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Objective: Withdrawal of cardiac vagal activity is associated with ventricular

arrhythmia-related high mortality in patients with type 2 diabetes mellitus (T2DM).

Our recent study found that reduced cell excitability of cardiac vagal postganglionic

(CVP) neurons is involved in cardiac vagal dysfunction and further exacerbates

myocardial infarction (MI)-evoked ventricular arrhythmias and mortality in T2DM.

However, themechanisms responsible for T2DM-impaired cell excitability of CVP neurons

remain unclear. This study tested if and how elevation of hydrogen peroxide (H2O2)

inactivates CVP neurons and contributes to cardiac vagal dysfunction and ventricular

arrhythmogenesis in T2DM.

Methods and Results: Rat T2DM was induced by a high-fat diet plus streptozotocin

injection. Local in vivo transfection of adenoviral catalase gene (Ad.CAT) successfully

induced overexpression of catalase and subsequently reduced cytosolic H2O2 levels

in CVP neurons in T2DM rats. Ad.CAT restored protein expression and ion currents

of N-type Ca2+ channels and increased cell excitability of CVP neurons in T2DM.

Ad.CAT normalized T2DM-impaired cardiac vagal activation, vagal control of ventricular

function, and heterogeneity of ventricular electrical activity. Additionally, Ad.CAT not only

reduced the susceptibility to ventricular arrhythmias, but also suppressed MI-evoked

lethal ventricular arrhythmias such as VT/VF in T2DM.

Conclusions: We concluded that endogenous H2O2 elevation inhibited protein

expression and activation of N-type Ca2+ channels and reduced cell excitability of
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CVP neurons, which further contributed to the withdrawal of cardiac vagal activity and

ventricular arrhythmogenesis in T2DM. Our current study suggests that the H2O2-N-type

Ca2+ channel signaling axis might be an effective therapeutic target to suppress

ventricular arrhythmias in T2DM patients with MI.

Keywords: calcium channel, cardiac vagal neuron, hydrogen peroxide, myocardial infarction, type 2 diabetes,

ventricular arrhythmia

INTRODUCTION

Diabetes is a major public health problem worldwide and has
become a leading cause of mortality (1–3), which is expected to
affect more than 700 million adults by 2045 (4), with most having
type 2 diabetes mellitus (T2DM, 90–95% of diabetic population)
(5). Myocardial infarction (MI)-related ventricular arrhythmia is
the primary cause of mortality in T2DM patients (3, 6). Although
well-known therapies, including intensive glycemic control over
time, have been noted in T2DM patients, these treatments fail to
reduce MI-related mortality in T2DM patients (7, 8), and excess
risk of death still exists (3, 9, 10). Withdrawal of cardiac vagal
(parasympathetic) activity is a common complication (9, 11, 12)
and is associated with arrhythmia-related sudden cardiac death
in T2DM patients (13–16).

Regulation of cardiac vagal activity can be integrated by the
regulatory circuitry at multiple levels, including vagal nerve
afferent at baroreceptors, central components, and efferent
components (cardiac vagal ganglia) (17). Although structural
and functional alterations in every site of the circuitry could
cause attenuation of cardiac vagal activity, impairment of
cardiac vagal ganglia might be an important factor for the
withdrawal of cardiac vagal activity in T2DM, because: (1) cardiac
vagal ganglionic neurons provide local neural coordination
independent of higher brain centers (18); (2) acetylcholine (ACh)
release from cardiac vagal neurons is blunted in T2DM patients
(19); (3) our previous study found that cell excitability of
cardiac vagal postganglionic (CVP) neurons was reduced due
to lower expression of voltage-gated Ca2+ channels in T2DM
rats (20). Cardiac vagal ganglia are divided into the sinoatrial
ganglion and atrioventricular ganglion (AVG) (21), and the
ventricle only receives projection of vagal nerve terminals from
the AVG (22). Our previous study found that reduced N-type
Ca2+ channels (Cav2.2) and cell excitability of CVP neurons
contribute to the withdrawal of ventricular vagal function in
T2DM (23). More importantly, T2DM-reduced cell excitability
of CVP neurons exacerbated MI-evoked ventricular arrhythmias
and high mortality rate in T2DM (24). However, the mechanisms
responsible for low-expression and inactivation of N-type Ca2+

channels in CVP neurons are unclear.
In physiological conditions, reactive oxygen species (ROS)

such as hydrogen peroxide [H2O2, the most stable of ROS (25,
26)] play an essential role in cell proliferation and differentiation,
signaling transduction, gene expression, etc. (27–29). However,
excessive ROS production could destroy cellular complexes (30),
leading to the pathogenesis of T2DM (31, 32). Indeed, growing
evidence demonstrates that diabetes induces overproduction of
ROS, including H2O2, in multiple tissues and cells through

various signaling pathways (33–35). Considering that some
previous studies demonstrated that H2O2 could acutelymodulate
voltage-gated Ca2+ channels (36–38), in the present study, we
used in vivo transfection of adenoviral catalase gene (Ad.CAT)
in the AVG to reveal the involvement of H2O2 in CVP
neuronal dysfunction, ventricular vagal abnormality, and MI-
evoked ventricular arrhythmias in T2DM.

MATERIALS AND METHODS

The study conformed to guidelines for the Care and Use of
Laboratory Animals and was approved by the Institutional
Animal Care and Use Committee (IACUC, NO.18-023-04-
FC) at the University of Nebraska Medical Center. As an
analgesic, buprenorphine (0.05 mg/kg, s.c., Reckitt Benckiser
Pharmaceuticals Inc., Richmond, VA, United States) was given
for three post-operative days in all survival surgical procedures.
After in vivo experiments were completed, rats were euthanized
with 0.39 ml/kg of Fatal-Plus euthanasia solution (about 150
mg/kg pentobarbital, i.p., Vortech Pharmaceuticals, Dearborn,
MI, United States).

Experimental Design, Timeline, and
Interventions
In the current study, 147 male Sprague-Dawley rats (6–7
weeks of age, weighting 180–200 g) were randomly assigned
to one of two groups, including sham and T2DM. T2DM
was induced by a combination of high-fat diet with low-dose
streptozotocin (STZ) injection, as fully described below. All
experiments were performed at 12–14 weeks of feeding with
either standard chow diet (sham rats) or high-fat diet (T2DM
rats). Implantation of ECG radiotelemetry was performed at the
12th week. T2DM rats were then divided into three subgroups
for different interventions, including T2DM, T2DM+adenoviral
vector (Ad.Empty), and T2DM+Ad.CAT. Saline, Ad.Empty, or
Ad.CAT was microinjected into the AVG at the 12th week.
Terminal experiments, including measurements for inducibility
of ventricular arrhythmia and vagal control of ventricular
function, were performed in anesthetized rats at 1week after gene
transfection (Supplementary Figure 1). In addition, to access the
cardiac autonomic function and ventricular electrical activities in
the conscious state, heart rate variability (HRV) and ventricular
arrhythmogenesis-related ECG markers were analyzed from 24-
h radiotelemetry ECG recording in conscious rats at 1 week after
gene transfection. After in vivo experiments were completed,
rats were euthanized, and then AVGs were isolated to perform
the in vitro experiments, including measurement of catalase
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activity, reverse–phase protein microarray, intracellular H2O2

andCa2+ images, andwhole-cell patch-clamp recording for Ca2+

currents and action potentials (APs). Moreover, MI-induced
ventricular arrhythmias were also evaluated in all groups of
conscious rats, in which MI was achieved by the ligation of the
left anterior descending coronary artery (LAD). Continuous 24-
h ECG recording was started immediately after LAD ligation.
Incidence and duration of ventricular tachycardia/fibrillation
(VT/VF) were quantified within 24-h after MI in all groups of
conscious rats (Supplementary Figure 1).

