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Abstract: Heavy metal stress in crops is a worldwide problem that requires accurate and timely
monitoring. This study aimed to improve the accuracy of monitoring heavy metal stress levels
in rice by using multiple Sentinel-2 images. The selected study areas are in Zhuzhou City, Hunan
Province, China. Six Sentinel-2 images were acquired in 2017, and heavy metal concentrations in
soil were measured. A novel vegetation index called heavy metal stress sensitive index (HMSSI)
was proposed. HMSSI is the ratio between two red-edge spectral indices, namely the red-edge
chlorophyll index (CIred-edge) and the plant senescence reflectance index (PSRI). To demonstrate the
capability of HMSSI, the performances of CIred-edge and PSRI in discriminating heavy metal stress
levels were compared with that of HMSSI at different growth stages. Random forest (RF) was used
to establish a multitemporal monitoring model to detect heavy metal stress levels in rice based on
HMSSI at different growth stages. Results show that HMSSI is more sensitive to heavy metal stress
than CIred-edge and PSRI at different growth stages. The performance of a multitemporal monitoring
model combining the whole growth stage images was better than any other single growth stage
in distinguishing heavy metal stress levels. Therefore, HMSSI can be regarded as an indicator for
monitoring heavy metal stress levels with a multitemporal monitoring model.
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1. Introduction

Over the past decades, with the rapid development of China’s industry and urbanization,
the problem of soil heavy metal contamination caused by industrial and domestic wastewater
discharge, sewage irrigation, and automobile emissions has increased in severity [1]. Excessive heavy
metal concentrations hinder crop growth and pose a serious threat to human health by entering the food
chain and migrating into drinking water sources [2]. According to a partial tally of results, more than
12 million tons of grains are contaminated by heavy metals in China every year [3]. Thus, the rapid and
accurate detection of heavy metals in crops is vital to diagnose suspected contaminated areas, assess
health risks and consequently protect human health [4]. The conventional methods for monitoring
heavy metal stress are based on extensive field sampling and laboratory chemical analyses [5]. These
processes are time-consuming, expensive, and unable to monitor contamination over large areas [2–4].

Recently, remote sensing technology has provided a cheap, rapid, and environmentally friendly
alternative for estimating heavy metal stress [4,6]. Numerous studies have proved that remote
sensing technology has been used successfully to monitor heavy metal stress levels in plants [6–11].
Heavy metal stress can negatively influence the growth of plants; for example, it can reduce canopy
chlorophyll content and change cellular structure [12–16]. Thus, chlorophyll content can be considered
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a bio-indicator of the actual health status of plants [17–19]. The changes in the chlorophyll content can
alter the reflectance of visible and near-infrared regions. The red-edge region (i.e., the spectral region of
rapid change in reflectance of vegetation from the visible red to the near-infrared range of 680–760 nm)
is closely related to the chlorophyll content of various plants [10]. The red-edge region has received
much attention for many years from scholars who intend to understand the spectral properties of
plants under heavy metal stress. In the early 1980s, their laboratory studies led Horler et al. (1983) to
recommend the red-edge spectral region as a possible indicator of heavy metal stress. The red-edge
position, which is defined as the wavelength of the inflection point in the red-edge region, is important
in detecting heavy metal stress [20–22].

