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Abstract

Background

Hypertension is the strongest modifiable risk factor for subcortical ischemic changes and is

also a risk factor for Alzheimer’s dementia. We used neuroimaging to investigate the patho-

logical basis of early cognitive symptoms in patients with hypertension.

Methods

In this cross-sectional cohort study 67 patients age >60 years with hypertension and Clinical

Dementia Rating scale score of 0.5 without dementia, and without history of symptomatic

stroke, underwent MRI for measurement of subcortical vascular changes and positron emis-

sion tomography (PET) scan with Pittsburgh Compound B (PiB-PET) to detect beta-amyloid

deposition. These imaging measures were related to neuropsychological tests of memory,

executive function and processing speed.

Results

Mean age was 75.0 (standard deviation, SD, 7.3). Mean neuropsychological Z scores were:

episodic memory -0.63 (SD 1.23), executive function -0.40 (SD 1.10), processing speed

-0.24 (SD 0.88); 22 of the 67 subjects met criteria for mild cognitive impairment (MCI) and

the remaining 45 subjects had subjective cognitive concerns only. In multivariable models

adjusting for age and years of education, each 0.1 unit increase in mean cortical PiB-PET

binding was associated with 0.14 lower mean Z score for episodic memory (95% CI -0.28 to

-0.01). This means that for every 0.1 unit increase in mean cortical PiB-PET, episodic
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memory was 0.14 standard deviations lower. White matter hyperintensity volume, silent

brain infarcts and microbleeds were not associated with neuropsychological test scores.

Conclusions

Episodic memory was prominently affected in hypertensive participants with MCI or subjec-

tive cognitive concerns, and was associated with PiB-PET binding. This suggests a promi-

nent role for Alzheimer pathology in cognitive impairment even in hypertensive participants

at elevated risk for vascular cognitive impairment.

Introduction

Hypertension is a risk factor for vascular dementia as well as dementia due to clinically proba-

ble Alzheimer’s disease (AD).[1–3] Hypertension is also a risk factor for mild cognitive

impairment (MCI),[4] and may also increase the risk of conversion from MCI to dementia.[5]

More recently, research has focused on patients with subjective cognitive concerns (SCC) but

with normal range performance on cognitive testing.[6] However, few studies have used neu-

roimaging biomarkers to investigate the underlying neuropathological basis of MCI or SCC in

patients with hypertension. Because hypertension is the strongest and most common risk fac-

tor for subcortical ischemic pathology,[7] it is likely that hypertensive patients with MCI or

AD will harbor relatively more vascular and mixed pathology compared to other MCI cases.

To study the pathogenic basis of cognitive symptoms in the setting of hypertension, we

recruited subjects with hypertension and Clinical Dementia Rating (CDR)[8] of 0.5 without

dementia and used neuroimaging markers to infer the presence of AD pathology (by Pitts-

burgh Compound B positron emission tomography [PiB-PET]) or vascular pathology (by

measuring the volume of white matter hyperintensities [WMH] of presumed vascular origin).

In contrast to studies focusing on prodromal AD we did not exclude participants with higher

burden of subcortical ischemic disease (silent brain infarcts and WMH) in order to recruit a

study population more representative of community patients with hypertension. We hypothe-

sized that PiB-PET binding would correlate with poor performance on episodic memory tasks

while higher WMH volume would correlate with poor performance on tasks of executive func-

tion and psychomotor processing speed.

Methods

Study population

Study participants were recruited from 2009 to 2013 at a National Institute on Aging Alzhei-

mer’s Disease Research Center (ADRC), from among participants being followed longitudi-

nally across the spectrum of cognitive impairment. These individuals were initially recruited

from an affiliated memory disorders unit, from local medical clinics, and from the community.

Inclusion criteria were: age>60, history of hypertension (defined as reported diagnosis of

hypertension and use of one or more antihypertensive medications), and CDR rating of 0.5

indicating substantiated cognitive concerns. Exclusion criteria were a diagnosis of dementia

(defined using DSM-IV criteria), history of symptomatic stroke (although silent brain infarc-

tion was not an exclusion), history of other central nervous system diseases, serious medical or

psychiatric illness that would interfere with study participations, or contraindications to MRI.