T2DM Rat Model
All rats were housed two per cage under controlled temperature,
humidity, and a 12:12-h dark-light cycle. They were provided
water and rat chow ad libitum. T2DM was induced by
a combination of high-fat diet with streptozotocin (STZ)
treatment, as previously described (20, 39). The rats were fed
a high-fat diet consisting of 42% fat, 42.7% carbohydrate, and
15.2% protein (Harlan Teklad adjusted fat diet, Harlan Teklad,
Madison, WI) for 4 weeks. The rats were then injected with STZ
(30 mg/kg, i.p.) and continued with the high-fat diet. In the
sham group, the rats were fed a standard chow diet consisting
of 13% fat, 53% carbohydrate, and 34% protein (Harlan Teklad
sterilizable rodent diet; Harlan Teklad, Madison, WI). All
experiments were performed at 12–14 weeks of feeding with
either standard chow diet or high-fat diet because our previous
study revealed the characteristics of T2DM (hyperlipidemia,
insulin resistance, and hyperglycemia) during this period (20).
Nineteen rats were excluded from the study, in which 4 rats died
during the progression of T2DM, and 15 rats were not considered
as T2DM due to insufficient fasting blood glucose (<250 mg/dl).
Basal metabolic characteristics from sham and T2DM rats were
summarized in Supplementary Table 1.

In vivo Gene Transfection of Ad.CAT or
Ad.Empty Into the AVG
Rats were anesthetized with 2% isoflurane (Butler Schein Animal
Health, Dublin, OH, USA), artificially ventilated, and then
kept in right lateral recumbent position. A left posterolateral
thoracotomy was performed through the 3rd left intercostal
space. After the AVG located at the junction of the inferior
pulmonary veins and left atrium was identified, 2 µl of saline,
Ad.CAT [1 × 1010 pfu/ml, University of Iowa, Iowa City, IA
(40)], or adenoviral vector control (Ad.Empty, 1 × 1010 pfu/ml,
University of Iowa, Iowa City, IA) was microinjected into the
AVG by a glass micropipette connected to a WPI Nanoliter
2000 microinjector. After microinjection, the chest was closed,
and the experiments were performed at least 1 week after gene
transfection to guarantee the overexpression of catalase. Ad.CAT
purchased from the University of Iowa did not have a fluorescent
tag. However, based on our previous study that microinjection
of viral-GFP into the AVG induced GFP expression in almost
all CVP neurons (23), we confirm the efficacy of virus infection
and proper microinjection into the AVG. In addition, to
confirm the specificity of adenoviral gene transfection, Ad.
EGFP (adenovirus-enhanced green fluorescent protein) was
microinjected into the AVG. At 1 week after gene transfection,

expression of EGFP is restricted only in the AVG area but not in
the left atrial myocardium (Supplementary Figure 2).

Implantation of the ECG Radiotelemetry
and ECG Recoding in Conscious Rats
Implantation of the ECG telemeter (Millar Instruments,
Houston, TX, USA) was performed as described previously (41–
43). After laparotomy was performed at the Linea Alba under
anesthetized condition (2% isoflurane), an ECG transmitter was
placed into the abdominal cavity and secured to the abdominal
wall at the best position for signal communication and battery
recharging, and the bipolar electrodes were then tunneled
subcutaneously. In accordance with the Millar User Manual
for ECG recording, the positive electrode was attached to the
underlying tissue near the left side of the xiphoid process and
the negative one was secured in the upper sternal midline. The
electrodes were kept together and run alongside one another as
far as practical for a significant reduction in the electrical noise
during the recording. All incisions were sutured in two layers.

At 1–2 weeks after implantation of the ECG radiotelemetry,
the rat was placed on a SmartPad receiver (Millar Instruments,
Houston, TX, USA) for a 24-h continuous ECG recording in
the conscious condition. Real-time ECG signals were digitalized
and analyzed by PowerLab 8/30 Data Acquisition System with
LabChart 8 software and ECG analysis module (AD Instruments,
Colorado Springs, CO, USA).

Measurements of Ventricular Electrical
Activity and the HRV in Conscious Rats
To quantify the ventricular electrical activity, ventricular
arrhythmogenesis-related ECG markers, including QT and
corrected QT (QTc) intervals, QT and QTc dispersions, as
well as T-peak to T-end (Tpe) interval, were calculated from
ECG segments during the 24-h recording in conscious rats, as
described previously (23, 44). QTc interval was calculated by
Bazett’s formula (QT/

√
RR, where RR is RR interval) (45). As an

index of the spatial dispersion of the ventricular repolarization,
QT and QTc dispersions were calculated by equations: QT
dispersion = QTmax-QTmin and QTc dispersion = QTcmax-
QTcmin, where QTmax and QTcmax are the maximumQT interval
and the maximum QTc interval; QTmin and QTcmin are the
minimum QT interval and the minimum QTc interval. T-peak
to T-end (Tpe) interval, another marker of transmural dispersion
of the ventricular repolarization, was calculated and served as an
ECG marker of ventricular arrhythmias (46–48).

Because the HRV is a commonly used index for determination
of the autonomic function in T2DMpatients in the clinic (49, 50),
it was employed to evaluate the autonomic function in conscious
rats in the current study. The HRV, including low-frequency
power (LF) from 0.2 to 0.75Hz, and high-frequency power (HF)
from 0.75 to 2.5Hz, was analyzed and averaged from eight ECG
segments during the 24-h ECG recording in conscious rats (51–
53).
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Measurement of Susceptibility to
Ventricular Tachyarrhythmia in
Anesthetized Rats
The rat was anesthetized with a mixture of 800 mg/kg
urethane and 40 mg/kg α-chloralose and artificially ventilated.
Surface lead-II ECG was recorded using subcutaneous electrodes
connected to a biological amplifier (AD Instruments, Colorado
Springs, CO, USA). A left thoracotomy was performed in the
4th intercostal space to expose the heart. After the pericardium
was carefully removed, a bipolar platinum stimulating electrode
was placed on the right ventricular outflow tract for electrical
stimulation (54). Programmed electrical stimulation (PES) was
performed by a programmed electrical stimulator (Digital Pulse
Generator 1831; WPI, USA) and an isolator (A320R Isostim
Stimulator; WPI, USA). The pulse current output was set to twice
the capture threshold with a 2-ms pulse width. A train of eight
stimuli (8 × S1) at a 120ms cycle length followed by an extra-
stimulus (S2) was applied to determine the ventricular effective
refractory period. The S1–S2 interval was gradually reduced in
steps of 2ms (starting from 90ms) until the ventricular effective
refractory period was identified (55). Based on the ventricular
effective refractory period, a programmed stimulation protocol
combined by single (S2), double (S3), or triple extra- stimulus
(S4) after a train of eight stimuli (8 × S1) was designed to
induce ventricular tachyarrhythmia as described previously (43,
54, 56). The end point of ventricular pacing was the induction
of ventricular tachyarrhythmia. Ventricular tachyarrhythmia
was considered non-inducible when either PES failed to
induce premature ventricular beats or self-terminated ventricular
premature beats < 6. Ventricular tachyarrhythmia was deemed
to be non-sustained when it lasted ≤ 15 beats and sustained
when it lasted > 15 beats before spontaneously terminating
(57, 58). The inducibility of ventricular tachyarrhythmia was
quantified by a quotient of ventricular arrhythmia score as
described previously (54, 57). Zero, non-inducible preparations;
1, non-sustained tachyarrhythmias induced with 3 extra-stimuli;
2, sustained tachyarrhythmias induced with 3 extra-stimuli; 3,
non-sustained tachyarrhythmias induced with 2 extra-stimuli;
4, sustained tachyarrhythmias induced with 2 extra-stimuli; 5,
non-sustained tachyarrhythmias induced with 1 extra-stimulus;
6, sustained tachyarrhythmias induced with 1 extra-stimulus; 7,
tachyarrhythmias induced during a train of 8 stimuli (8 × S1) at
a basic cycle length of 120ms; 8, the heart stopped before PES.

