003-1571-8579
http://orcid.org/0000-0003-2100-4193
http://crossmark.crossref.org/dialog/?doi=10.1007/s00424-021-02570-x&domain=pdf


Pflugers Arch - Eur J Physiol (2021) 473:1437–1454	

1 3

“window” of voltages where the activation and steady-state 
inactivation curves overlap is still preserved [74]. Cav1.4 
channels lack CDI due to active suppression by an inhibi-
tory domain in their C-terminus [84, 102]. This phenomenon 
is referred to as C-terminal modulation (CTM). In Cav1.4 
(and also Cav1.3) channels, the modulation is attributable 
to an interaction of a proximal (PCRD) and a distal (DCRD) 
C-terminal regulatory domain (Fig. 1), which are putative 
α-helices [84, 85]. Due to the competition of the distal 
C-terminus with calmodulin (CaM) binding [57], CDI is 
absent (or weaker in Cav1.3) [20, 84, 85]. The CTM not 
only determines CDI but also affects the channel’s activation 
gating properties and the open probability [16, 44, 45, 85]. 
Interestingly, CTM elimination in Cav1.3 channels in hair 
cells and chromaffin cells affected CDI but not the channels’ 
activation threshold [81].

CaM is important for Cav1.4 function because it increases 
current density and slows down VDI [32] in addition to its 
role as a specific channel-bound Ca2+ sensor that is tethered 
to upstream regions of the C-terminal tail such as the helical 
IQ domain adjacent to the so-called EF-hand motif (Fig. 1). 
Ca2+-binding protein 4 (CaBP4) competes with CaM for the 
IQ motif of the channel by disrupting interaction between IQ 
and the distal C-terminus [72]. Moreover, CaBP4 increased 
channel availability in a heterologous expression system, 

by increasing the channel’s window current [82]. Auxiliary 
subunits α2δ and β have been shown to modulate electro-
physiological properties as well as increase the number of 
voltage-gated Ca2+ channels on the membrane (see review 
[19, 27]). The β subunit interacts with the alpha-interaction 
domain (AID) of the channel, while α2δ subunits mainly 
interact with an extracellular loop in domain I (Fig. 1). More 
specifically, the β2 variants β2a and β2X13, which have been 
reported to assemble with Cav1.4 in photoreceptors, differ-
entially modulated Cav1.4 properties but both support slow 
inactivation [56] and are necessary for forward trafficking. 
Among α2δ subunits, α2δ4 is part of the Cav1.4 channel 
complex in photoreceptors [56] and supports Cav1.4 func-
tional expression not only in tsa-201 cells [7] but also in 
photoreceptor terminals [49] likely by enhancing the stabil-
ity of Cav1.4 channels by suppressing their turnover.

The important role of Cav1.4 in the retina is evident 
from mutations in the CACNA1F gene encoding Cav1.4 
LTCCs that cause retinal diseases in humans (OMIM 
300,071, 300,476, 300,600) such as congenital stationary 
night blindness type 2 (CSNB2, OMIM 300,071; Table 1). 
Mutations in the α2δ4 subunit (CACNA2D4 gene [115]) and 
CaBP4 [122]—both are proteins that interact with Cav1.4 
(Fig. 1)— are also associated with CSNB2 [124]. CSNB2 
patients show variable levels of night blindness together with 
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Fig. 1   Protein topology of human Cav1.4 with coding exons, alterna-
tively spliced exons (see Table 2) and selected mutations annotated 
(according to human reference sequence NP_005174) together with 
an intracellular β and an extracellular α2δ and potential interaction 
sites with calmodulin (CaM) and Ca2+ binding proteins (CaBP). 

Abbreviations: VDI, voltage-dependence of inactivation, CDI, 
Ca2+-dependence of inactivation; Po, open probability, AID, alpha-
interaction domain; EF, EF-hand motif; other abbreviations, see 
main text
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myopia, nystagmus, strabismus, and low visual acuity [15]. 
In particular, patients that carry CACNA1F mutations may 
present with only few or even no night vision problems [66, 

124]. Visual fields in CSNB2 patients are normal but day-
light vision, color vision, and visual acuity can be affected 
[15]. More than 50% of the patients suffer from photophobia 

Table 1   Disease-causing mutations in human Cav1.4 α1-subunits. 
Different types of mutations have been reported: M, missense; T, 
truncation; Del, deletion; Ins, insertion; Dup, duplication. Numbering 

according to reference sequence AJ006216. Note, the position 745 
of Ile to Thr mutation refers to the original report [35]; the reference 
sequence contains a short exon 9
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[15], often seen in cone dysfunction syndromes [2]. Due 
to the phenotypic variability seen in CSNB2 patients, the 
only diagnostic tool is the electroretinogram (ERG; see also 
the “Functional phenotyping of Cav1.4 related diseases” 
section).