A total of 67 participants were recruited and completed all baseline study procedures.
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Study measurements

At the baseline study visit, data were collected on age, demographics, medical history, and anti-

hypertensive medication use. The CDR was determined based on a semi-structured interview

conducted by a behavioral neurologist or geriatric psychiatrist.[8, 9] Blood pressure was mea-

sured once in the right arm while sitting, and once after standing for 5 minutes.

We selected the neuropsychological tests from those included in the National Institute on

Aging (NIA) Alzheimer’s Disease Centers’ Uniform Data Set (ADC UDS)[10] as well as addi-

tional tests that, based on earlier work, were sensitive to change in episodic memory, executive

function and processing speed.[11] To express individual test results as z scores, we derived

our own local normative data using 303 cognitively normal (CDR 0) participants in the local

ADRC Longitudinal Cohort. Prior to any data analysis, we grouped test scores into three cog-

nitive domains—episodic memory, executive function and psychomotor processing speed—

based on the known cognitive properties of each test. “Episodic memory” was calculated as the

average of the Wecshler Logical Memory II and California Verbal Learning Test-II Long Delay

Free Recall z scores; “executive function” was the average of fluency (consisting of equally

weighted semantic fluency [animal and vegetable naming] and letter fluency [“F”, “A”, and “S”

words] Z scores) and the z score of the logarithmic transformation of Trail Making B time

minus Trail Making A time; and “processing speed” was the average of Trail Making A and

Digit Symbol Substitution test z scores.

The z scores of our 67 CDR 0.5 participants where then expressed in relation to the norma-

tive data collected at our site. A psychiatrist (DB), blinded to PiB-PET and WMH volume

results, reviewed the clinical history, CDR and neuropsychological test results to classify partic-

ipants as having either MCI or SCC. All participants had subjective memory concerns as quan-

tified by a structured interview to determine the CDR. MCI was defined using National

Institute on Aging-Alzheimer’s Association criteria.[12] A cognitive domain score lower than

-1.0, indicating performance more than one standard deviation below normal, was used as the

criterion for objective evidence of cognitive impairment to support a diagnosis of MCI. Partic-

ipants with subjective memory concerns (CDR 0.5) without MCI were defined as having SCC.

MRI was performed on a single Siemens 3.0 T Trim Trio (Siemens Healthcare GmbH;

Erlangen, Germany). Sequences included: 3D T1-weighted magnetization prepared rapid gra-

dient echo (MP-RAGE) (TR/TE = 2300/2.98 ms, inversion time = 900 ms, flip angle = 9˚ and 1

mm3 isotropic resolution), 3D fluid-attenuated inversion recovery (FLAIR) (TR/TE = 6000/

455 ms, inversion time = 2100 ms, flip angle = 120˚ and 1 mm3 isotropic resolution), dual-

echo T2-weighted and proton density-weighted (TR/TE1/TE2 = 3000/11/99 ms, echo train

length = 7, 0.9375 × 9.9375 × 3.0 mm3 voxels) and susceptibility-weighted imaging (SWI) (TR/

TE 27/20 ms, flip angle = 15˚, 0.8984 x 0.8984 x 1.5 mm3 voxels). WMH, silent brain infarcts

and microbleeds were defined and measured according to consensus Standards for Reporting

Vascular Changes on Neuroimaging (STRIVE).[13] A radiologist identified silent brain

infarcts and microbleeds. WMH volume was measured by a single rater using custom-

designed Quantomo software (Cybertrials, Inc; Calgary, Canada). In brief, the rater (SB)

placed seeds in regions of WMH, then lesion boundaries were automatically detected based on

a three-dimensional threshold-based region growing segmentation method, based on noise-fil-

tered and bias field corrected FLAIR data. All WMH masks were reviewed by the rater for

accuracy; manual editing tools allowed correction of any mislabeling.[14] In a separate analysis

of 30 scans from patients with TIA or mild ischemic stroke analyzed by three raters, the inter-

rater intraclass correlation coefficient (ICC) was 0.97 and the intra-rater ICC was 0.99. This

study’s rater (SB) was certified to analyze WMH based on an ICC of 0.99 (95% confidence

interlal 0.97–0.99). To account for differences in participant head size, WMH was analyzed as
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the percent of intracranial volume (ICV) occupied by WMH. ICV was determined by process-

ing the data using Freesurfer version 5.0.[15] MRI measurements were made blinded to clini-

cal data and PiB-PET results. We have previously shown good reliability of these

measurements.[14, 16]

