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Abstract

Background: The somatic mutations found in a tumor have in most cases been caused by multiple mutational
processes such as those related to extrinsic carcinogens like cigarette smoke, and those related to intrinsic processes
like age-related spontaneous deamination of 5-methylcytosine. The effect of such mutational processes can be
modeled by mutational signatures, of which two different conceptualizations exist: the model introduced by
Alexandrov et al., Nature 500:415-421, 2013, and the model introduced by Shiraishi et al., PLoS Genetics
11(12):1005657, 2015. The initial identification and definition of mutational signatures requires large sets of tumor
samples.

Results: Here, we present decompTumor2Sig, an easy to use R package that can decompose an individual tumor
genome into a given set of Alexandrov-type or Shiraishi-type signatures, thus quantifying the contribution of the
corresponding mutational processes to the somatic mutations identified in the tumor. Until now, such tools were
available only for Alexandrov signatures. We demonstrate the correctness and usefulness of our approach with three
test cases, using somatic mutations from 21 breast cancer genomes, from 435 tumor genomes of ten different tumor
entities, and from simulated tumor genomes, respectively.

Bioconductor.

tumor genomes

Conclusions: The decompTumor2Sig package is freely available and has been accepted for inclusion in
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Background

The mutational processes responsible for the somatic
mutations observed in tumor samples can significantly
vary not only between tumor types but also among
the individual cancers within a tumor class. A muta-
tional process can be represented by a so called “muta-
tional signature” [1-3] which reflects the occurrences
of base changes within their sequence contexts (i.e., in
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dependence on their flanking bases). The age-related
mutations initiated by spontaneous deamination of 5-
methylcytosine, for example, regard cytosine-to-thymine
(C>T) transitions in the context of CpGs (because those
are methylated; see Figs. 1 and 2, and Table 1). Other
characteristic mutation patterns are known for exogenous
mutagenic factors such as UV light and cigarette smoke
(see [4] for a review). (Here and in the entire manuscript,
we will consider only single nucleotide variants although
we generically speak of mutations).

Alexandrov signatures
There are two conceptualizations of mutational
signatures. The model first described by Alexandrov et al.
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Fig. 1 The Alexandrov model of mutational signatures. The example signature shown here represents mutations caused by spontaneous
deamination of 5-methylcytosine (COSMIC signature 1) and uses one flanking base in each direction of the mutated base. The location of mutations
with respect to the transcription strand is not taken into consideration. The data were obtained from COSMIC at http://cancer.sanger.ac.uk/cosmic/

signatures

[1, 2] separately counts all possible nucleotide triplets
whose central base is mutated, describing, for example,
the most frequent mutations caused by sponta-
neous deamination of 5-methylcytosine as A[C>T]G,
C[C>T]G, G[C>T]G, and T[C>T]G. Given that there
are a total of 6 x 4 x 4 = 96 possible triplet mutations
(when removing the redundancy due to the reverse com-
plement strand and considering only single nucleotide
variants), each “Alexandrov signature’, as we call it,
consists of 96 mutation probabilities that indicate which
of the changes are occurring most frequently due to
the mutational process it describes. As an example, see
Fig. 1 which represents the spontaneous deamination of
5-methylcytosine.

Shiraishi signatures

The second model [3] describes probabilistic mutational
signatures in analogy to the way we model transcrip-
tion factor binding motifs, ie., considering the single
bases of the motif as independent. Using this approach,
the most frequent changes due to spontaneous deam-
ination of 5-methylcytosine can be described as C>T
transitions followed by a base that with a very high prob-
ability is a guanine (G), and preceded by any of the four
bases with approximately equal probability (see Fig. 2 and

Table 1). Instead of 96 parameters, a “Shiraishi signature’,
as we call it, requires only 6 + 4 + 4 = 14 parameters
when considering nucleotide triplets [3]: the frequencies
of the six possible base changes at the center and the
frequencies of the four possible bases of each of the flank-
ing nucleotides. The major advantage of this significant
reduction of parameters is that the signatures can be more
easily extended to more flanking bases (e.g., two flanking
bases in each direction as shown in Fig. 2), and the incor-
poration of the transcription-strand direction requires
only two additional parameters instead of doubling the
number of parameters.