In this review, we focus on mutations in the CACNA1F 
gene as this gene is most commonly affected in CSNB2 
patients and their differential effect on retinal visual path-
ways. We challenge a previously used classification of 
mutation types and the functional phenotyping strategies 
currently available. Moreover, we elucidate the influence 
of different splice variants on Cav1.4 dysfunction and how 
they might add additional functional impact, and we discuss 
potential specific therapeutic options for CSNB2 patients.

Role of Cav1.4 channels

Our understanding of the role of Cav1.4 in the retina largely 
stems from various mouse models. Up to date, 6 different 
mouse models are available: two knock-out (KO) models: 
Cacna1fΔEx7 and Cacna1fΔEx14-17, firstly described in 
[63, 86]; two spontaneous insertions of a transposable ele-
ment in exon2 or in the intron of exon 13–14 (nob2 [21] and 
nob9 mice [25]); the knock-in of the single gain of function 
point mutation Cav1.4 Ile756Thr (I756T; called Ile745Thr 
in the original report, corresponding to reference sequence 
AJ006216, [86]) and a most recently reported non-transmit-
ting G369i knock-in mouse [61].

All those animal models showed that in the absence of 
functional Cav1.4 channels photoreceptor ribbon synapses 
remained mostly immature, as evidenced by their roundish 
(sometimes elongated) appearance (Fig. 2, [58, 61, 77, 79, 
118]). In the case of changes in the dynamics of Ca2+ influx, 
e.g., in I756T mice which carry a gain-of-function Cav1.4 
channel mutation [35]. The maturation of photoreceptor syn-
aptic ribbons is disturbed and comes along with free-floating 
ribbons (Fig. 2). The integrity of other proteins of the rib-
bon and the arciform density are compromised accordingly 
in this mouse model [79, 86]. The non-transmitting G369i 

knock-in model, however, taught us that although leading to 
shorter ribbons, the presynaptic assembly of rod synapses 
can proceed without Cav1.4 meditated Ca2+ signals (Fig. 2, 
[61]). Together, those data support a dual role of presynaptic 
Cav1.4 channels: they serve as a source of Ca2+ ions and 
play an important role as synaptic organizer proteins in the 
synapse of the visual pathway. Accordingly, Cav1.4 dysfunc-
tion leads to postsynaptic changes like sprouting of bipolar 
and horizontal cell dendrites (Fig. 2) comparable to the KO 
phenotype of the protein bassoon, which links the ribbon 
and the arciform density/plasma membrane compartment 
containing Cav1.4 channels (for review [78]). Moreover, 
reduced amounts of appropriate synaptic scaffolds, such as 
PSD-95 in the KO retina [63], may not only limit the reten-
tion of Cav1.4 channels in the presynaptic membrane but 
also affect the correct positioning of postsynaptic proteins. 
Sprouting is always seen in case of a pronounced change in 
Ca2+ influx (either KO or gain of function I756T). But when-
ever Cav1.4 protein was present (at least some), invaginat-
ing contacts have been preserved (Fig. 2). Synaptic defects 
might therefore not only correlate with the extent to which 
presynaptic Cav1.4 channels are lost (this is also the case 
when auxiliary subunits of Cav1.4 LTCCs are missing [49, 
105]) but also with Ca2+ dynamics (see below, Fig. 3).

Spectrum of Cav1.4 mutations

Variations in the clinical manifestation of CSNB2 might 
arise from the different types of Cav1.4 mutations causing 
different channel defects. Various studies in heterologous 
expression systems showed that the spectrum of Cav1.4 dys-
function is indeed wide [20, 35, 37, 38, 64, 74, 84].

So far, we framed Cav1.4 mutations in the canoni-
cal categories “gain-of-function,” “loss-of-function,” and 
“CTM-function impaired” [89]. Nevertheless, while from 
a biophysical point of view a higher current density is a 
clear gain of channel function (and vice versa), the defini-
tion does not reflect what happens in the (mouse) retina. 
For example, in I756T (gain-of-function: hyperpolarizing 

Table 1   (continued)
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Fig. 2   Dual role of Cav1.4 
channels in the photoreceptor 
synapse. Presynaptic Cav1.4 
channels serve as sources of 
Ca2+ ions and play a role as 
synaptic organizer protein. Ca2+ 
influx (ICa) changes accord-
ing to the Cav1.4 mutation 
(KO, loss-of-function [58]; 
G369i, non-conducting [61]; 
I756T, gain-of-function [35]) 
and exerts different structural 
effects: left: the presence of 
sprouting second order neurons 
(BC, bipolar cell; HC, hori-
zontal cell) and right: changes 
in the ribbon structure. The 
inset shows the lateral view on 
mature (horseshoe-shaped) and 
immature (round or elongated) 
ribbons. In knock-out and I756T 
retinas synaptic terminals were 
not only located in the outer 
plexiform layer (OPL) but were 
also displaced in the outer 
nuclear layer (ONL) [51, 58, 
120]