PiB PET data were acquired using a Siemens HR+ (Siemens CTI, Knoxville, TN), and each

frame was evaluated to verify adequate count statistics and absence of head motion. The Logan

graphical analysis method[17] with cerebellar cortex as the reference tissue input function was

used to evaluate specific PiB retention expressed as the distribution volume ratio (DVR) as

previously described.[18] Mean cortical PiB retention (PiB) was calculated in an aggregate

over all cortical ROIs.add17 PiB retention was analyzed as both a continuous and categorical

variable; a PiB DVR cut-point was used to classify individuals into either PiB+ or PiB- groups,

as in previous studies.[19]

Statistical analysis

Neuropsychological test scores and cognitive domain scores were approximately normally dis-

tributed and summarized as means and standard deviations, with the exception that Trail

Making B time and Trail Making B time minus Trail Making A time were right-skewed, and

therefore logarithmically transformed to a normal distribution before conversion to z scores.

PiB-PET DVR and WMH are summarized as medians and interquartile ranges (IQRs). For

comparability with previous studies, mean values are also tabulated. The Pearson correlation

coefficient was used to test correlations between neuroimaging markers and cognitive domain

scores. Because WMH was very right-skewed, it was log-transformed to a more normal distri-

bution before testing correlations.

To determine whether each neuroimaging marker (PiB-PET and WMH) was associated

with cognitive domain scores, we first evaluated separate linear regression models for each

marker and domain score. Cognitive domain scores were used as the dependent variables,

while neuroimaging markers were entered as independent variables. Based on prior literature,

all models included age and education as covariates. Sex was not associated with cognitive per-

formance in this study and therefore it was not included in the models. PiB was analyzed as

continuous variable for the primary analysis, but in a secondary analysis was analyzed as PiB

positive (defined as global DVR�1.25) vs. PiB negative instead. Next, we repeated the models

including both PiB and WMH in the same model. Finally, we tested interactions between PiB

(dichotomized as positive vs. negative) and WMH in models. To generate the plots in Fig 1,

the age- and education-independent relationships between cognitive domain scores and neu-

roimaging markers, we first modeled cognitive domain scores as a function of age and educa-

tion. Then, we modeled neuroimaging markers as a function of these residuals, adjusting for

age and education in each model. We defined confounding based on a change-in-estimate cri-

terion of�10% change in the model covariate of interest.[20] Statistical testing was done using

SAS version 9.3 (Cary, NC). A p value of�0.05 was considered significant; we did not adjust

the p value threshold for multiple comparisons because the study hypotheses were exploratory,

but pre-specified.

Protocol approval and patient consent. The study was approved by institutional review

boards of Massachusetts General Hospital and the University of Calgary. Participants provided

written informed consent.

Results

Characteristics of the study cohort are shown in Table 1. Mean age was 75.0 years, 49% were

women, and the mean number of years of education was 16.1. Mean systolic blood pressure
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was 134±14 mmHg and mean diastolic blood pressure was 72±10 mmHg. Despite having a

history of treated hypertension, high measured blood pressures (SBP�140 mmHg or DBP

�90 mmHg) were present in 28/67 (42%).

Neuropsychological test score performance, including raw scores and z scores relative to

local norms, are shown in the Supporting Information. Compared to cognitively normal indi-

viduals from the demographically similar ADRC Longitudinal Cohort sample, our participants

had significantly lower scores. Mean episodic memory domain score was -0.63±1.23, executive

function domain score was -0.40±1.10, and processing speed domain score was -0.37±0.88 (all

p<0.01 for comparison with our normal controls). MCI was diagnosed in 22/67 (33%), the

remainder were classified as subjective cognitive concerns.