As an example, Table 1 shows the parameters (equiva-
lent to probabilities) of the Shiraishi signature for sponta-
neous deamination of 5-methylcytosine using a sequence
context of five bases (with the altered base in the center)
and taking transcription strand into consideration. Since
the possible base changes, the individual flanking bases,
and the transcription strand are treated as independent,
the probabilities for each of them sums to 1. For more
details, we refer to the original paper [3].

To summarize, while the Alexandrov model takes the
full dependency between mutated nucleotides and their
directly neighboring flanking bases into account, the sim-
plified Shiraishi model treats mutated nucleotides and
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Fig. 2 The probabilistic Shiraishi model of mutational signatures. The example signature shown here uses two flanking bases in each direction and
was obtained from 435 tumor genomes. It likely represents mutations caused by spontaneous deamination of 5-methylcytosine. The corresponding
mutation frequencies are shown in Table 1. In contrast to pmsignature’s graphical representation of Shiraishi-type signatures (see Figure S6 in
Additional file 1), decompTumor2Sig's representation of the mutation frequency data uses sequence logos for the flanking bases and the variant
bases (with the heights of the bases being proportional to their probability/frequency). The mutated bases (C or T) are represented next to each
other and their respective frequency is indicated below. This side-by-side representation of the mutated bases allows to distinguish the probabilities
of variant bases (on top) according to the mutated base. Transcription strand bias (if information on transcription direction is used) is shown in the
upper right corner

flanking bases as independent features of the signature. and sequence context, or between a specific nucleotide
Due to this relaxed parameterization, however, the Shi- change and the following base [5]. Specific recurrent
raishi model is by definition unable to fully capture the somatic mutations of polymerase Pol ¢, for example,
existing relationships between the different features of a  have been associated with a high frequency of T[C>A]T
signature, such as the relationship between strand bias  mutations, a high frequency of T[C>T]G mutations and

Table 1 Mutation frequencies according to the probabilistic Shiraishi model of mutational signatures, exemplified by the
6 + 4 % 4 + 2 = 24 parameters of the signature depicted in Fig. 2

Nucleotide change (central base) Flanking bases Transcription strand
C>A C>G Cc>T T>A T>C T>G Position A C G T plus strand minus strand
0004 0006 0928 0009 0038 0015 -2 0237 0228 0293 0242 0493 0.507
-1 0362 0220 0279 0.139
+1 0.131 0053 0764 0052
+2 0232 0277 0277 0214

Each parameter is the fraction of mutations caused by the mutational process which exhibit the respective characteristic. For instance, 92.8% of the changes are C>T and
there is next to no transcriptional bias (compare to Fig. 2)
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some additional T[T>G]T mutations (Alexandrov signa-
ture no. 10 [2]). The corresponding Shiraishi signature
would merely report high frequencies of guanines and
thymines at the third base of the triplet, but not that gua-
nines are associated with a cytosine-to-thymine (C>T)
change and thymines with cytosine-to-adenine (C>A)
and thymine-to-guanine (T>G) changes.

Mutational signatures in individual tumor samples

The initial discovery and construction of mutational sig-
natures (de novo signature inference) requires a large
amount of tumor samples, such that regular patterns can
be identified [1-3] using techniques such as non-negative
matrix factorization, expectation—maximization, or prob-
abilistic methods (see Baez-Ortega and Gori for a review
[5]). This is impractical in a clinical setting, where each
cancer patient is diagnosed individually. However, once
accurate signatures have been defined, they can be used to
evaluate their contribution to the mutational load in indi-
vidual tumor samples (signature refitting). This helps to
assess which mutational processes were likely involved in
the development of the tumor—as has been demonstrated
for Alexandrov signatures [6, 7]—and may be of clinical
relevance, for instance, when they hint at a DNA repair
deficiency, because DNA repair mechanisms significantly
affect the response to cytotoxic treatments [8].

Here, we present a user-friendly R package, called
decompTumor2Sig, that can be used to evaluate the
contribution of Shiraishi signatures to the somatic muta-
tions found in an individual tumor, allowing larger
sequence contexts to be taken into consideration than
with Alexandrov signatures. (In addition, the package can
just as well be used for Alexandrov signatures, but we will
discuss mostly Shiraishi signatures here).