IICCaa

nnoo  IICCaa

HHCC BBCC

G369i

wwiilldd  ttyyppee

knock out

I756T

?

round

elongated

HHoorrsseesshhooee--
sshhaappeedd

OPL Displaced (ONL)

OPL

PPRR  tteerrmmiinnaall  ((OOPPLL))

OPL Displaced (ONL)

Mature 

Immature

RRiibbbboonn  ssttrruuccttuurree

-80 -60 -40 -20 0 20

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Cav1.4-WT

Cav1.4-I745T

CaBP4 KO

Cav1.4-L860P

Cav1.4-R1827stop

T
W 

ot 
e
vit

al
er 

yti
s
n
e
d t

n
err

u
C

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0 0

25

50

75

100

125

150

175

200

B
a
s
e
li
n
e
-
c
o
r
r
e
c
te
d
 C
a
2
+
 c
u
rr
e
n
t

a
C 

d
e
zi
l
a

m
r
o
n

2
+
 c
u
rre

n
t

)
T

W-
4.

1
v
a

C 
= 

%
0
0
1(

 

Photoreceptors

Volrage-range

Fig. 3   Cav1.4 mutations lead to a change in the Ca2+ dynamics 
within the photoreceptor voltage range. The current density of dif-
ferent Cav1.4 CSNB2-mutation relative to wild-type Cav1.4 chan-
nels (Cav1.4-WT, green) is indicated. Ca2+ currents measured in 
rod photoreceptors are the reference for the voltage dependence of 
Cav1.4 wild-type currents ([5]). Current densities were taken from lit-
erature: wild type: open circles, 2 mM Ca2+ [20] (set as − 1); I756T: 

filled circles, 5 mM Ca2+ [35]; L860P: diamonds, 15 mM Ca2+ [20]; 
R1827stop: stars, 2  mM Ca2+ [20]; CaBP KO: triangles, 20  mM 
Ca2+[72]. The photoreceptor voltage range is highlighted in orange: 
from ~  − 60  mV upon light on to ~  − 35  mV at light off. The inset 
shows currents that were baseline corrected to highlight the change in 
Ca2+ influx within the photoreceptor voltage range
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shift of the half-maximal voltage of activation (V½) and 
higher current density; circle in Fig. 3) and the nob2 (loss-
of-function: reduction of channel surface expression, com-
parable to the previously characterized L860P, diamond in 
Fig. 3), retinas are not only virtually undistinguishable from 
a morphological point of view, but also their ERGs are com-
parable as scotopic and photopic b-wave are reduced to a 
similar extent [21, 50]. It seems that more than the amount 
of Ca2+ influx, the relative change of Ca2+ (ΔCa2+) within 
the photoreceptor voltage range (Fig. 3) is an important 
readout. Mimicking a loss of function mutation, also the 
CaBP4 KO mouse was validated as a model for CSNB2 
[72]. In vitro, co-expression of Cav1.4 with CaBP4 leads 
to a 10 mV hyperpolarizing shift compared to Cav1.4 alone 
[72, 82]. In photoreceptors lacking CaBP4, this would mean 
a reduction of Δ Ca2+ influx within the photoreceptor volt-
age range of about 50% (up-triangle in Fig. 3) that could 
explain the CSNB2 phenotype. Burtscher and colleagues 
characterized another human Cav1.4 mutation leading to an 
impairment of the CTM, named R1827stop. This mutation 
not only shows gain-of-function features but also changes 
the channel inactivation properties unmasking CDI due to 
the loss of functional CTM [20]. Mutations that affect the 
CTM will rather not support continuous Ca2+ influx [20] 
and might thereby reduce the dynamic range of photorecep-
tors. Truncations downstream of the CDI machinery in the 
Cav1.4 C-terminus—physiologically by alternative splicing 
[95] or introduced by an artificial mutation [84, 102]—are 
catching our further interest (see also the “Regulation of 
Cav1.4 function by alternative splicing” section). In addi-
tion to a more hyperpolarized activation voltage, Cav1.4-
R1827stop shows increased current density due to the higher 
open probability of the channel [16, 20]. Of note, the muta-
tion does not affect the unitary conductance of the channel 
[16, 20] but whether the number of channels expressed in the 
plasma membrane is increased has not yet been investigated 
in any of the Cav1.4 gain-of-function mutations reported. 
Together these gating changes are resulting in a change in 
Δ Ca2+ (asterisks in Fig. 3). Since we are lacking data from 
in vivo models, it is still unclear which of these processes 
dominates the phenotype of Cav1.4 mutants with impaired 
CTM function. Thus, this peculiar mutation will be worth 
being studied in retinal photoreceptors to gain better under-
standing of how changes in Ca2+ dynamics affect this ribbon 
synapse.