Median global PiB-PET DVR was 1.14 (interquartile range, IQR, 1.09–1.33), and 20/67

(30%) had DVR above the 1.25 cut-off defined as “Pib-positive” for this study (Table 1). There

were 12/67 (18%) with silent brain infarcts and 15/67 (22%) with microbleeds. There was no

correlation between the PiB-PET DVR and WMH (r = 0.16, p = 0.20; Fig 1). Compared to par-

ticipants with subjective cognitive concerns, participants with MCI did not differ in PiB-PET

DVR (median 1.28, IQR 1.09–1.44 vs. 1.22, IQR 1.09–1.23, p = 0.53), percent PiB-PET positive

(9/22, 41%, vs. 11/45, 24%, p = 0.25), or percent WMH volume (0.16%, IQR 0.05–0.58% vs.

0.27%, IQR 0.12–0.55%, p = 0.11). Among this study population with a known history of

Fig 1. Association between PiB and WMH. PiB; mean cortical Pittsburgh compound B binding, expressed as the

distribution volume ratio; WMH, MRI white matter T2 hyperintensity. WMH is analyzed as the percent of intracranial

volume, log-transformed to a more normal distribution. The best fit line and p value are from unadjusted linear

regression.

https://doi.org/10.1371/journal.pone.0191345.g001
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hypertension, there was no correlation between measured SBP or DBP and WMH, PiB-PET

DVR or cognitive domain scores (p>0.20 for all comparisons).

In univariate analyses there was no relationship between PiB (analyzed as a continuous var-

iable) and episodic memory (r = -0.16, p = 0.19), executive function (r = -0.18, p = 0.14) or

speed (r = -0.15, p = 0.22); and no relationship between WMH and memory (r = 0.23,

p = 0.06), executive function (r = 0.03, p = 0.81) or speed (r = -0.04, p = 0.63). However, higher

PiB-PET DVR was associated with lower episodic memory score after adjusting for age and

education (Table 2; p = 0.04). There was evidence that the association between PiB-PET DVR

and memory was confounded by age and education, because the beta coefficient changed from

-0.095 (95% CI -0.236 to 0.047) in univariate regression to -0.14 in multivariable adjusted

regression (95% CI -0.28 to -0.01; Table 2). Additional exploratory analyses showed that the

confounding was largely accounted for by age, with higher age being associated with higher

memory in the fully adjusted model (each additional year of age was associated with 0.055

higher score on memory, 95% CI 0.016 to 0.095). There were no associations between higher

WMH and any cognitive domains (Table 2).

Scatterplots of the age- and education-independent relationships between PiB and WMH

and cognitive domains are shown in Figs 2–4. In additional analyses, we modeled each cogni-

tive domain score including both PiB-PET DVR and WMH as predictors, and found similar

relationships between the neuroimaging markers and cognitive domain scores—PiB-PET

Table 1. Characteristics of the study population.