However, the vegetation spectral information related to chlorophyll content is often confounded
by other factors, such as vegetation cover, leaf area index, aboveground biomass, and soil
background [4,23,24]. The vegetation index calculated from two or more wavebands may be adopted to
overcome these problems and enhance spectral features [25,26]. Numerous studies have indicated that
vegetation indices based on red-edge regions have been developed and used to detect vegetation heavy
metals stress successfully. Varaprasad et al. (2016) indicated that the combined index transformed
chlorophyll absorption reflectance index (TCARI)/optimized soil adjusted vegetation index (OSAVI)
exhibited high resistance to LAI and soil backgrounds compared with single red-edge indices and can
thus be useful in monitoring arsenic mitigation in contaminated rice fields [27]. Hui et al. (2017) found
that the value of the red-edge normalized index (NDVI705) was significantly correlated with the levels
of heavy metal stress in crops [28]. These findings suggested that the use of red-edge indices could
help improve the detection accuracy of heavy metal stress in crops. Other red-edge indices based on
chlorophyll content were reported in previous studies but not to monitor heavy metal stress, such as
red-edge chlorophyll index (CIred-edge) [29], plant senescence reflectance index (PSRI) [30], inverted
red-edge chlorophyll index [31], and simple ratio pigment index [32]. Nevertheless, these indices were
based on ground-based hyperspectral data rather than satellite data. These hyperspectral indices are
often limited to field-scale studies as they encounter difficulty in monitoring heavy metal stress on a
large scale.

Satellite-derived vegetation indices provide one of the best possible means to obtain the
biophysical parameters of vegetation over large areas (regional or global) whilst retaining high
temporal coverage. Thus, their development is of considerable importance. However, until recently,
only a limited number of hyperspectral satellite platforms provided radiance data in the red-edge
portion of the spectrum, and multispectral satellites, such as Landsat, did not provide red-edge
information [33]. Red-edge bands have thus far been typically restricted to commercial satellites,
such as the RapidEye and DigitalGlobe WorldView-2 satellites [34]. Recent advances in technology
have produced innovative remote sensing sensors, such as the Sentinel-2 satellites, creating new
opportunities for heavy metal stress monitoring. Sentinel-2 multispectral instrument (MSI) with
refined spatial resolution (10 and 20 m) allows for improved and accurate monitoring of heavy metal
stress. Furthermore, the presence of three red-edge bands, centered at 705 (band 5), 740 (band 6) and
783 nm (band 7), which are not present in freely available multispectral sensors, widens the spectral
windows for heavy metal stress discrimination at broader scales. The sensor is a polar-orbiting one
that acquires high-resolution superspectral images at the nadir position, covering a 290 km field of
view, at a high temporal resolution of five days [35,36]. Thus, high temporal resolution can provide
important advantage in capturing the dynamic information on vegetation state.

In recent years, the use of multitemporal information has proven useful for improving the
classification accuracy in agricultural crops and other vegetation types. Therefore, priority should be
given to select effective methods to make good use of multitemporal information for detecting different
heavy metal stress levels in rice. It is well-known that RF algorithm, an ensemble technique, was widely
used in land-cover classification and estimation of biophysical properties [37]. Gomariz-Castillo et al.
(2017) concluded that a combination of multiple Landsat images using random forest from four seasons
can significantly improve the accuracy than one-season in a highly fragmented semiarid area [38].
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Clark (2017) indicated that there were 1.7% to 20.9% significant improvements in overall accuracy with
multiseasonal (spring, summer, and fall) over summer-only images for random forest in mapping
regional land-cover [39]. Chrysafis et al. (2017) assessed the utility of single-date, single-season
(dry, wet), and multitemporal (May–December) images for estimating forest stand parameters in a
Mediterranean mixed forest, using the random forest regression algorithm. They concluded that
the multitemporal and dry-season models were more accurate than the single-date models [40].
Thus, in this study, RF was adapted to evaluate heavy metal stress in rice based on the multitemporal
Sentinel-2 images.

In this study, we aimed to develop a new index that can enhance the accuracy of detecting
and distinguishing different heavy metal stress levels. A new vegetation index named heavy metal
stress sensitive index (HMSSI) was introduced here. After HMSSI calculation, this study focused on
(1) comparing the HMSSI with CIred-edge and PSRI for monitoring heavy metal stress at different growth
stages of rice and (2) constructing a multitemporal monitoring model based on multiple Sentinel-2
images and investigating whether multitemporal monitoring model based on multiple growth stages
is better than the single growth stage.

