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Abstract 

Background:  Dengue fever is a vector-borne infectious disease that is transmitted by contact between vector mos‑
quitoes and susceptible hosts. The literature has addressed the issue on quantifying the effect of individual mobility 
on dengue transmission. However, there are methodological concerns in the spatial regression model configuration 
for examining the effect of intercity-scale human mobility on dengue diffusion. The purposes of the study are to 
investigate the influence of neighborhood structures on intercity epidemic progression from pre-epidemic to epi‑
demic periods and to compare definitions of different neighborhood structures for interpreting the spread of dengue 
epidemics.

Methods:  We proposed a framework for assessing the effect of model configurations on dengue incidence in 2014 
and 2015, which were the most severe outbreaks in 70 years in Taiwan. Compared with the conventional model con‑
figuration in spatial regression analysis, our proposed model used a radiation model, which reflects population flow 
between townships, as a spatial weight to capture the structure of human mobility.

Results:  The results of our model demonstrate better model fitting performance, indicating that the structure of 
human mobility has better explanatory power in dengue diffusion than the geometric structure of administration 
boundaries and geographic distance between centroids of cities. We also identified spatial–temporal hierarchy of 
dengue diffusion: dengue incidence would be influenced by its immediate neighboring townships during pre-epi‑
demic and epidemic periods, and also with more distant neighbors (based on mobility) in pre-epidemic periods.

Conclusions:  Our findings suggest that the structure of population mobility could more reasonably capture urban-
to-urban interactions, which implies that the hub cities could be a “bridge” for large-scale transmission and make 
townships that immediately connect to hub cities more vulnerable to dengue epidemics.
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Background
Dengue fever is a vector-borne infectious disease that is 
transmitted by contact between vector mosquitoes and 
susceptible hosts [1]. Since the 1970s, dengue fever has 
been gradually spreading throughout tropical and sub-
tropical countries, and its transmission involves interac-
tions among carriers, mosquitoes, and healthy humans. 
More than 125 countries are impacted by the disease, and 

it is an increasingly serious threat to global public health 
due to climate change. Previous studies showed mete-
orological and social–economic risk factors that facilitate 
the disease transmission, including temperature, rainfall, 
population density, demographic composition, urban-
ized levels and more [2–4]. The Fifth Assessment Report 
(AR5) of the Intergovernmental Panel on Climate Change 
(IPCC) also confirmed that global warming would create 
more suitable habitats for vector mosquitoes in sub-trop-
ical regions and speed up the geographic expansion of 
dengue epidemic areas due to global mobility including 
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to some high-latitude countries such as France and Japan 
[5–12].

Due to the limited flight range of mosquitoes [13], it 
is impossible for the virus to be transmitted to distant 
areas by dengue vectors. Population movement across 
countries by air traffic is the major driver of the interna-
tional spread of the disease [12–17]. Via air travel, disease 
importation from dengue-endemic countries is a trigger 
point for initiating indigenous epidemics in some den-
gue-epidemic countries or regions, such as Tokyo, Japan; 
south-east France; and southern Taiwan [14, 18]. Rou-
tine mobility behaviors, such as daily commutes, are also 
drivers of large-scale intercity transmission [19]. There-
fore, understanding the spatial structure of population 
mobility is crucial for assessing the possible mechanisms 
of dengue diffusion and identifying the geographic char-
acteristics of high-risk areas [20].

Recent studies on assessing the influence of human 
mobility on dengue transmission can be categorized into 
three approaches. The first is to construct simulation or 
statistical models that incorporate human mobility as the 
mechanism of dengue diffusion [21]. For example, Bar-
mak et  al. [22] showed that the long-distance mobility 
pattern is an efficient pathway for dengue transmission. 
Another study used survival analysis to show that daily 
routine commuters facilitate the large-scale spatial–tem-
poral diffusion of the epidemic in a city [19]. The second 
perspective is to collect human mobility or behavior 
data to analyze the spread of dengue. Stoddard et al. [15] 
showed that small-scale mobility behavior among house-
holds also played an important role in dengue epidem-
ics in Iquitos, Peru. Wesolowski et al. [16] used the Call 
Detail Records (CDRs) from mobile phones to analyze 
the spatial behaviors of humans in Pakistan for predicting 
diffusion of dengue in time and space. Airline traffic data 
are also available for studying the international spread 
of dengue epidemics and assessing the disease importa-
tion risk from dengue-endemic countries [23, 24]. The 
third perspective is to analyze geometric structures of 
geography to measure geospatial similarity or neighbor-
hoods as a surrogate for human mobility. Spatial regres-
sion modeling is the major approach for measuring the 
neighborhood effects on dengue risk after controlling for 
environmental factors [4, 25].