Functional phenotyping of Cav1.4 related 
diseases

ERGs of CSNB2 patients show that both, scotopic and pho-
topic responses, are affected. Patients present with an abnor-
mal dim scotopic ERG and a typical negative bright-flash 

ERG with large a-waves, but severely reduced b-waves; 
oscillatory potentials are missing. This ERG phenotype, 
in particular the reduction in the b-wave in both scotopic 
and also photopic ERG, highlights the transmission prob-
lem from rod and cone photoreceptors to bipolar cells (for 
review, see [124]).

It is a common scientific agreement that Cav1.4 α1 
together with the accessory β 2 and α2δ4 subunits form 
the major LTCC complex at the photoreceptor terminal 
(Fig. 1) that mediates Ca2+ influx and consequently regu-
lates glutamatergic vesicle release in both rods and cones. 
While in all KO models of the abovementioned subunits the 
b-wave was almost completely absent in both scotopic and 
photopic ERG recordings [9, 103, 105], in other CSNB2 
mouse models the readout was more complicated. In fact, 
a body of literature highlights the differences between rod 
and cone photoreceptors in retinal disease [29, 49, 61, 105, 
118]. In particular, the cone morphology appears to be less 
affected in CSNB2 models compared to rods [8, 49, 105, 
118]. However, the photopic ERG is also severely affected 
(for review, see [124]). For mutations that lead to changes 
in the gating properties of the channels the reason may be 
found in different mechanisms to cope with intracellular 
Ca2+ concentration (Fig. 3, but see also [48]). Still, further 
important information regarding specific retinal (dys) func-
tion might come with ERG protocols better suited than com-
mon ones to investigate separately different pathway (e.g., 
ON, OFF, [96]). This differentiation would be important 
because de- and hyperpolarizing bipolar cells do not only 
express different postsynaptic receptor pools but also take 
different positions in the triad synapse (e.g., OFF bipolar cell 
show non-invaginating, flat contacts) and might therefore 
be differentially affected by presynaptic mutations. In the 
nob2 mouse model, where only 10% of Cav1.4 full-length 
transcript is predicted to be expressed, both light-adapted 
and dark-adapted ERGs are present [21]. Of note, Chang 
and colleagues implemented their ERG finding with more 
sensitive extracellular in vivo single-unit retinal ganglion 
cell recordings which showed a lower spontaneous activity 
and a change in the gain of their light response in ON gan-
glion cells whereas OFF ganglion cell responses were actu-
ally unaffected. Thus, we need more appropriate diagnostic 
tools because the relative preservation of the OFF pathway 
is most likely undetected in the ON-dominant ERG flash as 
is the influence of other pathways in the dark-adapted ERG. 
This is supported by another recent study that emphasized 
the different effects of a Cav1.4 mutation in the scotopic 
and photopic retinal pathways. In fact, in I756T mice, the 
cone-cone bipolar cell transmission was severely affected 
whereas the rod pathway was still responding to light [120].

Moreover, in the non-transmitting G369i mutant in 
which the morphology of the ribbon synapse is largely 
maintained the ERG highlighted a positive b-wave at high 
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light intensities [61]. By contrast, no discernible b-wave can 
be detected in Cav1.4 KO mice [67], comparable to mice 
completely lacking rod and cone phototransduction [23], 
ruling out intrinsically photosensitive ganglion cells as the 
source of this ERG b-wave. This finding suggests that (i) 
cones might express also other Ca2+ channels in addition to 
Cav1.4 and (ii) some residual vision might be present and 
is worth investigating. It is therefore imperative to solve the 
channel (subunit and/or splice variant) composition of rods 
and cones to be able to better understand CSNB2 pathology.

Regulation of Cav1.4 function by alternative 
splicing

Alternative splicing is a common feature of voltage-gated 
Ca2+ channel subunits thought to confer an increased diver-
sity to the biophysical properties and potential interactions 
of the channel. Among α1, the extent of Cav1.2 and Cav1.3 
alternative splicing also correlates with their widespread tis-
sue distributions (including heart, vascular smooth muscle, 
endocrine cells, and neurons in the nervous system) com-
pared to the narrow expression patterns of Cav1.1 (largely 
specific for skeletal muscle) and Cav1.4 (mainly in the 
retina). This difference suggests potentially less necessity 
for differential tuning of channel properties for the latter 
two isoforms. Nonetheless, several Cav1.4 splice variants 
have been determined in mRNA isolated from the human 
retina and some of them have been functionally character-
ized (Fig. 1, Table 2, [33, 95]).