Measurements of Acute MI-Induced
Ventricular Arrhythmias in Conscious Rats
Given that acute MI-related ventricular arrhythmia is the most
common cause of mortality in T2DM patients (3, 6), MI achieved
by ligation of the LAD was used to induce the ventricular
arrhythmia in the current study. Briefly, under the anesthetized
condition (2% isoflurane) and mechanical ventilation, the left
thoracotomy was performed at the 4th intercostal space to expose
the heart. After pericardium was removed, the LAD was ligated
with a 6-0 silk suture, just below its exit from the aorta, between
the pulmonary artery outflow tract and left atrium. Then, the
chest and surgical incision were closed. To quantification of

ventricular arrhythmic events, continuous 24-h ECG recording
was immediately started once the animal woke up from the
surgery of LAD ligation. Incidence and duration of VT/VF
were quantified within 24-h after MI in conscious rats. The
cumulative duration of VT/VF was manually counted during
24-h continuous ECG recording. VT was defined as premature
ventricular contractions lasting ≥4 beats. VF was defined as
rapid, irregular QRS complexes.

Measurement of Hemodynamics and Vagal
Control of Ventricular Function
Under the anesthetized condition (a mixture of 800 mg/kg
urethane and 40 mg/kg α-chloralose, i.p.) and mechanical
ventilation, the left femoral artery was cannulated with a
polyethylene-50 catheter to monitor blood pressure and heart
rate. A Millar pressure transducer (SPR 524; size, 3.5-Fr; Millar
Instruments, Houston, TX, USA) was slowly inserted into the
right carotid artery and carefully advanced to the left ventricle
to measure left ventricular systolic pressure (LVSP) and the
maximum rate of increase of left ventricular pressure (LV
dP/dtmax). Hemodynamic data were recorded by PowerLab
8/30 Data Acquisition System with LabChart 8 software (AD
Instruments, Colorado Springs, CO, USA) and summarized
in Supplementary Table 3. To determine the vagal control of
ventricular function, bilateral cervical vagal nerves, cervical
sympathetic nerves, and aortic depressor nerves were isolated
and transected to avoid the influence of the arterial baroreflex.
Then, the peripheral end of the left vagal nerve was placed on a
bipolar stimulating electrode for vagal efferent nerve stimulation
(VNS), which was achieved by a Grass S9 stimulator (Grass
Instruments, Quincy, MA, USA) with 10 s of constant-frequency
stimulation (0.1ms pulse duration and intensity of 7.5 V at 1–
100Hz). Changes of LVSP and LV dP/dtmax in response to
different frequencies of VNS were severed as the index of vagal
control of ventricular function and were recorded by PowerLab
8/30 data acquisition system with LabChart 8 software.

Isolation of CVP Neurons and Whole-Cell
Patch-Clamp Recording for Ca2+ Currents
and APs
After in vivo experiments were performed, AVG was exposed
and removed quickly. CVP neurons were isolated by a two-step
enzymatic digestion protocol as described previously (20, 23,
59, 60). Briefly, isolated AVGs were placed in ice-cold modified
Tyrode’s solution (mM): 140 NaCl, 5 KCl, 10 HEPES, 5 glucose.
The AVG was then minced into small pieces with microscissors
and incubated with a modified Tyrode’s solution containing 0.1%
collagenase (type IV, C5138, Sigma-Aldrich) and 0.1% trypsin
(type II, T7409, Sigma-Aldrich) for 30min at 37◦C. The tissue
was then transferred to a modified Tyrode’s solution containing
0.2% collagenase and 0.5% bovine serum albumin for 30min of
incubation at 37◦C. The isolated CVP neurons were cultured in
culture medium at 37◦C in a humidified atmosphere of 95% air-
5% CO2 for 4–8-h before patch-clamp experiments. The culture
medium consisted of a 50/50 mixture of Delbecco’s modified

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 April 2022 | Volume 9 | Article 871852

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zhang et al. Vagus and Arrhythmia in Diabetes

Eagle’s medium (DMEM) and Ham’s F12 medium supplemented
with antibiotics and 10% fetal serum.

Voltage-gated Ca2+ currents and APs were recorded in CVP
neurons by the whole-cell patch-clamp technique using Axopatch
200B patch-clamp amplifier (Axon Instruments) (20, 23, 24).
Resistance of the patch pipette was 4–6 MΩ when filled with
following solution (in mM): 120 CsCl, 1 CaCl2, 40 HEPES,
11 EGTA, 4 MgATP, 0.3 Tris-GTP, 14 creatine phosphate, and
0.1 leupeptin (pH 7.3; 305 mOsm/L). The extracellular solution
consisted of (in mM): 140 TEA-Cl, 5 BaCl2, 1 MgCl2, 10 HEPES,
0.001 TTX, 2 4-AP, and 10 glucose (pH 7.4; 310 mOsm/L).
Series resistance of 5–13 MΩ was electronically compensated
30–80%. Junction potential was calculated to be +7.9mV using
pCLAMP 10.2 software, and all values of membrane potential
given throughout were corrected using this value. Current traces
were sampled at 10 kHz and filtered at 5 kHz. The holding
potential was −80mV, and current-voltage relationships were
elicited by 5-mV step increments to potentials between −60mV
and 60mV for 500ms. Peak currents were measured for each test
potential, and current density was calculated by dividing peak
current by cell membrane capacitance.

In patch-clamp experiments, ω-conotoxin GVIA (Alomone
Labs), a specific N-type Ca2+ channel blocker, was used to
block the N-type Ca2+ channel. Based on the previous study,
the concentration of ω-conotoxin GVIA (1µM) used in the
present study is a saturating concentration for inhibiting N-type
Ca2+ channels (59, 61, 62). N-type Ca2+ currents were obtained
by subtracting Ca2+ currents under treatment of ω-conotoxin
GVIA from total Ca2+ currents (59, 61).

In current-clamp experiments, AP was elicited by a ramp
current injection of 0-100 pA, and the current threshold-
inducing AP was measured at the beginning of the first action
potential. Frequency of APs was measured in a 1-s current
clamp. Input resistance was determined from the linear fit of the
neuronal voltage response to hyperpolarizing current injections
(20-pA step decrement from 0 to−100 pA for 1 s). The patch
pipette solution was composed of (in mM): 105 K-aspartate, 20
KCl, 1 CaCl2, 5 MgATP, 10 HEPES, 10 EGTA, and 25 glucose
(pH 7.2; 320 mOsm/L). The bath solution was composed of (in
mM): 140 NaCl, 5.4 KCl, 0.5 MgCl2, 2.5 CaCl2, 5.5 HEPES,
11 glucose, and 10 sucrose (pH 7.4; 330 mOsm/L). Junction
potential was calculated to be+12.3mV, andmembrane potential
was corrected using this value. P-clamp 10.2 program (Axon
Instruments) was used for data acquisition and analysis. All
experiments were performed at room temperature (22–24◦C).

Measurement of Catalase Activity
A catalase activity assay kit (ab83464, abcam, Cambridge, UK)
was used to measure the catalase activity in the AVG. The AVG
was rapidly removed and washed in cold 0.01M phosphate-
buffered saline (PBS) and then homogenized on ice in assay
buffer. Homogenized tissue was centrifuged (10,000 g, 4◦C,
15min), and the supernatant was transferred to a new tube. The
total protein concentration in the supernatant was measured by a
bicinchoninic acid protein assay kit (Cat# 23225, Thermo Fisher
Scientific,Waltham,MA), and all samples were normalized to the
same level of total protein concentration. Each sample (20µl) was

mixed with 58 µl of cold assay buffer in each well-followed by 12
µl of fresh 1mM H2O2 solution into each well and incubated at
25◦C for 30min. Then 10 µl stop solution and 50 µl Developer
Mix were added into each sample well and incubated at 25◦C
for 10min in the dark. The OD was measured using the plate
reader Infinite M200 (Tecan Group Ltd. Switzerland) at 570 nm
wavelength. The corrected sample absorbance was applied to the
standard curve to get the catalase activity in sample wells.