The above studies showed that human mobility could 
be the main risk factor for dengue transmission on both 
the regional and global scales. However, methodologi-
cal concerns remain for examining the effect of intercity 
human mobility. First, spatial settings in the regression 
model often examine the geometric relationships of 
geography as a surrogate for spatial interactions and 

human interactions. For example, the weights of spatial 
contiguity can be defined as administration boundaries 
with common borders and points [26] or areas based on 
k-nearest neighbors within a specific distance [25]. These 
definitions may simplify the complex interactions of 
humans because the geometry of spatial contiguity can-
not comprehensively reflect these human interactions 
due to topographical or social–economic barriers across 
the study area [27]. Moreover, the spatial heterogeneity 
of human interactions or mobility may not be captured 
by the geometry of the boundaries alone. In addition, it 
is difficult to differentiate the effect of urban-to-urban 
or rural-to-rural mobility on epidemic diffusion if these 
areas share similar geometric structures. Some studies 
suggest that the use of real population flow could act as 
a spatial weight that captures more realistic spatial inter-
actions [27, 28]. Therefore, approaches that use Global 
Positioning System (GPS) logs, cell phone records or 
geotags from social media for tracking moving trajec-
tories of individuals have become emerging methods 
for studying human mobility and dengue risk [29, 30]. 
However, massive cell phone data provided by telecom-
munication companies are often difficult to access in the 
research community. Tracking collective behaviors from 
cell phone data may also violate location privacy, and 
this approach could be controversial in most developed 
countries. Due to these concerns, mathematical models, 
such as gravity, spatial interaction or radiation models, 
are used to estimate population flow across cities. Spatial 
models have become widely used approaches to study the 
geography of human mobility and disease transmission 
[29, 31, 32]. Among these models, the radiation model is 
a parameter-free algorithm that is robust in estimating 
the flow of intercity human mobility [32].

To clarify the role of intercity human mobility, we 
used the radiation model to capture the structure of spa-
tial mobility as a possible mechanism. We examined the 
effect of neighborhood structures on the spatial–tempo-
ral spread of dengue epidemics in southern Taiwan from 
2014 to 2015, the most severe outbreaks over the course 
of 70 years in Taiwan, and identified the common social-
demographic features in these high-epidemic regions. By 
profiling the neighborhood effects on the spatial–tem-
poral structures of disease spread, we proposed a study 
framework for interpreting possible pathways of intercity 
diffusion of dengue epidemics. The purposes of the study 
are (1) to investigate the influence of neighborhood struc-
tures on epidemic progression from the pre-epidemic to 
epidemic periods and (2) to compare the definitions of 
different neighborhood structures for interpreting the 
spread of dengue epidemics.
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Data and methods
Study area
Southeast Asia is one of the major dengue-endemic 
regions in the world [33–36]. Taiwan is located in the 
border region of Southeast and East Asia. Southern 
Taiwan, which is passed through by the Tropic of Can-
cer, has a tropical monsoon climate; it is dry in the win-
ter and hot and wet in the summer and autumn. The 
population has grown quickly, reaching 5.5 million in 
2014. With an average of 683 persons/km2, metropoli-
tan areas of southern Taiwan have become one of the 
most densely populated areas in the world. Due to its 
climatic and demographic characteristics, the region 
is a severe dengue-epidemic region of Taiwan, which 
annually covers more than 85% of the total confirmed 
dengue cases in Taiwan. Therefore, this region, includ-
ing Tainan and Kaohsiung Cities and Pin-tung County, 
was used as the study area. A township was used as the 
unit for analysis, which is the basic unit for regional 
master planning and national policy implementation. 
Our study analyzed the dengue incidence and profiled 
the social–economic structures of spatial diffusion 

in 108 townships from 2014 to 2015. To differentiate 
between the social–economic statuses of each town-
ship, we categorized the urbanization levels into seven 
types, including highly or middle-developed, emerg-
ing, general, aging, rural, and non-developed areas as 
shown in Fig. 1. These types were determined by socio-
demographic variables, including population density, 
population ratio of people with college or above edu-
cational levels, population ratio of elder people over 
65  years old, population ratio of people of agriculture 
workers, and the number of physicians per 100,000 
people from Taiwan census database [37].