Unsurprisingly, the variants leading to substantial dele-
tions in the C-terminus including the CTM (Ex43* and 
ΔEx47) exhibit pronounced CDI, likely through facilitated 
CaM binding to the IQ domain region (Fig. 1, [108]). In 
addition, both variants also impose a marked hyperpolar-
izing shift of their V½. The abundantly expressed Ex45a- 
(called Δex p45 in [33]), with only a minor shortening of 
the C-terminal sequence, has little to no effect on the cur-
rent–voltage (I-V) relationship or CDI properties. Similarly, 
the Ex42d + variant exhibits little change relative to the 
canonical variant’s biophysical properties; however, this var-
iant has only been studied in a chimeric channel [95]. Both 
Ex45a- and Ex42d + don’t affect the putative PCRD/DCRD 
sequences, thus no effects on CDI are expected. The ΔEx32 
variant in the IVS3-IVS4 linker has also only been studied 
in a chimera but exhibited a substantial hyperpolarizing shift 
of the I-V curve (effects on VDI or CDI were not tested, 
[59]). Of note, pharmacological properties can be modulated 
by alternative splicing, seen for example in the sensitivity 
of C-terminal Cav1.3 splice variants for dihydropyridines 
(DHP) [42]. There is no published data on pharmacological 
properties of different Cav1.4 splice variants to date.

The interplay between mutations and splice variants is 
an important aspect for the understanding of the functional 
impact that splicing might have on a mutated channel. Thus 
far the effect of splice variants on the function of channels 
harboring a mutation and the pathology caused has been 
largely understudied. An example of a systematic compari-
son has been performed by Hofer and colleagues [39], where 
the biophysical properties of the S652L mutation in Cav1.3 
were compared between the full-length channel and a short 

Table 2   Productive Cav1.4 splice variants found in human retina. 
We excluded splice variants that can be considered non-produc-
tive (inducing frameshifts and premature stops or otherwise lead-
ing to deletions of transmembrane segments, including the double 
frameshifts around exons 16–18). The % of each variant at respective 
locus was taken from Tan et al. (2012) [95] (#) and Haeseleer et al. 

(2016) [33] (##). Changes in activation and inactivation properties are 
provided where data is available. Data sources: #1 [95] (Cav1.2 chi-
mera), #2 [95], ## [33], ### Liu et al. (2017) [59] (Cav1.3 chimera); 
V½, shift in the half-maximal voltage of activation; VDI, voltage-
dependence of inactivation; CDI, Ca2+-dependence of inactivation

Splice variant % at locus Structural change Functional characterization

Activation (V½) Inactivation

Ex2x 3.4% # N-terminal sequence changed (mutually exclusive in-frame exon) n.a n.a
Ex9d- 9.1% # shorter I-II linker, preserved AID (in-frame alternative splice donor site; 

ΔGSMAEEGRAGH)
n.a n.a

ΔEx32 17.9% # shorter IVS3-IVS4 linker (in-frame exon skipping; ΔNGGHLGE)  ←  ← (− 7 mV) ### n.d.###

Ex42d +  n.a C-terminal sequence changed; longer C-terminus (in-frame alternative splice 
donor site; + VGTSFHSPRNLI)

 ← (−2.6 mV) #1 unchanged#1

Ex43* 13.6% # C-terminal sequence changed; shorter C-terminus, CTM deleted (novel exon 
with stop; + SRDEVLPCWPGWFRTPDLR)

 ←  ← (− 12.5 mV) #2 VDI↓
CDI↑↑#2

Ex45a- 12.7% #
13.8% ##

C-terminal sequence changed; shorter C-terminus (in-frame alternative 
splice acceptor site; ΔLSYLDEQAGTPPCSVLLPPHR)

 → (1.2 mV) #1

 ← (− 3.0 mV) ##
unchanged#1, ##

ΔEx47  < 2% ## proximal CTM (PCRD) deleted (in-frame exon skipping; ΔGSWATPPQRG
RLLYAPLLLVEEGAAGEGYLGRSSGPLRTFTCLHVPGTHSDPSHGK
RGSADSLVEA)