Measurement of Cytosolic H2O2 Levels
Cytosolic H2O2 levels were measured by a mammalian
expression vector encoding a fluorescence H2O2 sensor pHyPer
(63, 64). Isolated CVP neurons were incubated with 1µg/ml of
pHyPer-cyto plasmid (EVN-FP941, AXXORA, Farmingdale, NY,
USA) and 4µg/ml of pn-FectTM (PN30075, Neuromics, Edina,
MN, USA) for transfection. After 6-h of transfection, themedium
was replaced by a mixed culture medium (a 50/50 mixture of
DMEM and Ham’s F12 medium supplemented with antibiotics
and 10% fetal serum), and isolated CVP neurons were incubated
for 48 h. The pHyPer-cyto image (green color) was captured by a
Leica fluorescence microscope (Leica DMR, Leica Microsystems
Inc., Buffalo Grove, IL, USA) with a digital camera (Qimaging
Retiga Exi Fast 1394). The quantitative data for the fluorescence
intensity in a single cell served as the cytosolic H2O2 level.

Measurement of Intracellular Ca2+ Levels
Intracellular Ca2+ image was assessed by a calcium indicator
(fluo-3/AM, F1241, Invitrogen, Carlsbad, CA, USA) and a Zeiss
LSM 510 META confocal microscope with a 63× oil immersion
objective (65, 66). Isolated CVP neurons were loaded with fluo-
3 (5µM) for 40min at 37◦C in a CO2 incubator. After rinsing
three times with a modified Tyrode solution (mmol/L: 140 NaCl,
5.4 KCl, 0.5 MgCl2, 2.5 CaCl2, 5.5 HEPES, 11 glucose, pH 7.4,
and 330 mOsm/L), CVP neurons were placed in a recording
dish with the Tyrode solution on the stage of the confocal
microscope. An argon laser provided fluorescence excitation
at 488 nm, and the emitted light (515 nm) was captured along
with transmitted images. The Ca2+ fluorescent image (green
color) was continuously captured every 2 s using the confocal
microscope before and during high KCl (30mM) stimulation
(30 s). All analyses of intracellular Ca2+ levels were processed
at a single-cell level, and the data was calculated by the ratio of
FMax/F0, in which FMax represents the fluorescence intensity at
30 s of high KCl stimulation, and F0 is the fluorescence intensity
of the baseline (before KCl stimulation).

Reverse–Phase Protein Microarray
Due to the limitation of small AVG samples (1–2mg wet
weight), we could not detect the expression of catalase protein
using regular Western blot analyses and instead employed a
modified reverse–phase protein microarray, which is highly
sensitive and needs about 1 µg of protein (23, 67). AVGs were
rapidly removed, immediately frozen in liquid nitrogen, and
stored at −80◦C until analyzed. Proteins in AVG homogenates
were extracted with a lysing buffer (10mM Tris, 1mM EDTA,
1% SDS; pH 7.4) plus protease inhibitor cocktail (100 µl/ml,
Sigma). After centrifugation at 12,000 g for 20min at 4◦C,
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FIGURE 1 | Overexpression of catalase in CVP neurons reduced intracellular H2O2 levels in T2DM rats. (A) Representative images of cytosolic H2O2 levels in isolated

CVP neurons from sham, T2DM, and T2DM+Ad.CAT rats, measured by detecting fluorescence intensity of pHyPer-cyto (green color, a H2O2 sensor). (B) Quantitative

data showing fluorescence intensity of pHyPer-cyto in CVP neurons in all groups. N = 40 neurons from 6 rats per group; data are means ± SEM. Statistical

significance was determined by one-way ANOVA with post-hoc Bonferroni test. *P < 0.05 vs. sham;
†
P < 0.05 vs. T2DM.

the protein concentration in the supernatant was determined
using a bicinchoninic acid protein assay kit (Pierce, Rockford,
IL, USA). Fifty nanoliters of each protein sample were loaded
onto nitrocellulose–coated glass slides by an 8–pin arrayer.
Protein samples were then sequentially incubated with primary
antibodies (rabbit anti-Catalase (D5N7V) antibody, #14097s, Cell
Signaling; rabbit anti-CACNA1B (CaV2.2-α) antibody, #ACC-
002, Alomone Labs; and mouse anti–β-actin antibody, Sc-
4778, Santa Cruz Biotechnology) and LI–COR fluorescence–
conjugated secondary antibodies (IRDye 800CWgoat anti–rabbit
IgG, and IRDye 680LT goat anti–mouse IgG). The protein signals
were scanned with a LI–COR Odyssey IR imaging system (LI–
COR, Lincoln, NE, USA).

Statistical Analysis
All data are presented as means ± SEM. SigmaPlot 12 was
used for data analysis. Statistical significance was determined by
one-way or two-way ANOVA with post-hoc Bonferroni test for
multi-group comparison. Statistical significance was determined
by a Fisher exact test for incidence of ventricular arrhythmias.
A student’s unpaired t-test was used to perform a two-group
comparison. Normal distribution of data was confirmed with the
Kolmogorov-Smirnov test and equal variance with Levene’s test.
Statistical significance was accepted when p<0.05.

RESULTS

Overexpression of Catalase Attenuated
T2DM-Increased Cytosolic H2O2 Levels in
CVP Neurons
Using a cytosolic H2O2 sensor pHyPer, we first compared
cytosolic H2O2 levels in CVP neurons between sham and
T2DM rats. Our data showed that cytosolic H2O2 levels

were significantly elevated in CVP neurons from T2DM rats,
compared to age-matched sham rats (195.8 ± 1.2 in the T2DM
group vs. 36.5 ± 1.0 in the sham group, P < 0.05, Figure 1).
We then measured the catalase protein (an endogenous H2O2

scavenger) and found that its expression in CVP neurons was
much lower in T2DM rats than that in sham rats (0.22 ± 0.01
in the T2DM group vs. 0.71 ± 0.01 in the sham group, P
< 0.05, Figures 2A,B). When Ad.CAT gene was microinjected
into the AVG from T2DM rats, the expression of catalase
protein in CVP neurons was significantly elevated (0.92 ±
0.01 in the T2DM+Ad.CAT group), compared to T2DM rats
without Ad.CAT gene transfection (0.22 ± 0.01 in the T2DM
group, P < 0.05, Figures 2A,B). Consequently, Ad.CAT gene
transfection eliminated T2DM-elevated cytosolic H2O2 levels in
CVP neurons (60.6± 1.1 in the T2DM+Ad.CAT group vs. 195.8
± 1.2 in the T2DM group, P < 0.05, Figure 1). In addition, data
from the measurement of catalase activity demonstrated that the
catalase activity was markedly reduced in T2DM rats, compared
with that in sham rats (Figure 2E). Transfection of Ad.CAT into
CVP neurons totally restored T2DM-reduced catalase activity
in the AVG (Figure 2E). Ad.Empty transfection failed to induce
any change in cytosolic H2O2 levels, expression of catalase
protein, and catalase activity in CVP neurons from T2DM
rats (Figures 1, 2).

Transfection of Ad.CAT Into CVP Neurons
Improved T2DM-Reduced Protein
Expression and Ion Currents of N-Type
Ca2+ Channels, Cell Excitability, and
Intracellular Ca2+ Levels of CVP Neurons
The reverse-phase protein microarray confirmed that protein
expression of N-type Ca2+ channels in CVP neurons is markedly
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FIGURE 2 | Effect of Ad.CAT gene transfection on protein expression of catalase and N-type Ca2+ channels (Cav2.2-α) in CVP neurons in T2DM. (A) Raw images and

(B) quantitative data showing protein expression of catalase in CVP neurons from all groups of rats, measured by revers–phase protein microarray. (C) Representative

images and (D) quantitative data showing protein expression of Cav2.2-α in the CVP neurons from all groups of rats. N = 24 measurements from 6 rats per group. (E)

Catalase activity measured in all groups. N = 6 rats per group. Ad.CAT gene transfection significantly increased T2DM-reduced catalase activity, and protein

expression of catalase and Cav2.2-α in CVP neurons. Data are means ± SEM. Statistical significance was determined by one-way ANOVA with post-hoc Bonferroni

test. *P < 0.05 vs. sham;
†
P < 0.05 vs. T2DM.

reduced in T2DM rats, compared with sham rats (0.32 ± 0.01
in the T2DM group vs. 0.78 ± 0.01 in the sham group, P <

0.05, Figures 2C,D), which is consistent with our previous results
obtained by immunofluorescence staining (20). Ad.CAT gene
transfection into CVP neurons partially restored T2DM-reduced
protein expression of N-type Ca2+ channels (0.53 ± 0.02 in the
T2DM+Ad.CAT group vs. 0.32 ± 0.01 in the T2DM group, P <

0.05, Figures 2C,D). Ad.Empty transfection did not affect protein
expression of N-type Ca2+ channels (Figures 2C,D).