Dengue epidemics in study area
Dengue fever is a notifiable infectious disease in Taiwan. 
The dengue surveillance data from the Taiwan Centers 
for Disease Control (Taiwan CDC) are based on insti-
tutional reporting and border surveillance. The con-
firmed dengue cases reported by the Taiwan CDC are 
laboratory-positive dengue cases, which indicates a sus-
pected dengue case with anti-dengue IgM seroconver-
sion or single anti-dengue IgM positivity or a case with 

Fig. 1  Urbanization levels in southern Taiwan
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dengue virus identification through RT-PCR [38]. Their 
residences of cases were also aggregated as counts in 
townships for public announcement. Figure 2 shows the 
temporal trend of dengue epidemics from 1998 to 2015 in 
Taiwan. The figure indicates that, in the last 2 years, the 
number of confirmed cases reached 15,732 and 43,784, 
and 233 people dead, respectively, which are the most 
severe outbreaks over the course of 70 years in Taiwan. 
Most high-epidemic areas were concentrated in Tainan 
and Kaohsiung Cities (Fig.  3). Moreover, the southern 
Taiwan is located in the border of tropical and sub-tropi-
cal climatic zones (Fig. 1). Therefore, the dengue epidem-
ics in Taiwan can be regarded as one of dengue sentinel 
indicators in Southeast and East Asia, which monitors 
geographic expansion of dengue epidemics to middle or 
high-latitude countries.

Figure 4 shows the monthly variations of dengue cases 
in southern Taiwan, 2014 and 2015, and it indicates that 
there were significant epidemic seasons in these 2 years. 
We defined the month with the highest dengue cases as 
the start of epidemic season. Therefore, we categorized 
the periods of October to December of 2014 and Sep-
tember to December of 2015 as epidemic seasons. We 
further investigated the association of neighborhood 
structures and dengue diffusion between pre-epidemic 
and epidemic seasons in these 2 years.

Table 1 summarizes the population density, number of 
townships and dengue incidence during the pre-epidemic 
and epidemic periods in 7 urbanization stratifications, 
including remote, rural, ageing, general, new-developed, 
medium-density and high-density areas. It shows that 
dengue cases were concentrated in medium- and high-
density areas in both the pre-epidemic and epidemic 
stages. Therefore, human mobility between townships 
with high urbanization levels could be critical routes of 
spatial transmission.

Spatial weights and neighborhood structures
Spatial proximity and human mobility may influence 
neighborhood diffusion of dengue epidemics. Different 
definitions of neighborhood structures reflect the effects 
of spatial interactions. We defined three neighborhood 
structures, including Queen Contiguity, Distance-thresh-
old weights and matrix of human mobility, for investi-
gating the influence of different types of neighborhood 
structures on dengue diffusion.

Queen contiguity weights
The queen contiguity is one of the standard contiguity-
based spatial weighting methods in geographic analysis. 
It determines neighboring units as those that have any 
point in common, including both common boundaries 

Fig. 2  Number of dengue cases in Taiwan (1998–2015)
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Fig. 3  Spatial distributions of dengue incidence in a 2014 and b 2015
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and common corners. The spatial weights in a queen 
contiguity matrix (WQ) represent townships that share 
administration boundaries and have higher possibilities 
of interacting with each other. Based on queen contiguity, 
each township has an average of 5.14 neighboring town-
ships in our study.

Distance‑threshold weights
The distances among townships could influence the 
extent of daily mobility. The queen contiguity cannot 
incorporate the effect of distance on spatial interaction. 
The extent of daily mobility is measured by the journeys 
someone takes from home to work and back again. The 

a

b

Fig. 4  Monthly number of dengue cases in a 2014 and b 2015. In 2014, the period of Jan.–Sep. is defined as pre-epidemic and Oct.–Dec. as 
epidemic; in 2015, the period of Jan.–Aug. is defined as pre-epidemic and Sep.–Dec. as epidemic stage
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Institute of Transportation identified 20 km as the aver-
age daily journey distance for urban trips [39]. Therefore, 
we measured distances between centroids of townships 
for establishing a spatial weight matrix (WD) that defined 
the townships within 20 km as the criteria of a neighbor-
hood for modeling spatial interactions. In other words, 
the distance-threshold weights can reflect spatial interac-
tions between townships within 20 km.