Methods

Contribution of signatures to individual tumor samples

To derive the influence of a given set of Shiraishi sig-
natures on the generation of the mutational catalog (i.e.,
the set of somatic mutations) of an individual tumor
sample, the decompTumor2Sig package takes the same
quadratic programming approach used by Lynch for
Alexandrov signatures [7].

Let g be the tumor genome, described in terms of frac-
tions of somatic mutations that have specific nucleotide
changes, flanking bases and transcription strands. The
representation of the tumor genome is thus identical to
the representation of the single signatures as exemplified
in Table 1. Let further S be a P x K matrix, with each col-
umn being one of K signatures composed of P parameters
(here: P = 6 + 4 x 4 + 2 = 24 for a total of four flanking
bases, two in each direction, and two additional parame-
ters for the transcription strand). The goal is to determine
a vector w of weights w; (Alexandrov et al. [1, 2] called
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them “exposures”) which indicates how strongly each sig-
nature s € (1,K) contributed to the mutation load of the
tumor, i.e., what fraction of the somatic mutations in g
were caused by s. Of course, we would like to have Sw ~ ¢
with as little error as possible. We therefore can solve the
following problem:

minimize(g — Sw)T (g — Sw) = gTg — g7Sw — (Sw)Tg + (Sw)TSw
K
subject toz ws=1,ws >0

s=1

This is equivalent to minimizing the squared error ¢’e

because g = Sw + . Since g7 g is constant and (Sw)Tg =
g7Sw, we can simplify the problem as:

K
minimize —g7 Sw+ %WTSTSW subject to Z ws=1,ws>0

s=1

We solve this classical quadratic programming problem
using the R package quadprog [9] and thus compute
the contributions of the given Shiraishi signatures to the
overall mutation load of the tumor.

Positive definiteness of STS

The R package quadprog implements the method of
Goldfarb and Idnani [10, 11] for solving quadratic pro-
gramming problems of the form min (—d”5 + 167 Db)
with a set of constraints described by ATb > by. For
this method, the matrix D, which in our case corresponds
to STS (see above), needs to be positive definite, i.e., the
scalar 57 Db (here: wT'STSw) needs to be positive for every
non-zero column vector b.

As this is not the case for all signature matrices S, we
convert STS to its nearest positive definite matrix using
the nearPD function provided by the R package Matrix.
As illustrated by Fig. 3, the difference between the approx-
imated, positive definite matrix and the original S”S is
negligible. For 44 tumor decompositions with 15 signa-
tures, the individual matrix elements of the approximated
matrix diverged by a fraction less than 3e~1> of the origi-
nal value, i.e., |nearPD (STS)L.].—(STS)Z.} | <3e 1% (STS)Z.].
for all matrix elements ij.

Variance explained by subsets of signatures

In order to calculate the variance of the somatic mutation
patterns of a tumor which can be explained by a given sub-
set of signatures (or the complete set of signatures) after
decomposition of the tumor genome, for the Alexandrov
model decompTumor2Sig determines the coefficient of
determination R?, i.e., the explained variance, as follows

CVarg-9 . X @ —&)?

R=1-—""=1-=5 -
Var(g) Yo @ —8?
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approximated matrix and the original matrix (i.e., [nearPD (STS)U - (STS)U |)is only a negligible fraction of the corresponding element of the
original matrix (STS)U. Data collected from the decomposition of 44 tumors with 15 signatures
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where g is the observed mutational load and ¢ = Sw is the
mutational load predicted by the decomposition model,
both described in terms of the 96 parameters which quan-
tify the mutation frequencies of the triplet-based mutation
categories.

Here, the numerator Zle (g — gl«)z is the residual sum
of squares (RSS), or squared error, and the denomina-
tor Zle (@ — g)2 can be interpreted as the deviation of
the observed parameters from a “flat” tumor genome with
uniform mutation frequencies. Indeed, for the Alexandrov
model, with its 96 mutation frequencies whose sum is 1,
a flat tumor genome would have a uniform mutation fre-
quency of 1/96 for each mutation category, which is pre-
cisely the mean mutation frequency g. This is equivalent
to having one model feature with 96 possible states.