To observe electrophysiological changes in CVP neurons,
voltage-gated Ca2+ currents and neuronal excitability in
CVP neurons were measured by the whole-cell patch-clamp
technique. Our data demonstrated that total Ca2+ currents
and cell excitability (including frequency of APs, current
threshold inducing APs) of CVP neurons are markedly
decreased in T2DM rats, compared with age-matched sham

rats (Figure 3C, Supplementary Figure 3). Additionally, N-
type Ca2+ currents were separated from other types of Ca2+

currents by treatment of ω-conotoxin GVIA, a specific N-
type Ca2+ channel blocker (Figure 3A). Compared with sham
rats (26.9 ± 1.0 pA/pF), T2DM significantly reduced N-Type
Ca2+ currents (10.8 ± 0.7 pA/pF, P < 0.05, Figure 3C).
However, other types of Ca2+ currents (i.e., Ca2+ currents
under treatment of ω-conotoxin GVIA) were not affected
by T2DM (Figure 3C). Ad.CAT gene transfection into CVP
neurons significantly increased T2DM-reduced total Ca2+

currents (42.2 ± 1.6 pA/pF), N-type Ca2+ currents (25.7 ±
1.3 pA/pF), and cell excitability of CVP neurons, compared
to T2DM rats without Ad.CAT gene transfection (Figures 3,
4, Supplementary Figure 3). Ad.Empty had no effects on total
Ca2+ currents, N-type Ca2+ currents, and cell excitability of CVP
neurons (Figures 3, 4, Supplementary Figure 3). Moreover,
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FIGURE 3 | Reduction of the H2O2 levels through transfection of Ad.CAT gene increased T2DM-reduced N-type Ca2+ currents in CVP neurons in T2DM rats. BaCl2
replaced CaCl2 in the extracellular solution for Ca2+ current recording. (A) Original whole-cell patch-clamp recording of Ca2+ currents from sham, T2DM, and

T2DM+Ad.CAT rats. (B) Current-voltage (I–V) curve of N-type Ca2+ currents in CVP neurons from all groups of rats. (C) Quantitative data of total Ca2+ currents, other

types of Ca2+ currents, and N-type Ca2+ currents elicited by 500-ms test pulse at 0mV from holding potential of −80mV in CVP neurons from all groups.

ω-conotoxin GVIA, a specific N-type Ca2+ channel blocker, was used to block the N-type Ca2+ channel. N-type Ca2+ currents were obtained by subtracting Ca2+

currents under treatment of ω-conotoxin GVIA from total Ca2+ currents. N = 8 neurons from 6 rats per group; data are means ± SEM. Statistical significance was

determined by two-way repeated measures ANOVA with post-hoc Bonferroni test for data presented in (B). Statistical significance was determined by one-way

ANOVA with post-hoc Bonferroni test for data presented in (C). *P < 0.05 vs. sham;
†
P < 0.05 vs. T2DM.

there were no significant differences in resting membrane
potential, input resistance, and cell membrane capacitance
among groups (Supplementary Table 2).

Using Fluo3/AM with a confocal microscope, we also
measured intracellular Ca2+ levels in all groups of rats. The
ratio of FMax/F0 was significantly lower in T2DM rats than in
sham rats (1.53 ± 0.04 in the T2DM group vs. 3.53 ± 0.07 in
the sham group, P < 0.05, Figure 5). Transfection of Ad.CAT
gene but not Ad.Empty into CVP neurons significantly restored
intracellular Ca2+ levels in T2DM rats (3.39 ± 0.08 and 1.59 ±
0.05, respectively), compared to T2DM rats without adenoviral
transfection (Figure 5B).

Effect of Ad.CAT on T2DM-Reduced Vagal
Control of Ventricular Function
The vagal control of ventricular function, an index of ventricular
vagal function, was evaluated by detecting changes of LVSP and

LV dP/dtmax in response to different frequencies of VNS in
anesthetized rats. Compared to age-matched sham rats, changes
of LVSP and LV dP/dtmax in response to different frequencies (2–
100Hz) of VNS were blunted in T2DM rats (Figure 6). These
data indicated that the ventricular vagal function was impaired
in the T2DM state. Ad.CAT gene transfection into CVP neurons
partially improved T2DM-reduced ventricular vagal function, as
evidenced by improved responses of LVSP and LV dP/dtmax to
different frequencies of VNS in T2DM+Ad.CAT rats (Figure 6).
Ad. Empty transfection into CVP neurons failed to ameliorate
ventricular vagal function in T2DM rats (Figures 6B,C).

Effect of Ad.CAT on T2DM-Induced Cardiac
Autonomic Dysfunction in Conscious Rats
Autonomic dysfunction, including cardiac sympathetic and
parasympathetic imbalances, is a common complication in
T2DM patients (68–70). Given that HRV analysis is the
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FIGURE 4 | In vivo transfection of Ad.CAT gene restored T2DM-reduced cell

excitability of CVP neurons in T2DM rats. (A) Original recording of action

potentials (APs) in CVP neurons from sham, T2DM, and T2DM+Ad.CAT rats.

(B,C) Quantitative data for the frequency of APs in CVP neurons from all

groups. The frequency of APs was measured in a 1-s current clamp with a

current injection of 100 pA. N = 8 neurons from 6 rats per group; data are

means ± SEM. Statistical significance was determined by one-way ANOVA

with post-hoc Bonferroni test for data presented in (B). Statistical significance

was determined by two-way repeated measures ANOVA with post-hoc

Bonferroni test for data presented in (C). *P < 0.05 vs. sham;
†
P < 0.05

vs. T2DM.

most common method for the diagnosis of cardiac autonomic
dysfunction in T2DM patients (49, 50), it was employed to
evaluate the cardiac autonomic function from a 24-h continuous
ECG recording in conscious rats. Data from the power spectral

analysis of the HRV demonstrated that HF power (an index of
cardiac parasympathetic activation) was significantly reduced,
whereas the LF power (a marker of cardiac sympathetic
activation) was slightly reduced in T2DM rats, compared with
sham rats (Figure 7). These data are consistent with results
from our recent publication (24) and one clinical report that
vagal predominance was significantly impaired in proportion
to a withdrawal of total autonomic activity (71). Ad.CAT
gene transfection into CVP neurons partially restored T2DM-
impaired cardiac vagal activation recorded in T2DM+Ad.CAT
conscious rats (Figures 7A,B).

Transfection of Ad.CAT Into CVP Neurons
Alleviated the Heterogeneity of Ventricular
Electrical Activity in Conscious T2DM Rats
Since the heterogeneity of ventricular electrical activity is a
critical factor of ventricular arrhythmogenesis (48), ventricular
arrhythmogenesis-related ECG markers, including QT and QTc
intervals, QT and QTc dispersions, and Tpe interval, were
also calculated from 24-h continuous ECG recording. QT and
QTc intervals, QT and QTc dispersions, and Tpe interval were
significantly elongated in T2DM rats, compared with sham
rats (Figure 8), which suggest that T2DM increased the spatial
and transmural dispersion of ventricular repolarization. Ad.CAT
gene but not Ad.Empty transfection into CVP neurons markedly
reduced T2DM-increased heterogeneity of ventricular electrical
activity, as demonstrated by significant shorting in QT and QTc
intervals, QT and QTc dispersions, and Tpe interval in the
T2DM+Ad.CAT group toward the levels in the sham group
(Figures 8A–F).