Matrix of human mobility
The weights of Queen Contiguity and Distance-threshold 
reflect geometric characteristics of neighborhood struc-
tures rather than the patterns of human mobility. In other 
words, these definitions cannot differentiate the direc-
tions and volumes of population flow between urban-to-
urban and urban-to rural areas. Therefore, we adopted 
the concept of radiation model proposed by Simini et al. 
[32] for quantifying spatial interaction between town-
ships (Eq.  1). The radiation model can estimate routine 
human mobility, which reflects daily commute [32]. 
Therefore, we used the proportions of commuters from 
one to another location as the spatial weight matrix for 
quantifying spatial associations among locations.

where Tij is the proportion of the commuters in township 
i travelling to township j; mi and mj are the populations 
in townships i and j, respectively; and sij is the total popu-
lation in the circle centered at i and touching j, excluding 
the source and destination population as shown Fig. 5a. 
The population in the circle (sij) represents attraction 
(e.g., opportunity of jobs) to mi. If sij is larger, it indicates 
that the population in the mi has more mobility alterna-
tives, which decreases the mobility propensity from mi 
to mj. The parameter-free model is validated in various 

(1)Tij = mi
mj

(

mi + sij
)(

mi +mj + sij
)

behaviors of human mobility, including journeys with a 
short travel time, daily commute, and migration [32]. 
We used the model to estimate the trips for construct-
ing an Original-Destination Matrix W, W(i,j) is the esti-
mated trips from township i to j and the transpose matrix 
WT(i,j) is then the estimated trips from j to i. There-
fore, we generated a fully connected symmetric matrix 
WF = W + WT, which can capture the spatial interactions 
between townships, and WF is the spatial weights we 
used to measure the human mobility between townships 
(Fig.  5b). Township population statistical data for the 
radiation model is from the Department of Household 
Registration, Ministry of the Interior in Taiwan.

Figure  6 illustrates an example of the neighborhood 
structures of Fongshan District in Kaohsiung City based 
on these three criteria. The neighborhood structures 
in Fig.  6a, b reflect the geometric characteristics of the 
administration boundary, and the spatial interactions in 
Fig.  6c capture the spatial variations of human mobility 
and characteristics of urbanization.

Statistical analysis
We used spatial regression modeling for investigating the 
neighborhood effects on spatial–time diffusion of dengue 
incidence between a township and its neighboring area. 
Spatial lag model, one of spatial regression specifications, 
adds a spatial lag operator to the outcome variable (e.g. 
disease incidence) for investigating neighboring effects 
as diffusion process [40, 41]. Therefore, by integrating 
dengue cases in different periods, in this study, spatial lag 
model was used for quantitatively measuring dengue dif-
fusion effects in different periods.

We developed three statistical model specifications: 
Model 1 only measures the neighboring effect of the pre-
epidemic period (t1), and Model 2 considers the diffusion 
effect of dengue incidence in neighboring townships dur-
ing both the pre-epidemic (t1) and epidemic (t2) periods. 
Comparing these two models can differentiate diffusion 

Table 1  Summarized Statistics in urbanization levels

Township stratification Counts of towns Avg. population density, 
person/km2

Dengue incidence rate, per 10,000 
people

Pre-epidemic Epidemic

Remote area 22 132.9 1.07 5.5

Rural area 18 121.5 0.81 7.24

Aging society area 10 163.1 0.64 4.01

General area 21 616.2 2.52 14.08

Newly developed area 19 1870.8 13.56 72.5

Medium-density urban area 9 5421.5 24.69 116.23

High-density urban area 9 10,746.7 24.97 196.16
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a

b

Fig. 5  Illustrations of a an example of using a radiation mode to estimate population flow from mi (source) to mj (destination), which considers 
total population in the circle centered at mi and touching mj excluding the source (mi) and the destination (mj) population. More population in 
the circle represent people in the mi have more attractive (e.g. opportunity of jobs), and it decreases mobility propensity from mi to mj; b network 
connectivity structure of human mobility estimated by a radiation model to represent spatial interaction
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effects from the pre-epidemic (t1) and epidemic (t2) peri-
ods to investigate the influence of neighborhood struc-
tures on epidemic progression. Model 3 considers the 

second-order neighboring townships of the pre-epidemic 
period (t1) for quantifying the relatively long-distance 
diffusion effect during the period.