2. Materials and Methods

2.1. Study Area

The study area for the field experiment is in Zhuzhou City, Hunan Province, China, which is
an old industrial base and important grain production region. This area is in a subtropical monsoon
climate zone with warm temperatures and sufficient sunlight. The annual average temperature is
16–18 ◦C and the average precipitation is approximately 1500 mm. The dominant soil texture is red
loam with sufficient organic matter (2–3%). Soil organic matter mainly comes from plant, animal,
and microbial residues. The dominant crop in this area is rice, which is transplanted in early June
and matures in late September. The growth period is approximately 100–120 days. Rice paddies are
irrigated mainly by Xiangjiang River. However, the various industries in the region have caused severe
heavy metal pollution in the Xiangjiang River. Thus, the rice paddies are contaminated by heavy metals
because of irrigation with the river water contaminated by industrial effluent. In this study, three large
paddy field areas (labeled A, B, and C) with a size of 1 km × 1 km were selected (Figure 1). In each
area, 100 uniformly distributed sample plots were selected in the rice field, and the corresponding
positions were obtained using GPS. The area of each sample plot is 10 m × 10 m. Soil heavy metals
were collected by soil sampler. The sampling depth was about 20 cm, using bottom-up approach to
sample soil. The main heavy metals in this area are cadmium (Cd), lead (Pb) and mercury (Hg). Details
regarding the soil heavy metals in this area are shown in Table 1. The concentrations of Cd, Hg, and Pb
in the three areas are all higher than the level II soil quality standard values [41], with that of Cd
being particularly higher. The concentrations of the soil heavy metals were measured using sampling
tests. On the basis of these concentrations the stress levels in areas A, B, and C were determined as
‘high’, ‘medium’, and ‘low’ respectively. The three rice-growing areas exhibit minimal differences in
topography and agricultural management; thus, they have similar climates, soil textures, and water.
The planted rice in the study areas was supplied with abundant irrigation water and the appropriate
amount of fertilizers with uniform distribution to ensure the normal growth of rice, without the impact
of other environmental factors.
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Figure 1. Location of the study areas in the city of Zhuzhou, Hunan Province, China.

Table 1. Heavy metal concentration (unit: mg kg−1) in the soil of the three study areas.

Study Areas Cd Hg Pb As Pollution Level

A (27◦49′ N, 113◦04′ E) 3.54 0.81 120.75 21.35 High
B (27◦40′ N, 113◦09′ E) 2.31 0.24 91.05 17.34 Medium
C (27◦47′ N, 113◦10′ E) 0.84 0.35 78.33 10.23 Low

Level II Soil quality standard * 0.3 0.5 300 25

Note: * Soil quality standard according to the Environment Monitoring Centre of China.

2.2. Sentinel-2 Images

Sentinel-2 programs consists of Sentinel-2A and Sentinel-2B satellites, which were launched on
23 June 2015 and 7 March 2017, respectively [42]. The two satellites all carry a multispectral instrument.
The MSI has a swath width of 290 km by applying a total field of view of approximately 20◦ [43].
With the twin satellites, the revisiting cycle can be shortened to 5 days. However, more than 5 days
(i.e., probably several months) are generally required to acquire a cloud-free Sentinel-2 image for
specific areas, owing to the cloud and shadow contamination [42]. The Sentinel-2 MSI provides
13 spectral bands in the visible, near-infrared and short-wave infrared wavelengths, with four bands
at 10 m (centered at 490, 560, 665, and 842 nm), six bands at 20 m (centered at 705, 740, 783, 865,
1610, and 2190 nm) and three bands at 60 m spatial resolution (centered at 443, 940, and 1375 nm)
(Table 2) [44–47].