Transfection of Ad.CAT Into CVP Neurons
Reduced the Susceptibility to Ventricular
Arrhythmias in Anesthetized T2DM Rats
PES-triggered inducibility of ventricular arrhythmias was used to
evaluate ventricular arrhythmogenesis in all experimental groups
of anesthetized rats. As demonstrated in Figure 9, PES failed
to elicit the occurrence of VT/VF and the inducibility quotient
was zero in sham rats. In T2DM rats, PES induced VT/VF
with a high incidence (63%) and inducibility quotient (3.75
± 1.18), compared to age-matched sham rats (Figures 9B,C).
Ad.CAT gene transfection into CVP neurons failed to induce
the significant reduction in the incidence of VT/VF, but it
significantly reduced the susceptibility to ventricular arrhythmias
(0.38 ± 0.26 for the inducibility quotient) in T2DM rats
(Figures 9A–C). Ad.Empty transfection in CVP neurons did not
affect the susceptibility to ventricular arrhythmias in anesthetized
T2DM rats (Figures 9B,C).

Transfection of Ad.CAT Into CVP Neurons
Mitigated MI-Induced Ventricular
Arrhythmias in Conscious T2DM Rats
Acute MI-induced ventricular arrhythmic events such as VT/VF
were compared in all experimental groups of conscious rats. In
T2DM rats, MI induced VT/VF with a long cumulative duration
(71.7 ± 7.4 s/h), compared to the sham+MI group (30.7 ± 6.4
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FIGURE 5 | In vivo transfection of Ad.CAT gene restored T2DM-decreased intracellular Ca2+ levels in CVP neurons from T2DM rats. (A) Raw images of fluo-3/AM

(green color, a calcium indicator) in isolated CVP neurons from sham, T2DM, and T2DM+Ad.CAT rats, in which the fluorescent image was captured by a confocal

microscope before (F0) and during KCl (30mM) stimulation at 30 s (FMax). (B) Mean data for the fluorescence intensity of fluo-3/AM in isolated CVP neurons from all

groups of rats. N = 60 neurons from 6 rats per group; data are means ± SEM. Statistical significance was determined by one-way ANOVA with post-hoc Bonferroni

test. *P < 0.05 vs. sham;
†
P < 0.05 vs. T2DM.

FIGURE 6 | Effect of Ad.CAT gene transfection into CVP neurons on vagal control of ventricular function in T2DM rats, which was determined by changes of the left

ventricular systolic pressure (LVSP) and the maximum rate of increase of left ventricular pressure (LV dP/dtmax) in response to different frequencies of left vagal efferent

nerve stimulation (VNS) in anesthetized rats. (A) Representative recordings demonstrating changes of the LVSP in response to 7.5 V, 20Hz of VNS in sham, T2DM,

and T2DM+Ad.CAT rats. (B,C) Quantitative data for changes of the LVSP (B) and LV dP/dtmax (C) in response to different frequencies (1–100Hz) of VNS in all groups

of rats. In vivo Ad.CAT gene transfection into CVP neurons significantly improved T2DM-blunted vagal control of ventricular function. N = 6 rats per group; data are

means ± SEM. Statistical significance was determined by two-way repeated measures ANOVA with post-hoc Bonferroni test. *P < 0.05 vs. sham;
†
P < 0.05

vs. T2DM.
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FIGURE 7 | In vivo transfection of Ad.CAT gene into CVP neurons improved T2DM-attenuated cardiac vagal activation, measured by the power spectral analysis of

heart rate variability (HRV) in conscious rats. (A) Representative tracings of HRV analyzed from 24-h ECG recording in sham, T2DM, and T2DM+Ad.CAT rats. Spectral

power was quantified for LF from 0.2 to 0.75Hz and HF from 0.75 to 2.5Hz. (B,C) Quantitative data of HF (B) and LF (C) from all groups of conscious rats. N = 6 rats

per group; data are means ± SEM. Statistical significance was determined by one-way ANOVA with post-hoc Bonferroni test. *P < 0.05 vs. sham;
†
P < 0.05

vs. T2DM.

s/h; P < 0.05, Figure 10). Ad.CAT gene transfection into CVP
neurons markedly reduced the cumulative duration of VT/VF,
whereas it failed to lower the incidence of VT/VF induced by MI
in T2DM rats (28.3± 6.9 s/h and 100%, respectively, Figure 10).
Ad.Empty transfection into CVP neurons had no effect on MI-
evoked ventricular arrhythmias in T2DM rats (Figures 10B,C).

DISCUSSION

Major Findings
In the present study, we reported a major contribution of
H2O2-N-type Ca

2+ channel signaling pathway to the withdrawal
of cardiac vagal activity and ventricular arrhythmogenesis in
the T2DM state. We demonstrated for the first time that
endogenous H2O2 elevation was involved in T2DM-decreased
protein expression and ion currents of N-type Ca2+ channels,
intracellular Ca2+ levels, and cell excitability in CVP neurons. In
vivo transfection of Ad.CAT gene into CVP neurons normalized
H2O2 levels, elevated N-type Ca2+ channel activation and
neuronal excitability, and improved impaired cardiac vagal
activity in T2DM rats. Additionally, Ad.CAT gene transfection
also restored the heterogeneity of ventricular electrical activities,
reduced the susceptibility to ventricular arrhythmias, and
suppressed acute MI-evoked ventricular arrhythmias in T2DM
rats. The direct evidence from our present study clarified the
contribution of endogenous H2O2 elevation to the CVP neuronal

dysfunction, and consequent withdrawal of cardiac vagal activity
and ventricular arrhythmogenesis in the T2DM state.

Endogenous H2O2 Elevation in the T2DM
State
Reactive oxygen species (ROS), such as superoxide, H2O2,
and hydroxyl radical, have an important role in regulations of
the physiological and pathophysiological signal transduction
(72). ROS are produced from numerous non-enzymatic (73)
and enzymatic reactions in various cell compartments such
as mitochondria, cytoplasm, cell membrane, and endoplasmic
reticulum, etc. (72) during mitochondrial oxidative metabolisms
and in the cellular response to cytokines, bacterial invasion, and
xenobiotics (74). At the physiological condition, a low level of
ROS is essential for the maintenance of physiological functions,
including the cell proliferation, migration, differentiation
(27, 28), signaling transduction, and gene expression (29).
However, excessive ROS production can damage the cellular
macromolecules and supramolecular complexes and activate
specific signaling pathways (30), leading to the pathogenesis
of T2DM (31, 32). Among the members of the ROS, H2O2

and superoxide have been the main investigative foci of ROS
biology in recent years (75). Since H2O2 is a relatively stable ROS
(25, 26), we focused on the involvement of H2O2 in the CVP
neuronal dysfunction, withdrawal of cardiac vagal activity and
ventricular arrhythmogenesis in the T2DM state in the current
study. Although our study demonstrated that intracellular
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FIGURE 8 | Reduction of intracellular H2O2 levels in CVP neurons attenuated the heterogeneity of ventricular electrical activities in conscious T2DM rats. (A)

Representative tracings for QT and Tpe intervals in sham, T2DM, and T2DM+Ad.CAT rats. (B–F) Quantitative data for QT interval (B), QTc interval (C), QT dispersion

(D), QTc dispersion (E), and Tpe (F) in all experimental groups. N = 6 rats per group; data are means ± SEM. Statistical significance was determined by one-way

ANOVA with post-hoc Bonferroni test. *P < 0.05 vs. sham;
†
P < 0.05 vs. T2DM.