Fig. 6  An example of neighborhood structures of Fongshan District of Kaohsiung City based on three definitions: a queen contiguity, b 
distance-threshold weights and c structure of human mobility
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Moreover, different settings of neighborhood struc-
tures, including Queen Contiguity, distance-threshold 
weights and structure of human mobility, are compared 
in each model for each year so that we could systemati-
cally understand which neighborhood structure is more 
appropriate for the discussion on spatial autocorrelation 
of dengue and the result we found would be more con-
vinced. Models 1 was fitted to data using ordinary least 
squares (OLS) method and Models 2 and 3 were fitted 
using maximum likelihood estimation (MLE) with the R 
package spdep. The Akaike information criterion (AIC) 
is used as the performance indicator of model fitting. A 
model with a lower AIC value has a better explanation for 
dengue diffusion.

The model framework of statistical analysis is shown 
in Fig.  7. Different colors of the layers represent differ-
ent-order neighborhood structures. The variables in the 
first layer (blue) represent a township i; the second layer 
(green) represent the 1-order neighborhood (immedi-
ate neighbors), and the third layer (pink) represent the 
2-order neighborhood (distant neighbors). The arrows 
represents influence relations between these variables. 
Detailed model specifications are described as follows.

Model 1: pre‑epidemic neighborhood effect model
We used ordinary least squares (OLS) Regression to 
investigate the diffusion effect of dengue incidence in 
neighboring townships during the pre-epidemic period, 
controlling for urbanization levels, as shown in Eq. 2

where yt2 is the logarithmic dengue incidence of a town-
ship during the epidemic period (t2) and x is the urbani-
zation level, which is a categorical variable. There are 
six dummy variables used to capture seven urbanization 
levels. βa is the marginal effect for one urbanization type 
(a). W is a spatial weight matrix, including the above-
mentioned WQ, WD and WF, for investigating the neigh-
borhood structures. Wyt1 measures dengue incidence in 
pre-epidemic period (t1) and its coefficient ρt1 is the mar-
ginal neighboring effect during the pre-epidemic period 
(t1), which can capture diffusion process of dengue epi-
demics from t1 to t2. ɛ is the regression residual.

(2)yt2 =

6
∑

a=1

βaxa + ρt1W yt1 + ε

Fig. 7  Study framework of statistical analysis: Different colors represent different-order neighborhood structures. The variables in the first layer 
(blue) represent a township i; the second layer (green) represent the 1-order neighborhood (immediate neighbors), and the third layer (pink) 
represent the 2-order neighborhood (distant neighbors). The arrows represents influence relations between these variables
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Model 2: current neighborhood effect model
We used spatial lag models (SLM) to investigate the dif-
fusion effect of dengue incidence in neighboring town-
ships during both the pre-epidemic (t1) and epidemic 
(t2) periods, controlling for urbanization levels, as 
shown in Eq. 3.

where βa is the marginal effect for one urbanization 
type (a). W is a spatial weight matrix, including the 
above-mentioned WQ, WD and WF, for investigating the 
neighborhood structures. Similar as Model 1, ρt2Wyt2 
measures diffusion effect of dengue incidence in epi-
demic period (t2). ρt2 is the marginal neighboring effect 
during the epidemic period (t2), and ρt1 is the effect dur-
ing the pre-epidemic period (t1), and ɛ is the regression 
residual.

Model 3: long distance model
We used spatial Durbin models (SDM) to investigate the 
2-order neighborhood effect in the pre-epidemic period 
as shown in Eq. 4. The 2-order neighborhood for a town-
ship refers to the neighbors of neighboring townships. In 
other words, the 2-order neighboring effect can capture 
the effect of relatively long-distance diffusion. Model 3 
is the same as Model 2, except for the term γt1W

(

Wyt1
)

 , 
which captures 2-order neighboring townships.