 ←  ← (− 8.0 mV) ## VDI normal,
CDI↑##
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variant, lacking a large part of the C-terminus, including the 
Cav1.3 CTM. Most mutation-induced changes were similar 
in both variants; however, CDI was reduced only in the short 
variant. The only study of alternative splicing with a muta-
tion in Cav1.4 investigated splice variant-dependent effects 
of the I756T mutation by comparing the mutation effect on 
canonical full-length Cav1.4 with the variant lacking exon 
47 (ΔEx47) [109]. The authors found comparable hyperpo-
larizing shifts of the V½ induced by the I756T mutation in 
full-length (− 20 mV) and ΔEx47 (− 19 mV) channels but 
a substantial reduction of current density only for ΔEx47 
(~ 75%), with effects of the splice variant also on current 
kinetics, especially on the time constant of deactivation. The 
interesting aspect of these splice variant-dependent effects of 
the mutation lies in the cumulative nature of the V½ change, 
leading to an additive hyperpolarizing shift that results in a 
very negative activation threshold for I756T-ΔEx47. Con-
sequently, mutations can not only have different effects on 
channel properties depending on the splice variant but also 
changes due to splice variant and mutation can be cumula-
tive and thus cause an exacerbation of the effects.

Interestingly, some effects might not just be modulated 
by the splice variant but can indeed only affect specific 
splice variants, for example when a mutation is localized 
inside a cassette exon or inside one of several mutually 
exclusive exons. For example, Cav1.2 mutations in patients 
with Timothy syndrome (TS) can be localized in either one 
of its mutually exclusive exons 8a (TS1) or 8 (TS2), lead-
ing to specific effects depending on whether the mutation-
carrying exon is expressed in the tissue of interest [87]. 
Of the Cav1.4 mutations published so far, this effect can 
potentially occur with mutations in exon 2 for which an 
alternative exon exists (Ex2x, [95]) and is therefore likely 
not of major concern for the understanding of pathological 
changes of Cav1.4 channel function.

Regulation of Cav1.4 function by subunit 
composition

What is of high relevance for our understanding of func-
tional changes imposed by mutations is the auxiliary subunit 
composition of Cav1.4 channel complexes. Luckily, there 
seems to be limited diversity in auxiliary subunit expression 
in retinal photoreceptors with both rods and cones express-
ing α2δ4 and β2. For both of these isoforms, there are lim-
ited reports on alternative splicing, with one study showing 
a truncating variant of α2δ4 in the retina [7] and another 
study detecting the expression of a subvariant of β2a, called 
β2X13, that differs in the inclusion of exon 7B instead of the 
common exon 7A [56]. Most importantly, a recent publica-
tion showed different biophysical properties of the I756T 
mutation in channel complexes made from β2a and α2δ1 

in comparison with the published native composition with 
β2X13 and α2δ4 [109]. While parameter changes were qual-
itatively the same in both complex compositions, mainly 
a marked hyperpolarizing shift of the V½ induced by the 
I756T mutation, the magnitudes were different and distinctly 
dependent on Cav1.4 splice variant. In particular, a differ-
ence in the activation gating between full-length Cav1.4 and 
ΔEx47 carrying the I756T mutation was only apparent with 
β2X13 and α2δ4. Crucially, the loss of Ca2+-selectivity in 
I756T-mutated Cav1.4 that they observed was dependent on 
co-expression with β2X13 and α2δ4 and was absent with 
β2a and α2δ1 [109].

There is to date no definite proof for cell-type specific 
splicing of Cav1.4 and/or auxiliary subunits in rods versus 
cones (or bipolar cells), which has several important conse-
quences. Distinct splice variant-dependent mutation effects 
could, however, have a deeper impact on one of the cell 
types. One piece of evidence for a differential expression of 
Cav1.4 splice variants might be found from pharmacological 
studies. Neuromodulators like nitric oxide, somatostatin, or 
dopamine modulate Ca2+ currents in rod and cone photo-
receptors differently [3, 54, 88], which could derive from a 
difference in the composition of Ca2+ channel complexes or 
Cav1.4 splice variants.

In summary, the definitive impact of a Cav1.4 mutation 
is dependent on the auxiliary subunit composition of the 
channel complex and on the Cav1.4 splice variant that is 
expressed. Until now, we only know of the existence of 
splice variants but we do not know if several variants are 
co-expressed by some cell type(s) or whether each variant 
has a distinct cell type of origin. There is clearly a need to 
determine the Cav1.4 splice variant expression in different 
retinal cell types to lay the foundation for an understanding 
of how disease-causing mutations would be modified by this 
factor. In heterologous expression systems, we should then 
consider the potential variability due to the Cav1.4 splice 
variant used and, in particular, also the auxiliary subunits 
that are co-expressed. Finally, the splice variant influence is 
of relevance for gene supplementation therapy approaches, 
where one consensus variant would be supplemented to all 
cell types which might not be the ideal fit for the native 
function in cells normally expressing an alternative Cav1.4 
variant.