H2O2 levels in CVP neurons are significantly increased in
T2DM rats (Figure 1), the source of H2O2 and mechanisms
responsible for the intracellular H2O2 elevation in CVP neurons
remain unclear. Among the several sources of the ROS, the
mitochondrial electron transport chain is thought to be an
essential pathway to produce the ROS in the T2DM state (32, 76).
It has been reported that the electron transport chain is activated
by chronic hyperglycemia, which leads to the production of more
significant amounts of the ROS and subsequent deterioration
of β-cell function in T2DM (32). In addition, our current study
demonstrated that catalase activity and expression of catalase
protein in AVG were markedly reduced in T2DM (Figure 2),
which might be another reason for T2DM-elevated endogenous
H2O2 levels because catalase serves as an endogenous H2O2

scavenger. However, it remains unclear how T2DM reduced
catalase activity and expression of catalase protein in AVG.
Future studies are needed to explore the mechanisms associated
with T2DM-elevated H2O2 levels in CVP neurons.

Endogenous H2O2 Elevation Impaired
N-Type Ca2+ Channel Function in CVP
Neurons in T2DM
Accumulating evidence has shown that H2O2 modulates the
cellular function through regulating ion channels such as
voltage-gated Ca2+ channels (36–38) and potassium (K+)

channels (77, 78) in various tissues and cells. There are five
types of Ca2+ channels, including L-, T-, N-, R-, and P/Q-
type channels, that have been functionally characterized in
central and peripheral neurons (79, 80). Among the various
types of voltage-gated Ca2+ channels, N-type Ca2+ channels,
predominantly expressed in the nervous system, play an
important role in modulation of the neurotransmitter release
at nerve terminals (81, 82). Our previous study demonstrated
that T2DM only reduced the mRNA and protein expression
of N-type Ca2+ channels, rather than other types of Ca2+

channels (including L-, N-, P/Q-, and R-type Ca2+ channels)
in CVP neurons (20). In the present study, we reported the
similar results that T2DM decreased N-type Ca2+ currents but
not other types of Ca2+ currents in CVP neurons (Figure 3C).
Simultaneously, T2DM also reduced intracellular Ca2+ levels
and cell excitability of CVP neurons (Figures 4, 5). When
Ad.CAT gene transfection into CVP neurons increased over
the expression and activity of catalase, decreased intracellular
H2O2 levels, restored protein expression and ion currents
of N-type Ca2+ channels, and increased intracellular Ca2+

levels and cell excitability of CVP neurons in T2DM rats
(Figures 1–5), we believe that intracellular H2O2 elevation
causes the reduction of N-type Ca2+ channel expression
and activation in CVP neurons and the latter decreases
intracellular Ca2+ levels and cell excitability of CVP neurons in
T2DM rats.
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FIGURE 9 | Effect of Ad.CAT gene transfection into CVP neurons on susceptibility to ventricular tachyarrhythmia in anesthetized T2DM rats. (A) Raw data for

PES-evoked VT/VF in anesthetized sham, T2DM, and T2DM+Ad.CAT rats. (B,C) Mean data for incidence (B) and inducibility quotient (C) of PES-evoked VT/VF in all

groups of rats. Ad.CAT gene transfection into CVP neurons markedly decreased the inducibility quotient of PES-evoked VT/VF in T2DM rats. N = 8 rats per group;

data are means ± SEM. Statistical significance was determined by Fisher exact test for the incidence of VT/VF and one-way ANOVA with post-hoc Bonferroni test for

inducibility quotient of VT/VF. *P < 0.05 vs. sham;
†
P < 0.05 vs. T2DM.

It has been widely reported that transient exposure to
exogenous H2O2 augments cytosolic Ca2+ levels through
multiple voltage-gated Ca2+ channels in various cells (36–38, 83,
84), which is not consistent with the data in our present study
(Figure 5). There are several possibilities for this discrepancy
as discussed below. First, modulating ion channel function
includes acute changes of ion channel kinetics and chronic
alterations of the ion channel expression. Being different from
studies mentioned above, we isolated primary CPV neurons
from sham and T2DM animals to test the regulatory role
of endogenous H2O2 in both the maximal current amplitude
and protein expression of N-type Ca2+ channels (Figures 2–4).
The integrative effects of endogenous H2O2 elevation on both
the maximal current amplitude and protein expression of N-
type Ca2+ channels reduced intracellular Ca2+ levels in CVP
neurons from T2DM rats (Figure 5). Second, T2DM-induced
endogenous H2O2 elevation differs from exogenously applied
H2O2 concentration. Third, there are different responses of Ca

2+

channels to exogenously applied H2O2 in different cells, because
Whyte et al. reported that H2O2 inhibits total Ca2+ currents
and cell excitability of CVP neurons when H2O2 was transiently
applied in isolated CVP neurons from normal rats (85).

Superoxide also is one of the ROS in many tissues during
diabetes (35). It is very difficult to distinguish the signaling
pathway between H2O2 and superoxide, considering that

superoxide is rapidly dismutated into H2O2 by superoxide
dismutase (86–88). In our present study, Ad.CAT gene
transfection into CVP neurons decreased intracellular H2O2

levels, enhanced protein expression and ion currents of N-type
Ca2+ channels, and increased intracellular Ca2+ levels and cell
excitability of CVP neurons in T2DM rats (Figures 1–5), which
confirms that H2O2 is the primary trigger to induce changes of
these variables in CPV neurons from T2DM rats.

Dysfunction of N-Type Ca2+ Channels in
CVP Neurons Partially Contributed to
T2DM-Induced Withdrawal of Cardiac
Vagal Function
Traditional teaching has stated that cardiac vagal nerves slow
sinus rate and atrioventricular conduction, with little influence
on the ventricle. This is because ventricular vagal innervation
was considered sparse in historical reports. However, newer
histological techniques have challenged this traditional principle
and affirmed dense vagal innervation in the ventricle from all
species including mouse, rat, cat, dog, pig, sheep, and human
(89–95). Our previous study has confirmed the relationship
between cardiac vagal function (in the AVG) and the contractile
and electrophysiological function of ventricles in sham rats
(23). Our current study confirmed that vagal nerve stimulation
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FIGURE 10 | In vivo transfection of Ad.CAT gene into CVP neurons suppressed myocardial infarction (MI)-evoked ventricular arrhythmias in conscious T2DM rats. (A)

Raw ECG recordings of VT/VF in conscious sham, T2DM, and T2DM+Ad.CAT rats. (B,C) Mean data for incidence (B) and cumulative duration of VT/VF (C) in all

groups of conscious rats. N = 6 rats per group; data are means ± SEM. Statistical significances in the incidence of VT/VF and cumulative duration of VT/VF were

determined by Fisher exact test and one-way ANOVA with post-hoc Bonferroni test, respectively. *P < 0.05 vs. sham;
†
P < 0.05 vs. T2DM.

induced significant reduction in LVSP, confirming the functional
innervation of the vagal nerve in the left ventricle. Ad. CAT-
induced improvements in the LVSP, QTc and QTd might
be achieved by restoring cell excitability of CVP neurons,
which subsequently increases ACh release from the vagal nerve
terminals, improves vagal control of ventricular function and
ventricular electrophysiological activities. Detailed mechanisms
are needed to explore in future.

T2DM-induced impairments in the vagal control of
ventricular function (Figure 6), and cardiac vagal activation
(Figure 7) are significantly but not fully restored by in vivo
Ad.CAT gene transfection. Since Ad.CAT gene transfection
into the AVG normalized T2DM-attenuated N-type Ca2+

currents and cell excitability of CVP neurons toward the levels
in sham rats (Figures 3, 4), the present study suggests that
CVP neuronal dysfunction partially contributes to T2DM-
impaired cardiac vagal function. T2DM-induced impairments
of other components, including pre-synaptic elements such
as ACh release from vagal nerve terminals, and post-synaptic
components such as muscarinic ACh receptors (mAChRs) and
responses of cardiac myocytes to the cardiac vagal activation,
may be involved in T2DM-impaired cardiac vagal function.
One previous study reported that ACh release from cardiac
vagal nerve terminals was decreased in T2DM patients (19),
although the distribution of cardiac vagal nerve terminals
remains unclear in the T2DM state. Additionally, protein
expression of type-2 mAChRs is downregulated in left ventricle
from T2DM mouse, whereas it was unchanged in left ventricle
samples from T2DM patients with coronary artery disease
(96). It is possible that coronary artery disease affects protein

expression of mAChRs in left ventricles from T2DM patients
with coronary artery disease. Moreover, diabetic cardiomyopathy
characterized by structural and functional abnormalities in the
ventricle (97) might contribute to T2DM-impaired cardiac vagal
function. Further studies are required to address if and how
these components are involved in cardiac vagal dysfunction
in T2DM.