(3)yt2 = ρt2Wyt2 +

6
∑

a=1

βaxa + ρt1Wyt1 + ε

where βa is the marginal effect for one urbanization type 
(a). W is a spatial weight matrix, including the above-
mentioned WQ, WD and WF, for investigating the neigh-
borhood structures. ρt2 is the marginal neighboring effect 
during the epidemic period (t2); ρt1 is the effect during 
the pre-epidemic period (t1); γt1 is the marginal 2-order 
neighboring effect during the pre-epidemic period (t1); 
and ɛ is the regression residual.

Results
Tables 2 and 3 summarize the effects of different model 
configurations and epidemic progression on dengue inci-
dence in 2014 and 2015.

Our findings show consistent results for the dengue 
epidemics of 2014 and 2015.

Table  4 summarized the model-fitting performances 
(AIC values) for different settings of neighborhood 
structures and spatial model configurations for dengue 
diffusion in 2014 and 2015. It shows that Model 3 (long 
distance model) with structure of human mobility has 
the lowest AIC value. (Detailed statistical results for all of 
the models can be found in Additional file 1: Tables S1–
S4). This finding indicates that population mobility as the 
neighborhood structure can better explain the relatively 

(4)

yt2 = ρt2Wyt2 +

6
∑

a=1

βaxa + ρt1Wyt1 + γt1W
(

Wyt1
)

+ ε

Table 2  Model results of 2014 dengue epidemic using the matrix of population mobility as spatial weights

The value in parentheses is standard error

*p value < 0.05; **p value < 0.01; ***p value < 0.001
a  “Remote area” as reference category

Independent variables Model 1 Model 2 Model 3

Intercept 1.527(0.79) 1.149(0.69) 3.039***(0.75)

Spatial-lag of dengue incidence

 1st order neighbors in pre-epidemic period ρt1 1.107***(0.08) 0.671***(0.11) − 0.002(0.17)

 1st order neighbors in epidemic period ρt2 – 0.428***(0.09) 0.306**(0.10)

 2nd order neighbors in pre-epidemic period γt1 – – 1.001***(0.20)

Urbanization levelsa

 Rural area β1 − 0.229(0.24) − 0.099(0.21) 0.015(0.198)

 Aging society area β2 0.641*(0.31) 0.569*(0.27) 0.384(0.25)

 General area β3 0.236(0.24) 0.26(0.21) 0.465*(0.20)

 Newly developed area β4 0.964***(0.24) 0.647**(0.22) 0.771***(0.20)

 Medium-density urban area β5 0.791*(0.30) 0.595*(0.27) 0.639*(0.24)

 High-density urban area β6 0.521(0.33) 0.313(0.29) 0.456(0.27)

Performance of model fitting

 AIC 259.54 247.11 226.01

 R-square 0.72 – –
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long-distance (2nd-order) and immediate (1st-order) 
neighboring dengue diffusion in different periods.

Regarding urbanization levels in the models with pop-
ulation mobility structures, in Tables  2 and 3, Model 3 
shows areas that are newly developed, medium-density 
and high-density are associated with significantly higher 
dengue incidence relative to remote areas. Interestingly, 
the results of Model 3 also indicate that the dengue inci-
dence during the epidemic period is significantly associ-
ated with 1st-order neighbors during the epidemic period 
(t2) and 2nd-order neighbors which are relatively distant 
townships compare with 1st-order neighbors during the 
pre-epidemic period (t1) since the coefficient of ρt2 and 
γt1 in Model 3 are significant. Our results show the spa-
tial–temporal hierarchy of dengue diffusion: the dengue 
incidence in a township would be impacted by immedi-
ate neighbors during pre-epidemic and epidemic periods, 
and also with more distant neighbors (based on mobility) 
in pre-epidemic periods.

Discussion
Recent literature has indicated that one of the major driv-
ing forces of geographic expansion of dengue is human 
mobility on different scales, including within-city, inter-
city in a region, and international travels [13, 15, 16]. To 
quantify the effects of mobility on the spatial diffusion 
of dengue epidemics, previous literature replaced spa-
tial mobility structures with geometric relationships in 
spatial regression models [4, 25]. However, these geo-
metric relationships cannot fully reflect realistic spa-
tial interactions [27, 28]. On the other hand, large-scale 
intercity individual mobility routes are difficult to col-
lect, track, and access in most countries. Therefore, our 
study proposed a framework for model configuration to 
profile intercity dengue diffusion. First, we used a radia-
tion model to construct the structure of human mobility 
as neighborhood weight in the spatial regression model. 
Second, we categorized the pre-epidemic and epidemic 
periods for investigating the time-lag effect on dengue 