In this study, we selected six available cloud-free Sentinel-2 images for the study areas during
the growing season of rice in 2017. Amongst them, two images were at the booting stage (12 July and
24 July), two images at the flowering stage (6 August and 21 August), and two images at the mature
stage (17 September and 30 September). The Sentinel-2 satellite images (Level-1C) were downloaded
from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). These images provided
orthorectified top-of-atmosphere reflectance in Universal Transverse Mercator (UTM) projection,
with the World Geodetic System (WGS84). The images were resampled into 10 m, which was the
highest resolution amongst 10, 20, and 60 m. The atmospheric correction and resampling of the
Sentinel-2 images was also performed using the Sen2cor atmospheric correction toolbox, which is a
built-in algorithm within the Sentinel Application Platform (SNAP) tool version 5.0. The tool was

https://scihub.copernicus.eu/
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developed primarily for Sentinel images [48]. The regional spatial distribution of rice paddies was
obtained using supervised classification.

Table 2. Spectral and spatial resolution of the Sentinel-2 MSI bands.

Sentinel-2 MSI Bands Spatial Resolution (m) Central Wavelength (nm) Band Width (nm)

Band 1: Coastal Aerosol 60 443 20
Band 2: Blue 10 490 65

Band 3: Green 10 560 35
Band 4: Red 10 665 30

Band 5: Red-edge 1 20 705 15
Band 6: Red-edge 2 20 740 15
Band 7: Red-edge 3 20 783 20

Band 8: NIR 10 842 115
Band 8A: NIR narrow 20 865 20
Band 9: Water Vapor 60 945 20

Band 10: SWIR Cirrus 60 1375 30
Band 11: SWIR 20 1610 90
Band 12: SWIR 20 2190 180

2.3. Methods

2.3.1. Definition of HMSSI

In this study, two red-edge indices, namely CIred-edge and PSRI, were selected to establish HMSSI.
CIred-edge was proposed by Gitelson et al. (2003) [29]. The formula of CIred-edge is as follows:

CIred−edge =

(
R783

R705

)
− 1, (1)

where R783 and R705 are the reflectance values in the wavelength of 783 and 705 mm, respectively.
For Sentinel-2 imagery, R783 and R705 correspond to band 7 and band 5, respectively. The major
advantages of CIred-edge are its linearity with chlorophyll content and the absence of the saturation
effect [49]. Low CIred-edge values indicate low chlorophyll content and severe stress.

PSRI was introduced by Merzlyak et al. (1999) [30]. It can be computed as follows:

PSRI =
(R680 − R500)

R750
, (2)

where R680, R500, and R750 correspond to Sentinel-2 band 4, band 2, and band 6 respectively. PSRI is
designed to maximize the sensitivity of the index to the ratio of bulk carotenoids (e.g., alpha-carotene
and beta-carotene) to chlorophyll. An increase in PSRI indicates increased canopy stress (carotenoid
pigment). The values of this index range from −1 to 1, with the common values for green vegetation
ranging between −0.1 and 0.2 [50].

Based on these two red-edge indices, the new vegetation index HMSSI was established in this
study. It can be calculated as follows:

HMSSI =
CIred−edge

PSRI
, (3)

where CIred-edge is the value of red-edge chlorophyll index and PSRI is the value of plant senescence
reflectance index. As stress levels increased, the value of CIred-edge decreased, whereas the value of PSRI
increased. Therefore, HMSSI, which combines both, enhances the difference in heavy metal stress.
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2.3.2. Construction of the Multitemporal Monitoring Model

In this study, we selected RF algorithm to construct multitemporal monitoring model to
discriminate heavy metal stress levels. Random forest is an ensemble of learning algorithms proposed
by Breiman [51] that is built to handle high data dimensionality effectively and has demonstrated to
be an improvement over traditional decision trees [52]. It consists of a set of independent, unpruned
decision trees. The RF ensemble uses a bootstrap sample, i.e., 2/3 of the original dataset (referred to
as the “in-bag” sample), to train decision trees. The remaining 1/3 of the data is used to compute an
internal measure of accuracy (referred to as the “out-of-bag” or OOB error) [39]. To produce the forest
of decision trees, two parameters need to be set: The number of unpruned trees to grow, known as
ntree; and the number of predictor variables selected, known as mtry [53]. Mtry variables are tested at
each node to specify the best split when growing trees. These randomly selected variables produce low
correlated trees that prevent over-fitting. In a classification framework, the final classification results
are determined by averaging the results of all the decision trees produced. A total of 500 trees were
grown each time, and the square root of the number of total input features were used as the number of
split variables in this paper.