Pharmacology of Cav1.4 channels

The DHP sensitivity of LTCCs varies between tissues, most 
likely due to not only their differential Cav and accessory 
protein expression but also alternative splicing of α1 subunit 
(see the “Regulation of Cav1.4 function by alternative splic-
ing” section, [42]). Consistent with the Ca2+ channel phar-
macology in photoreceptors, which previously suggested a 
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low affinity for DHPs [107], Cav1.4 exhibits about fivefold 
lower sensitivity to DHPs than Cav1.2 at negative membrane 
potentials [52, 69, 116]. Still, compared to other LTCCs 
(Cav1.2/Cav1.3), the Cav1.4 pharmacology has been poorly 
studied and further work will be required before high-affin-
ity Ca2+ channel blockers could be efficiently applied (for 
review, see [119]). Of note, the DHP sensitivity for mutated 
channels should be studied separately as some Cav1.3 vari-
ants showed different affinity to DHPs compared to the 
wild type [39, 76]. As a matter of fact, the I756T mutation 
showed a tenfold higher sensitivity to the DHP nilvadipine 
compared to wild-type Cav1.4 [120]. Zanetti and colleagues 
tried to revert the retinal phenotype caused by the gain of 
function mutation I756T with acute application of the drug 
in ex vivo retina. While this approach was not effective, 
in vivo long treatment with low-dose Ca2+ channel blockers 
could still be beneficial.

Instead, due to toxic side effects expected from activa-
tion of Cav1.2 and Cav1.3 in other tissues, pharmacologi-
cal activation of mutated Cav1.4 channels (still expressed 
but with strongly reduced current density because of e.g. 
increased protein turnover but unchanged single channel 
properties [20] by LTCC activators (e.g., BayK8644)) 
would not be clinically applicable to humans (for review 
see [119]). Gating modifying drugs that would change 
activation and inactivation channel properties are cur-
rently not available but are on demand to optimize the 
dynamic range of Ca2+ signaling in retinal photoreceptors 
expressing Cav1.4 channel mutations (Fig. 3).

Options for targeted therapies in congenital 
stationary night blindness type 2

A milestone that cleared a path for new therapies target-
ing retinal diseases in clinical trials was the approval of 
Luxturna ®, the first gene therapeutic drug used for the reti-
nal dystrophy Leber congenital amaurosis type 2 [62]. Viral 
vectors as vehicles to transport genetic information into cells 
have been employed extensively in the gene therapeutic field 
[60].

Most of the current retinal gene therapies are employ-
ing recombined adeno-associated virus (rAAV) vectors 
due to the lack of human pathogenesis and the low immune 
response compared to other viral vectors [13]. However, 
all of the current clinical trials employing rAAVs trans-
port small genes because the efficient packaging capacity 
is below 5000 base pairs [28, 112]. Thus, to circumvent the 
size limitation of AAVs transporting bigger genes (e.g., 
CACNA1F), different procedures such as intermolecular 
recombination, RNA-, and protein trans-splicing are needed 
[91, 97, 98].

Cav1.4 mutations leading to fewer functional channels, 
due to decreased channel stability and promoted misfold-
ing ([20], for review see [89]), would be a perfect target for 
augmentation gene therapy. As an example, we predicted 
the structural consequences of a glycine to valine mutation 
located extracellularly at the end of the IVS5 transmembrane 
helix in the voltage sensor domain (VSD) IV (G1350V) by 
building a homology model based on the cryo-electron 
microscopy structure of the Cav1.1 α1 subunit in the inacti-
vated state (PDB accession code: 5GJW) [113]); sequence 
similarity with Cav1.4 α1 about 85%; Fig. 4). As G1350 
is located at the beginning of the pore loop; it introduces 
mobility which might be required for forming the kink of the 
pore loop (Fig. 4b, c). The mutation might therefore desta-
bilize a favorable interdomain interaction of the G1350 with 
the neighboring VSD III (Fig. 4d, e) resulting in a lower 
open probability and/or decrease of the stability of the chan-
nel (previously also observed for the intracellularly located 
loss of function mutation L860P, [20]). Interestingly, a 
similarly located mutation in the segment S6 of the Cav1.2 
VSD I—that might also form an interaction with the pore 
loop—is a causal long QT syndrome mutation [30]. Such 
mutations would benefit from the application of chemical 
chaperones because the gating properties of the remain-
ing currents are comparable to wild type ([20], Fig. 3 for 
L860P). A majority of mutations, however, are predicted to 
cause severe structural changes such that they are unlikely 
to form functional channels, often due to premature trunca-
tion (Table 1). Truncated Cav1.4 channels might therefore 
not even be expressed because nonsense-mediated mRNA 
decay eliminates mRNAs containing premature translation-
termination codons [18].