Table 3  Model results of 2015 dengue epidemic using the matrix of population mobility as spatial weights

The value in parentheses is standard error

*p value < 0.05; **p value < 0.01; ***p value < 0.001
a  “Remote area” as reference category

Independent variables Model 1 Model 2 Model 3

Intercept − 3.08***(0.90) − 1.56(0.81) − 0.53(0.92)

Spatial-lag of dengue incidence

 1st order neighbors in pre-epidemic period ρt1 0.50***(0.09) 0.27*(0.08) − 0.007(0.16)

 1st order neighbors in epidemic period ρt2 – 0.47***(0.08) 0.467***(0.08)

 2nd order neighbors in pre-epidemic period γt1 – – 0.40*(0.19)

Urbanization levelsa

 Rural area β1 − 0.11(0.25) − 0.10(0.21) − 0.14(0.20)

 Aging society area β2 − 0.37(0.30) − 0.45(0.25) − 0.53(0.25)

 General area β3 0.42(0.24) 0.40(0.21) 0.33(0.20)

 Newly developed area β4 1.34***(0.26) 0.77**(0.24) 0.66*(0.24)

 Medium-density urban area β5 1.94***(0.32) 1.31***(0.29) 1.21***(0.29)

 High-density urban area β6 2.47***(0.33) 1.44***(0.33) 1.36***(0.32)

Performance of model fitting

 AIC 259.25 239.52 237.17

 R-square 0.708 – –

Table 4  AIC values for  different settings of  neighborhood structures and  spatial model configurations for  dengue 
diffusion

Model 1: pre-epidemic neighborhood effect model, Model 2: current neighborhood effect model, and Model 3: long distance model

Neighborhood structures 2014 2015

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Queen contiguity 328.4 319.7 320.6 278.0 278.1 275.7

Distance-threshold weights 256.0 254.3 255.0 270.7 268.0 269.9

Structure of human mobility 259.5 247.1 226.0 259.3 239.5 237.2
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diffusion. Lastly, we incorporated 2nd-order and 1st-
order neighboring structures in our model to quantify 
relatively long-distance and immediate diffusion effects. 
Compared with conventional model configuration in spa-
tial regression analysis, our proposed radiation model 
specification demonstrates better model fitting perfor-
mance in both 2014 and 2015, which indicates that the 
structure of human mobility has better explanatory 
power in dengue diffusion than geometric relationships. 
The model results in the 2014 and 2015 dengue epidem-
ics have consistent findings, indicating that intercity 
mobility and urbanization could be driving forces of 
large-scale epidemic expansion of dengue [12, 14, 17, 19].

Our findings show that highly-urbanized areas are 
positively associated with dengue incidence in 2014 and 
2015, which is consistent with the literature, such as in 
[3, 4, 42]. In southern Taiwan, household plant plotting 
in townhouse buildings and small-area flooding water in 
yards after an extensive rainfall provide appropriate habi-
tats for dengue vector mosquitoes in urbanized areas. 
Meanwhile, areas with high population densities could 
help mosquitoes bite people more easily [4]. On the other 
hand, female Aedes aegypti, a major dengue vector mos-
quito, are most active during the daytime, which means 
that there is a high frequency of biting by A. aegypti for 
people gathering in public places, which increases the 
risk of dengue outbreak [43–45].

Regarding geographic expansion of epidemics, our 
study identifies a significant neighboring diffusion effect 
on dengue epidemics. The dengue incidence in a town-
ship would be impacted by neighboring townships during 
either the pre-epidemic or epidemic period. This find-
ing implies that the potential sources of diffusion for the 
township might be its neighboring townships with high 
dengue incidence. The result reflects the structure of 
human mobility as spatial interactions causing epidemic 
expansion [4, 25]. Moreover, the 2nd-order neighbor-
ing structure also has a significant effect on the town-
ship during the pre-epidemic period, which reflects the 
relatively long-distance diffusion effect. In other words, 
our results demonstrate a “ripple” process of dengue 
diffusion, which means that the immediate (first-order) 
neighboring effect occurs in the initial epidemic wave 
and that the wider geographic expansion occurs in a later 
epidemic wave, which is affected by the distant (second-
order) neighboring effect.