Targeting H2O2-N-Type Ca2+ Channel
Signaling Pathway in CVP Neurons Is an
Effective Intervention Against MI-Evoked
Ventricular Arrhythmias in T2DM
The leading cause of mortality and morbidity in patients with
T2DM is cardiovascular diseases (98, 99), amongwhich acuteMI-
related ventricular arrhythmia is the primary cause of mortality
in T2DM (3, 6). Patients with T2DM are two to four times more
likely to die from MI than non-diabetic patients (6, 100). Our
recent study found that the decrease in cell excitability of CVP
neurons contributes to the withdrawal of cardiac vagal activity
and MI-evoked ventricular arrhythmias and high mortality in
T2DM rats (24). Our current study further demonstrated that
endogenous H2O2 elevation is a critical factor for dysfunction
of CVP neurons and subsequent impairment of the cardiac
vagal activity in the T2DM state. Although catalase (a H2O2

scavenger) has generated intense interest as an antioxidant
therapy, a short half-life, poor cellular uptake, and inability to
safely and efficiently deliver catalase into tissues significantly
limit its therapeutic use (101). For the first time, we successfully
attenuated the oxidative stress through in vivo gene transfection
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FIGURE 11 | Contribution of endogenous H2O2 elevation in CVP neurons to ventricular arrhythmogenesis and related therapeutic strategy in T2DM. In the T2DM

state, the oxidative stress, as evidenced by endogenous H2O2 elevation and lowered catalase occurred in CVP neurons. Consequently, endogenous H2O2 elevation

reduced the neuronal excitability through reduction of the N-type Ca2+ channel expression and activation. H2O2 overproduction in CVP neurons further attenuated the

cardiac vagal activation and enhanced the susceptibility to ventricular arrhythmogenesis, including the inducibility of ventricular arrhythmias in anesthetized rats and

MI-evoked ventricular arrhythmias in conscious rats. Reduction of cytosolic H2O2 levels in the AVG through in vivo Ad.CAT gene transfection markedly increased

T2DM-reduced expression and activation of N-type Ca2+ channels, intracellular Ca2+ levels, and cell excitability of CVP neurons. Ad.CAT gene transfection

subsequently improved impaired cardiac vagal function and suppressed ventricular arrhythmogenesis in T2DM. Therefore, targeting H2O2-N-type Ca2+ channel

signaling pathway could be a potential therapeutic strategy to improve the withdrawal of cardiac vagal activation and suppress ventricular arrhythmias in T2DM

patients with MI.

of Ad.CAT into CVP neurons in T2DM rats, as evidenced by
an increase in catalase activity, protein expression of catalase,
and a subsequent decrease in H2O2 levels in CVP neurons at
1 week after Ad.CAT gene transfection (Figures 1, 2). In vivo
Ad.CAT gene transfection into CVP neurons markedly improved
the heterogeneity of ventricular electrical activity, reduced the
susceptibility to ventricular arrhythmias, and suppressed MI-
evoked ventricular arrhythmias in T2DM rats. In addition, our
previous study has already demonstrated that gene knock-down
of N-type Ca2+ channels in AVG markedly attenuates vagal
control of ventricular function and increases the susceptibility to
ventricular arrhythmias by attenuating cell excitability of AVG
neurons. Our current study further confirmed that restoration
of the N-type Ca2+ channel expression by Ad.CAT gene
transfection into AVG successfully improves the cell excitability
of AVG neurons, ventricular vagal function, and ventricular
arrhythmogenesis in T2DM rats. These data suggested that N-
type Ca2+ channels are the major contributor to the beneficial
effects observed in current study. Based on these data, we believe

that targeting H2O2-N-type Ca2+ channel signaling pathway
in CVP neurons is an effective intervention against MI-evoked
ventricular arrhythmias in the T2DM state. Of course, we cannot
rule out the involvement of myocardial remodeling inMI-evoked
malignant ventricular arrhythmias in T2DM because much
evidence has shown that the remodeling of ion channels and
action potential duration in ventricular myocytes from diabetic
heart is associated with ventricular arrhythmias (102–105).

STUDY LIMITATIONS AND PERSPECTIVES

First, the HRV is a commonly used method for determination
of the autonomic function in T2DM patients in the clinic (49,
50). Although it predominantly provides the information about
the autonomic innervation of the sinoatrial node (106), we
cannot rule out its relevance with the autonomic innervation
in the ventricle because it measures the specific changes in
variability between successive R–R intervals (ventricular beats).
It has become the conventionally accepted conception to
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describe variations of both instantaneous heart rate and R–
R intervals (107). We believe that the HRV represents the
autonomic innervation not only in the sinoatrial node but
also the ventricle. However, it is impossible to distinguish the
autonomic innervation between the sinoatrial node and ventricle
by the power spectral analysis of the HRV, which will require
the development of advanced techniques not yet available.
Second, short–term variability of the QT interval (STVQT), an
important electrophysiological marker, is widely used in clinic
for predicting ventricular arrhythmias (108–110). However, we
did not calculate the STVQT in our current study, because it
is hard to do manually from 24-h ECG recordings and the
Labchart 8 software (AD Instruments) used to analyze the ECG
and HRV in our laboratory does not equip with the function
of the STVQT calculation. We will request the function of the
STVQT calculation from the AD Instruments for our future
studies. Third, our current study found that endogenous H2O2

affects expression of N-type Ca2+ channels in CVP neurons.
However, the mechanisms for the effect of endogenous H2O2 on
expression of N-type Ca2+ channels are unclear. Additionally, an
electrophysiological study in isolated rat cardiac vagal neurons
has shown that exogenous H2O2 acutely inhibits voltage-gated
calcium channels and decreases cell excitability (85). Therefore,
the potential mechanisms including some intracellular signaling
pathways and direct influence of endogenous H2O2 on the
electrophysiological kinetics of N-type Ca2+ channels will be
addressed in future studies. At last, except voltage-gated Ca2+

channels, K+ channels also play an important role in the cell
excitability of CVP neurons through affecting the repolarization
phase of the action potential (111, 112). Although transient
outward and inwardly rectifying K+ channels are not found in
CVP neurons, delayed outward K+ channels, including Ca2+-
dependent K+ channels and delayed rectifier K+ channels, are
functionally detectable in isolated CVP neurons in rats (111). It
has been reported that H2O2 reduces the neuronal excitability
through increasing Ca2+-dependent K+ currents and delayed
rectifier K+ currents in rat CVP neurons (85). Additionally, ATP-
sensitive potassium (KATP) channels are also involved in H2O2-
reduced neuronal activity in CVP neurons isolated from dogs
(113). Therefore, future studies are needed to clarify if T2DM
alters the protein expression and electrophysiological kinetics of
Ca2+-dependent K+, delayed rectifier K+, and KATP channels.

CONCLUSION

In summary, our study focused on the H2O2-N-type Ca2+

channel signaling pathway as a novel mechanism for
the withdrawal of cardiac vagal activity and ventricular

arrhythmogenesis in T2DM. In vivo Ad.CAT gene transfection
into CVP neurons decreased the cytosolic H2O2 levels and
increased N-type Ca2+ currents, intracellular Ca2+ levels,
and cell excitability of CVP neurons through restoration
of the N-type Ca2+ channel expression in T2DM rats.
Consequently, Ad.CAT gene transfection improved the
cardiac vagal function, alleviated the heterogeneity of ventricular
electrical activity, and suppressed MI-evoked ventricular
arrhythmias in T2DM rats (Figure 11). This study opens a
new avenue in therapeutics against the withdrawal of cardiac
vagal activity and provides a potential therapeutic strategy
for MI-induced lethal ventricular arrhythmias in patients
with T2DM.
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