Gene augmentation therapy, however, might not be practi-
cal for all Cav1.4 mutations. In case of mutations that cause 
gating changes, inhibitory RNA could be expressed in pho-
toreceptor cells to bind to the mutation-containing mRNA 
and initiate RNA degradation [75, 94]. This procedure 
would lead to a decrease in non-functioning protein product 
and may be beneficial for cell survival if combined with a 
gene supplementation therapy.

Furthermore, errors in the splicing procedure of pre-
mRNA might change the functionality of the translated pro-
tein (Table 3). Here, antisense oligonucleotides can be used 
to increase the likelihood of excluding or including indi-
vidual exons during the splicing process [6, 31] and thereby 
restore a wild-type coding sequence. Lastly, an additional 
way to treat Cav1.4 mutations could be to correct them in 
the photoreceptor genome using zinc finger nucleases [99], 
TALENs [111], or CRISPR/Cas [36, 92] as molecular tools.

Currently, no gene therapy for CSNB2 is available. How-
ever, Waldner and colleagues established a mouse line that 
showed a partial structural and functional rescue of retinal 
integrity by cre-induced expression of a transgenic Cav1.4 
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[104]. Cre expression was controlled by a Pax6 promoter, 
resulting in Cav1.4 expression in the early developmental 
stage. Of note, ERGs and visually evoked potentials in the 
visual cortex supported signal transduction to the brain. 

Immunohistochemical analysis of the transgene revealed 
patchy expression throughout the retina. Since the inte-
gration of the transgene into the genome should be at the 
same locus for all nucleus-containing cells, the patchy 
expression pattern hints to either epigenetic silencing or 
post-transcriptional degradation. The structural features of 
the retina resembled a mosaicism phenotype, in which col-
umns show either the knockout or the wild-type phenotype. 
Michalakis and colleagues reported a similar phenotype in 
Cav1.4 heterozygous female mice, caused by X-chromosome 
inactivation [65]. Avoiding genomic silencing is of crucial 
interest for a retina-wide expression of the transgene. A pos-
sible strategy could be to employ the CRISPR/Cas system 
to guide methyl-cleaving proteins to the genomic integra-
tion site of the transgene and carry out epigenetic editing 
by removing the methylation labels responsible for the gene 
inactivation [26]. One option might be to flank the transgene 
with insulator sequences; in between those genomic DNA is 
known to be better accessible and transcriptionally active, 
resulting in long-term expression in vivo [22, 93]. Another 
option would be to target the transgene into known genetic 
safe harbor locations, where gene silencing is not expected 
(e.g., the AAVS1 locus, for review, see [71]).

Laird and colleagues, on the other hand, employed a 
tamoxifen-inducible promoter to temporally express trans-
genic Cav1.4 [55]. Rods got transfected with transgene-
carrying plasmids by retinal in vivo electroporation at the 
day of birth because rod-precursor cells are still dividing at 

Fig. 4   Structure model of the wild type and the G1350V mutant 
Cav1.4 α1 subunit. Panel a: top view of the Cav1.4 α1 subunit, high-
lighting the position of the G1350V mutation, which is located at the 
end of the IVS5 transmembrane helix. Panels b and c illustrate the 

interdomain interaction of VSD III (K966) with the pore loop of VSD 
IV (G1350) the wildtype Cav1.4 α1 subunit which cannot be formed 
between V1350 and K966 (d, e)

Table 3   Location and nucleotide position of so far uncharacterized 
splice site mutations

Exon or exon-exon Nucleotide Reference

3–4 c.382-2A > G [96]
4–5 c.523-2A > G [96]
17 c.2288 + 1G > A [22]
17 c.2288 + 5G > T [22]
19 c.2387-1G > C [97]
20 c.2544-1G > A [22]
20 c.2571 + 1G > C [101]
21 c.2673 + 3G > A [97, 98]
21 c.2674–2; 2674-3delCA [97]
22 c.2733 + 1G > C [101]
24 c.2938 + 1G > A [96, 98]
24–25 c.2961 + 1G > A [96]
28 c.3439–1 GCGTC > TGG​ [47]
33 c.3942 + 2 T > C [97]
33 c.3942 + 2 T > A [97]
35 c.4101-1G > C [22, 97]
39 c.4590-2A > G [96]
40–41 c.4724-2A > G [96]
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that developmental stage and plasmid DNA can enter the 
nucleus during mitosis. In both young and mature animals, 
induction of Cav1.4 expression partially rescued synaptic 
features. Most likely due to the low transfection rate of rods, 
which was 10%, the ERG could not be restored. Thus, the 
performance improvement in a visually guided water maze 
test was limited. Yet there are technical difficulties to be 
overcome because of retinal detachment observed in the 
tamoxifen-induced group.

Taken together, a gene therapeutic approach will bring us 
closer to a better understanding of the role of Cav1.4 channel 
for synapse plasticity and pave the way for clinical applica-
tions in human patients.
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