Cliff et  al. [46] categorized spatial diffusion patterns 
into three major types. Contagion results from direct 
contact for spreading. Relocation describes diffusion 
source shifts to another distant location. Hierarchy refers 
to transmission through an ordered sequence of settle-
ments rather than following a distance-based neighbor-
hood structure. Numerous studies have interpreted the 

epidemiological implications of these diffusion patterns 
[47–49]. In most cases, the structure of epidemic dif-
fusion is often a mixture of these patterns [13, 49, 50], 
and relocation and hierarchical patterns cause long-dis-
tance dispersion [51]. Our proposed model has profiled 
possible mechanisms for these patterns. Conventional 
geometric relationships, such as contiguity-based and 
distance-threshold weighting schemes, are based on a 
distance-decayed structure, which could capture the 
characteristics of contagious diffusion. However, geo-
metric relationships do not reflect topographic variabil-
ity and long-distance interactions due to transportation. 
A radiation model considered in our study captures the 
structure of intercity interactions, reflecting patterns 
of human mobility. For example, in Fig.  6c, population 
flows from Fongshan city (high-density urbanized areas) 
are not only to neighboring townships, but there are also 
flows to other distant high-density cities in Tainan. This 
means that our model can capture realistic urban-to-
urban interactions partially, which could cause reloca-
tion and hierarchical diffusion. Brockmann and Helbing 
[23] also proposed a concept of “effective distance,” which 
replaces conventional geographic distance with the 
matrix of passenger flux through air traffic between cites 
for predicting global disease arrival times. In summary, 
large-scale geographic expansion of epidemic propaga-
tion is difficult to explain only by the geometric structure 
of administration boundaries or geographic distances 
of centroids between cities. Population mobility or pas-
senger flows could more reasonably capture the struc-
ture of spatial interactions and long-distance diffusion 
patterns. In other words, hub cities could play a role as 
a “bridge” for large-scale transmission and make town-
ships connecting to hub cities more vulnerable to dengue 
epidemics.

The study has some limitations. First, the mobil-
ity structure was estimated by a parameter-free radia-
tion model, which only considers the population size 
of a city rather than the empirical or surveyed mobility 
data. Although the estimated mobility structure captures 
urban-to-urban interactions, we did not consider the 
detailed mobility behaviors of individuals or even dengue 
patients, such as choices of transportation modes or pur-
poses of the trip. Further investigation on more detailed 
intercity mobility structure is warranted. Second, in 
addition to human mobility, dengue diffusion is a com-
plex process in terms of the spatial–temporal variability 
in mosquito density, effectiveness of control measures, 
pathogen activity and host immunity [43, 52]. However, 
most of these factors are not available for intercity-scale 
studies. It is necessary to develop reliable sampling 
schemes for collecting these data in further investiga-
tions. Thirdly, we only used the most severe epidemics 
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in Taiwan as case study. Although the findings are con-
sistent in both years, it does not imply the findings still 
valid in other years. It would be worth to incorporate 
long-term longitudinal epidemic data for investigat-
ing the influence of human mobility on dengue diffu-
sion. Our findings may suggest that, in severe epidemic 
years, human mobility plays a significant role in inter-
city dengue diffusion. Finally, the spatial heterogeneity 
of intercity diffusion effect should also be considered in 
further investigation. For example, a geographic weighted 
regression (GWR) can be further used to differentiate the 
effect of human mobility on dengue incidence in each 
township. Spatially-varying relationships of neighbor-
ing effects on dengue incidence could provide the heath 
authority for implementing better adopt specific control 
and prevention strategies to specific areas.

Conclusions
The study proposed a study framework for investigat-
ing relatively long-distance and immediate neighboring 
diffusion effects on epidemic propagation and clarified 
the role of intercity-scale human mobility structure and 
urbanization levels as driving forces in large-scale den-
gue transmission. Our findings suggest that the intercity 
mobility structure reflects urban-to-urban interactions, 
which causes a mixture of relocation and hierarchical 
diffusion patterns for large-scale dengue epidemics in 
southern Taiwan. This can be identified as a “ripple” pro-
cess wherein an immediate neighboring effect occurs in 
the first stage and wider geographic expansion occurs in 
a later stage, which is influenced by the distant neighbor-
ing diffusion effect.
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