Characteristic Overall Cohort N = 67 SCC N = 45 MCI N = 22 P value

Age 75.0 ± 7.3 75.0 ± 6.8 75.0 ± 8.3 0.99

Female 33 (49%) 22 (49%) 11 (50%) 0.99

Education (years) 16.1 ± 2.6 16.5 ± 2.6 15.3 ± 2.4 0.06

Congestive heart failure 1 (1%) 0 (0%) 1 (5%) 0.33

Coronary artery disease 0 (0%) 0 (0%) 0 (0%) 0.99

Atrial fibrillation 8 (12%) 6 (13%) 2 (9%) 0.99

Diabetes 12 (18%) 8 (18%) 4 (18%) 0.99

Hypercholesterolemia 46 (69%) 33 (73%) 13 (59%) 0.27

Current smoker 6 (8%) 5 (11%) 1 (5%) 0.66

Mean systolic BP 134 ± 14 134 ± 13 135 ± 16 0.68

Mean diastolic BP 72 ± 10 72 ± 10 72 ± 10 0.91

Global PiB 1.14 [1.09–1.33] 1.14 [1.09–1.23] 1.16 [1.09–1.44] 0.53

PiB�1.25 20 (30%) 11 (24%) 9 (41%) 0.26

WMH, median (cm3) 3.4 [1.6–9.3] 4.2 [1.7–8.6] 2.0 [0.8–9.3] 0.11

WMH, mean (cm3) 7.7 ± 13.2 8.0 ± 14.9 7.3 ± 22.6 0.84

WMH as percent ICV, median 0.23% [0.10–0.58%] 0.27% [0.12–0.55%] 0.16% [0.05–0.58%] 0.11

WMH as percent ICV, mean 0.51 ± 0.83% 0.52 ± 0.73% 0.49 ± 1.03% 0.88

Silent brain infarcts 12 (18%) 8 (18%) 4 (18%) 0.99

Microbleeds 15 (22%) 13 (29%) 2 (9%) 0.99

Microbleed pattern 0.31

1 lobar CMB 10 (15%) 9 (20%) 1 (5%)

>1 lobar CMB 2 (3%) 2 (4%) 0 (0%)

Deep or mixed CMBs 3 (4%) 2 (4%) 1 (5%)

BP, blood pressure; PiB, mean cortical PET Pittsburgh Compound B binding; WMH, white matter hyperintensity; CMB, cerebral microbleed. Values are percentages,

mean ± standard deviation, or median [25th percentile-75th percentile]. There were no missing data.

https://doi.org/10.1371/journal.pone.0191345.t001
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DVR was associated with lower episodic memory, with no evidence of confounding by WMH

(the beta coefficient for PiB-PET DVR, -0.14, was the same as the model without WMH). We

did not find evidence of an interaction between PiB-PET DVR and WMH on any cognitive

domain (interaction p values >0.20), such the relationship between PiB-PET DVR and cogni-

tion did not differ in patients with high WMH compared to those with low WMH.

Finally, we analyzed the effects of blood pressure control on neuroimaging markers and

cognitive domains. Compared to patients with measured blood pressure <140/90 mmHg

(n = 39; mean SBP 125±10 mmHg and mean DBP 69±9 mmHg), patients with elevated blood

pressure (n = 28; mean SBP 147±8 mmHg and mean DBP 75±10 mmHg) were older (mean

age 77.6±5.3 years vs. 73.2±8.0; p = 0.009) and had non-significantly higher median WMH as a

percent of intracranial volume (median 0.39% [interquartile range 0.18%-0.68%] vs. 0.15%

[interquartile range 0.10%-0.49%]; p = 0.07). However, there were no significant differences in

Table 2. Multivariable models of cognition somain scores.

Exposure Outcome Estimated change in mean Z score 95% CI P value

PiB-PET

per 0.1 increase

Memory -0.14 -0.28 to -0.01 0.04

Exec Function -0.12 -0.24 to 0.01 0.07

Speed -0.07 -0.17 to 0.04 0.21

WMH

per increase of 1% of ICV

Memory -0.02 -0.40 to 0.36 0.91

Exec Function -0.16 -0.50 to 0.18 0.35

Speed -0.04 -0.32 to 0.24 0.77

Results of six separate models for each cognitive domain (dependent variable) and neuroimaging marker (predictor variable). Models are also adjusted for age and years

of education. The estimated change in mean Z score is equivalent to the number of standard deviations from the age- and education-adjusted mean. When including

both PiB-PET and WMH in the same models the findings were the same, with the only positive finding being that PiB PiB-PET was associated with memory score

independent of WMH volume (beta coefficient -0.14, 95% confidence interval -0.28 to -0.01).

https://doi.org/10.1371/journal.pone.0191345.t002

Fig 2. Associations of episodic memory score with PiB and WMH. PiB; mean cortical Pittsburgh compound B binding, expressed as the distribution volume

ratio; WMH, MRI white matter T2 hyperintensity. Plots generated from models adjusted for age and education showed an independent relationship between lower

memory and higher PiB (-0.14 lower memory Z score for each 0.1 increase in PiB distribution volume ratio, 95% confidence interval -0.28 to -0.01) but no

relationship with WMH.

https://doi.org/10.1371/journal.pone.0191345.g002
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PiB-PET DVR, the proportion that were PiB-PET positive (based on the cut-off of 1.25), or in

any of the three cognitive domains (p>0.20 for all comparisons).