The classification accuracies of the model were assessed quantitatively by using the confusion
matrix, which is a common used method in remote sensing. This study used overall accuracy, which is
computed by dividing correctly classified pixels by the total number of pixels, and the kappa coefficient,
which considers the whole confusion matrix instead of using only diagonal elements. In addition,
producer’s accuracy and user’s accuracy were used to assess the accuracies of individual classes.

3. Results

3.1. Comparison of HMSSI with CIred-edge and PSRI

To assess the performances of the CIred-edge, PSRI and HMSSI, 100 rice pixels in every study area
were selected. Using Equations (1)–(3), we calculated the three indices of rice under three different
heavy metal stress levels at the different growth stages. To depict the differences of HMSSI with
CIred-edge and PSRI in distinguishing the stress levels of rice, their data distributions under different
heavy metal stress levels are displayed in Figure 2. Evidently, at the different growth stages, CIred-edge
and PSRI both presented larger overlap regions than HMSSI did in distinguishing different stress
levels. The superiority of HMSSI was further assessed by calculating the misjudgment rates of CIred-edge,
PSRI and HMSSI (Table 3). The misjudgment rate is the ratio of the overlapping pixels and sampling
points pixels under same stress level. Table 3 suggests that in distinguishing different stress levels,
CIred-edge and PSRI had high misjudgment rates, which were approximate to or more than 60% whereas
those of HMSSI were approximate to or below 20%. In particular, CIred-edge and PSRI nearly failed to
distinguish the medium stress levels at the different growth stages.

Through the given analysis, we concluded that neither CIred-edge nor PSRI can accurately
distinguish different stress levels. Apparently, HMSSI exhibited a better distinguishing ability than
CIred-edge and PSRI did. However, HMSSI had a relative high misjudgment rate at several growth stages.
Therefore, instead of using only a single stage, multiple growth stages should be combined to detect
heavy metal stress.
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Figure 2. Rice under different stress levels obtained using the three indices at different growth stages.
(a1–f1) The distributions of CIred-edge under different stress levels at different growth stages; (a2–f2) the
distributions of PSRI under different stress levels at different growth stages; (a3–f3) the distributions
of HMSSI under different stress levels at different growth stages. Note: the pink zone represent the
overlapping portion of different stress levels.
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Table 3. Misjudgement rates of the three indices at different growth stages.

Vegetation Indices Growth Stage High Medium Low

CIred-edge Booting 64% 100% 48%
68% 100% 64%

Flowering 92% 100% 78%
99% 100% 72%

Mature 46% 100% 78%
40% 88% 86%

PSRI Booting 50% 100% 74%
52% 100% 50%

Flowering 54% 100% 78%
72% 100% 62%

Mature 70% 100% 80%
80% 72% 65%

HMSSI Booting 17% 35% 8%
8% 32% 5%

Flowering 6% 28% 3%
24% 34% 10%

Mature 18% 18% 26%
8% 15% 8%

3.2. Performance of the Multitemporal Monitoring Model

In this section, to investigate whether the use of multitemporal images improve the accuracy
in discriminating heavy metal stress, we assessed the performance of the multitemporal monitoring
model based on Sentinel-2 images of HMSSI at booting stage, flowering stage, mature stage, and the
whole growing season, respectively. Thus, the model was employed using four different variable
datasets for (1) two images of HMSSI at booting stage; (2) two images of HMSSI at flowering stage;
(3) two images of HMSSI at mature stage; (4) six images of HMSSI at whole growth period.