Discussion

In this study of participants with hypertension and either MCI or subjective cognitive con-

cerns, a marker of beta-amyloid retention, PiB-PET, was associated with worse episodic

Fig 4. Associations of processing speed score with PiB and WMH. PiB; mean cortical Pittsburgh compound B binding, expressed as the distribution volume

ratio; WMH, MRI white matter T2 hyperintensity. Plots generated from models adjusted for age and education showed no associations between PiB or WMH and

processing speed.

https://doi.org/10.1371/journal.pone.0191345.g004

Fig 3. Associations of executive function score with PiB and WMH. PiB; mean cortical Pittsburgh compound B binding, expressed as the distribution volume

ratio; WMH, MRI white matter T2 hyperintensity. Plots generated from models adjusted for age and education showed a non-significant trend toward lower

executive function with higher PiB (-0.12 change per 0.1 unit increase in PiB distribution volume ratio, 95% CI -0.24 to 0.01) but no relationship with WMH.

https://doi.org/10.1371/journal.pone.0191345.g003
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memory but a marker of subcortical ischemic injury, WMH, was not associated with perfor-

mance in any cognitive domain. The association of episodic memory with higher PiB-PET

became apparent only after accounting for the effects of age and education in our multivariable

model. The association was of borderline statistical significance and would no longer be signif-

icant if the p value was adjusted for comparisons with three distinct cognitive outcomes.

Therefore, our findings should be considered exploratory and warrant confirmation in other

studies. However, our findings reinforce the need to consider Alzheimer pathology as a cause

of memory concerns, even in patients with hypertension and WMH.

Mean cognitive performance in the study participants was lower than local normative con-

trols in all domains, but not markedly so. This reflects that our study entry criteria (CDR 0.5

without dementia) was designed to capture a population of mildly impaired persons with

either MCI or subjective concerns. We chose to include participants with only subjective cog-

nitive concerns as well as those meeting criteria for MCI, so that the study sample would reflect

the entire spectrum of cognitive concerns without dementia. Evolving literature suggests that

higher degrees of subjective concerns are associated with greater likelihood of positive PiB-

PET,[21] and that some patients with subjective concerns are at risk for future cognitive

decline.[22] In our study population, the volume of WMH and frequency of silent brain

infarcts and microbleeds were higher than expected from population-based studies,[23]

reflecting the entry criteria for hypertension. Even so, there were few participants with very

high WMH volumes which may be one reason why we failed to identify a distinct cognitive

pattern associated with WMH.

It is important to recognize that our study findings do not suggest that WMH are

benign and not associated with cognitive impairment. A large body of literature shows that

WMH are associated with worse cognition in the general population and patients with

stroke.[24, 25] By design, we did not include a cognitively normal control group with neu-

roimaging whose WMH volume could be compared with our study participants. Our

results only show that WMH are not associated with a specific pattern of cognitive

impairment in patients with hypertension across the spectrum of mild cognitive concern

and impairment.

There are few studies that have used amyloid PET to distinguish the independent contri-

butions of amyloid and vascular pathology to cognitive impairment. Concordant with our

findings, a study of Korean patients with clinical vascular dementia due to severe subcortical

ischemic changes showed that PiB-PET positivity was common (14/45 patients) and that

PiB-PET positivity was associated with worse memory performance.[26] Similarly, another

study of 67 patients with vascular MCI found that the 22 PiB-PET positive patients had

worse impairments in multiple cognitive domains.[27] A study of 168 cognitively normal

elderly with no cognitive concerns (CDR 0) found that higher PiB-PET amyloid was specifi-

cally associated with worse episodic memory, as in our study of participants with mild con-

cerns or impairment, but that WMH was associated most prominently with executive

function.[28]

Our study findings contrast with these others in that WMH was not associated with a spe-

cific cognitive profile. In contrast to the prior studies of vascular dementia and MCI,[26, 27]

our study population had lower WMH burden. While the mean WMH in our study was higher

than in similar aged participants in the population-based Framingham study (0.50% vs.

0.098% and 0.129% for 72–96 year old men and women, respectively)[22] it was much lower

than in the study of subcortical ischemic vascular MCI (7.7 cm3 vs. 34.9 cm3)[24], probably

because very extensive WMH was one of the criteria used to define subcortical ischemic dis-

ease. In contrast to the prior study of normal cognition,[28] participation in our study was

conditional on having cognitive concerns and it is possible that unmeasured factors could
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have accounted for cognitive impairments in patients with lower WMH burden, which would

tend to obscure the relationship between WMH and cognition. These differences in WMH

burden and cognitive symptoms may explain the different results between studies.

The prevalence of PiB-PET positive patients in our study was relatively low, reflecting the

lower prevalence of PiB retention in SCC patients (24%) compared to MCI patients (41%),

consistent with other studies.[29] Additionally, the low prevalence of PiB retention could

reflect a higher prevalence of cerebrovascular disease as a competing cause of cognitive con-

cerns and impairment in this study population with hypertension.

Currently, there is controversy as to whether cerebrovascular disease contributes to the

deposition of beta-amyloid. Although one study found greater PiB-PET increases in patients

with higher WMH[30] and another found a relationship between higher WMH and higher

PiB-PET retention in apolipoprotein E ε4 carriers only,[31] our study findings are similar to

the largest study in cognitively normal elderly which found that WMH and PiB-PET were

not correlated.[32] Except in the specific context of cerebral amyloid angiopathy,[33] it

seems likely that beta-amyloid deposition and WMH accrue as part of independent

processes.

Our findings should be interpreted in light of several limitations. The sample size was insuf-

ficient to detect modest differences in cognitive patterns between neuroimaging markers;

future, larger studies are needed to determine whether WMH may be association with more

modest differences. The study was cross-sectional; however, we are currently following the

study participants to determine the associations between baseline neuroimaging markers and

risk for longitudinal cognitive decline and conversion to dementia. By design, our study did

not include physiological measurements of hypertension severity in other organs (e.g. the

degree of left ventricular hypertrophy), which could also be correlated with brain injury and

cognitive impairment. Most of the participants in our study had controlled hypertension and

did not have clinical evidence of significant hypertensive end-organ damage outside the brain.

We pre-specified WMH volume as our marker of subcortical vascular ischemic injury because

it is common, can be measured quantitatively and is known to be associated with cognitive

impairment. However, the pathophysiology of WMH is uncertain and may be heterogenous.

[7] Finally, our sample is a convenience sample, including individuals recruited from a mem-

ory clinic, from other clinical settings, and from the community, so the generalizability of our

findings to the general population is limited.

Our finding that more than one quarter of our participants, all over 60 with hypertension

and cognitive concerns or impairment are PiB-PET positive highlights the need to consider

AD pathology (and potentially a diagnosis of MCI due to Alzheimer’s disease or late preclinical

AD) as a common cause of cognitive impairment and cognitive concerns, even in patients

with hypertension or other risk factors for vascular cognitive impairment. Where appropriate,

AD biomarker testing, such as with PET amyloid imaging or cerebrospinal fluid analysis,

could be considered for such patients with persistent, unexplained MCI.[34] Although our

hypertensive participants with worse episodic memory were more likely to have Alzheimer

pathology, we failed to find a pattern of cognitive impairment that suggested the presence of

subcortical ischemic pathology. Because cognitive evaluation alone is not sufficient to identify

hypertensive patients with subcortical ischemic pathology, neuroimaging will be essential—as

recommended by American Heart Association/American Stroke association criteria for diag-

nosis of vascular cognitive impairment[35]—to identify vascular brain lesions that would

prompt additional diagnostic work-up (e.g. for cause of silent brain infarction) and manage-

ment for secondary prevention of cerebrovascular disease.
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