The classification results for multitemporal monitoring model are shown in Figure 3, user’s
accuracy of three different stress levels for the whole growth period were 90–96%, whereas for single
stage were all below 90%. Similarly, producer’s accuracy followed the same case as user’s accuracy.
The highest overall accuracy and kappa coefficient were 92.93% and 0.894%, produced by the whole
growth stage of HMSSI. Thus, the whole growth stage combined six images produced the highest
accuracy, followed by mature stage, then flowering stage, and finally booting stage. Additionally,
for the whole growth period, the importance of each image was shown in Figure 4. Images at different
stages had different influences on the model. Obviously, two images at the mature stage took a
dominant position, followed by the flowering stage, and then the booting stage.

In summary, the results indicated that the multitemporal monitoring model of HMSSI that
combining multiple growth stages had higher accuracy in discriminating the stress levels than the
HMSSI with a single growth stage.
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Figure 3. Classification accuracies of multitemporal monitoring model for discriminating different
stress levels at different growth stages. (a) User’s accuracy of multitemporal monitoring model;
(b) producer’s accuracy of multitemporal monitoring model; (c) overall accuracy of multitemporal
monitoring model; (d) kappa coefficient of multitemporal monitoring model.

Figure 4. Variable importance of using multitemporal monitoring model based on whole growth stage.

3.3. Regional Evaluation of Heavy Metal Stress Using HMSSI and Multitemporal Monitoring Model

On the basis of the classification results, Figure 5 shows the regional spatial distributions of
HMSSI at different growth stages of rice. Figures 6 and 7a show the regional spatial distributions of
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stress levels on rice using multitemporal monitoring model based on single growth stage and the entire
growth period, respectively. Overall, the values of HMSSI in the areas along the Xiangjiang River were
lower than in the areas farther away from the river. Moreover, rice subject to high and medium stress
levels occurred in the northwest and southeast regions, and near the Xiangjiang River. Meanwhile,
the low stress levels were scattered in most of the area in the spatial distribution map, especially in the
middle part of the study regions. Figure 7b demonstrates the spatial distribution of factories in this
region. Obviously, there are several factories around the study areas. It is noteworthy that study area
C is subject to mild pollution for it is located in the high-tech economic zone, factories around it are
strictly controlled to discharge pollutants.

Although the stress levels show similar spatial distributions using multitemporal monitoring
model based on different growth stage, there are small differences in the area percentage of stress
levels. Detailed statistics can be obtained from Table 4. In summary, nearly half of the rice paddies
exhibited a low stress level, approximately 30% exhibited a medium stress level, and approximately
20% (lowest) exhibited a high stress level.

Figure 5. Spatial distributions of HMSSI at different growth stages. (a,b) Booting stage; (c,d) flowering
stage; (e,f) mature stage.
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Figure 6. Spatial distributions of stress levels using the multitemporal monitoring model. (a) Booting
stage; (b) flowering stage; (c) mature stage.

Figure 7. (a) Spatial distributions of stress levels using the multitemporal monitoring model at whole
growth stage; (b) Spatial distributions of factories in the region.

Table 4. Area percentage of rice under different heavy metal stress levels at different growth stage.

Growth Stage Stress Levels

High Medium Low

Booting 21.76% 27.65% 50.59%
Flowering 21.83% 27.93% 50.24%

Mature 21.65% 28.17% 50.18%
Whole Growth 20.68% 28.45% 50.87%

4. Discussion

The main purpose of this study was to establish a new vegetation index that can enhance the
accuracy of detecting heavy metal stress by using several red-edge spectral indices. For that purpose,
the data of Sentinel-2 satellites were used. The results of the proposed index were compared with those
of existing indices, namely CIred-edge and PSRI. Notably, the new index named HMSSI can discriminate
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different stress levels more clearly than CIred-edge and PSRI can. In addition, based on the new index
and multitemporal Sentinel-2 satellite images, a multitemporal monitoring model was constructed to
distinguish heavy metal stress levels. The model combining multiple growth stages of rice had higher
discrimination rates than the model with only a single growth stage. HMSSI and the multitemporal
monitoring model can also be applied to a region larger than the field scale. Therefore, the new index
and the model have strong regional applicability.

The satisfactory results can be attributed to two aspects. Firstly, the use of only a single index,
such as CIred-edge or PSRI, which showed unsatisfactory performance in this study, is inadequate to
detect heavy metal stress accurately. The values of these vegetation indices exhibited no significant
difference under different stress levels on the satellite images. However, these two vegetation indices
show opposite trends under different stress levels; CIred-edge decreases with stress levels, whereas
PSRI increases. Being the ratio of CIred-edge and PSRI, HMSSI can considerably enhance the difference
in stress. Secondly, the multitemporal monitoring model based on multitemporal images captures
more specific temporal characteristics than the single temporal images; consequently, the established
model can accurately classify categories and reduce judgment error. The model performed best with
the combinations of multiple images at whole growth stages of rice. This result proves that the
multitemporal monitoring model can be applied to monitor heavy metal stress during the growth
stage of rice.

Many of the previous studies employed red-edge information based only on narrow-band ground
spectral data (≤10 nm), and relatively little is known if broadband red-edge satellite data (>10 nm)
can respond to and assist in monitoring heavy metal stress. In this study, we validated the ability of
the Sentinel-2 MSI images in discriminating heavy metal stress levels. Several satellite sensors are
now equipped with red-edge bands, and the Sentinel-2 satellites are among them. Sentinel-2 provides
freely available images. Sentinel-2 is noted for having more spectral bands, the unique red-edge
bands (centered at 705 and 740 nm) and refined spatial resolution. The spatial resolution of Sentinel-2
contributes to the precise extraction of rice information. Moreover, the relatively short revisiting
cycle of Sentinel-2 means it can obtain more images during the rice growth stage than the Landsat
series satellites can. Thus, multiple Sentinel-2 images facilitates the construction of a multitemporal
monitoring model.

HMSSI exhibited considerably improved heavy metal stress detection as it combines two red-edge
indices. However, this study was conducted under the condition that the stress factor is known
beforehand. The mechanism of growth irregularities in crops under external environmental stress is
complicated. Many other environmental stress factors (e.g., soil properties, nutrient stress, and water
stress) may induce growth irregularities similar to those induced by heavy metals. Until now,
discerning heavy metal stress from numerous environmental factors solely with related remote
sensing technology and without knowing prior information has been proven difficult [14]. Particularly,
a distinct feature of heavy metal stress is that it is generally persistent, whereas other stress factors
usually only last for a specific period of time.

In the future, long time series of Sentinel-2 images may be necessary to discriminate heavy
metal-induced crop stress from other stressors. Furthermore, future research on the combination
of SAR (i.e., Sentinel-1 satellites) and thermal images, which are sensitive to crop structure and
physiological function respectively, may help monitor heavy metal stress.

5. Conclusions

The advantages of using Sentinel-2 images in evaluating heavy metal stress were investigated.
In this study, we determined whether the new proposed index HMSSI can significantly distinguish
heavy metal stress levels. The principal results and conclusions obtained can be summarized as follows:

Across stages (i.e., booting stage, flowering stage, and mature stage), the newly developed index
HMSSI showed excellent performance compared with the widely used red-edge indices CIred-edge and
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PSRI. Therefore, the proposed index can be considered a potential indicator for monitoring heavy
metal stress.

A multitemporal monitoring model based on HMSSI was established, and the results showed
that the model has a high level of discriminant accuracy for distinguishing stress levels of rice under
heavy metal stress.

The new index and multitemporal monitoring model from multitemporal Sentinel-2 images
presented strong applicability to detect heavy metal stress in rice on a regional scale.

In conclusion, the new proposed index HMSSI based on Sentinel-2 satellite images provide
convenient and rapid chances for practitioners and researchers in detecting heavy metal stress in rice.
The multitemporal monitoring model, monitoring consecutively and dynamically, provide the basis
for researchers to establish heavy metal stress levels assessment system for a long time.
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