For the Shiraishi model, however, a flat tumor genome
of uniform mutation frequencies cannot be described by

g because the features that compose the model are inde-
pendent from each other and have different numbers of
possible states—six for the base change, four for flank-
ing bases, and two for the transcription-strand direction.
Therefore, a flat tumor genome should have a mutation
frequency of 1/6 for each possible base change, 1/4 for
each possible flanking base, and 1/2 for each possible
transcription-strand direction. We therefore define the
explained variance for the Shiraishi model as

Zf:l (g g)z

i — &8
i~ )’

_ Var (e—2) B
Zfﬂ (g

R* = =1
Var(g)

where the uniform, flat tumor genome g* is defined as
exemplified in Table 2.

Table 2 Uniform mutation frequencies according to the probabilistic Shiraishi model of mutational signatures, exemplified by the

same 6 4+ 4 x 4 4+ 2 = 24 parameters as in Table 1

Nucleotide change (central base) Flanking bases

Transcription strand

C>A Cc>G C>T T>A T>C T>G Position A C G T Plus strand Minus strand
1/6 1/6 1/6 1/6 1/6 1/6 -2 1/4 1/4 1/4 1/4 1/2 1/2

-1 1/4 1/4 1/4 1/4

+1 1/4 1/4 1/4 1/4

+2 1/4 1/4 1/4 1/4
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Implementation and usage of decompTumor2Sig
The decompTumor2Sig package provides several func-
tions to load tumor genome data from standard Variant
Call Format (VCF) and Mutation Position Format (MPF)
files, or to convert it from a VRanges object (Bioconduc-
tor package VariantAnnotation [12]) or from pre-
processed data (“mutation feature data”) that has been
loaded using Shiraishi et al’s pmsignature package [3].

Likewise, Shiraishi signatures can be loaded either
from flat files, or extracted from the preprocessed “esti-
mated parameters data” obtained from pmsignature.
Additionally, Alexandrov signatures can be down-
loaded directly from the COSMIC [13] website at
http://cancer.sanger.ac.uk/cosmic/signatures, or loaded
from a flat file that follows the same format. Alexandrov-
type signatures can also be converted to Shiraishi-type
signatures:

signatures s <- convertAlexandrov2
Shiraishi (signatures_a)

Once the signatures and one or more tumor
genomes have been loaded, decomposing each individ-
ual tumor according to the given signatures is straight

forward and requires a single command:
exposures <- decomposeTumorGenomes (genomes

signatures,
minExplainedVariance=NULL,
minNumSignatures=2,
maxNumSignatures=NULL)

The function call returns the contributions, or expo-
sures, of the single signatures to the overall mutation load
of the individual tumors.

By default, all signatures are used for the decomposi-
tion, but if desired, only subsets of the given signatures can
be considered, for example to explain a minimum frac-
tion of the variance of the mutational patterns of a tumor.
In this case, the function decomposeTumorGenomes
will test all combinations of minNumSignatures to
maxNumSignatures signatures (default: from 2 to
the complete set), until a subset of signatures explains
at least minExplainedvVariance of the variance.
This smallest subset of signatures is determined indi-
vidually for each tumor genome, and the correspond-
ing exposures are returned. Alternatively, users may
use the parameter maxNumSignatures to explicitly
specify the size of the subset of signatures to be
used without requiring a minimum explained variance
(minExplainedVariance=NULL).

To better evaluate how many signatures will be
necessary to explain a certain variance, the function
plotExplainedVariance can be used to plot the
explained variance as a function of the number of used
signatures. Further functions allow to plot the signatures
(as the examples in Figs. 1 and 2) and the decomposed
contributions, i.e., the computed exposures.
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Mapping between different sets of signatures

In some cases it might be desirable to map one set of sig-
natures to another set of a different origin. A user might,
for instance, have a set of Shiraishi signatures and want to
know to which Alexandrov signatures from COSMIC they
are likely related. To make different types of signatures
comparable, we have—apart from the possibility to con-
vert Alexandrov-type signatures to the Shiraishi model
(see above)—implemented a set of functions which allow to

¢ “downgrade” Shiraishi-type signatures by reducing
the number of flanking bases or discarding
information on the transcription-strand direction
(function downgradeShiraishiSignatures),

e measure the distances between a given signature (of
Shiraishi or Alexandrov type) and each of a set of
signatures of the same format (function
determineSignatureDistances), where
various distance metrics can be used, and

e determine a mapping from one set of signatures (of
Shiraishi or Alexandrov type) to another set of
signatures of the same format (function
mapSignatureSets).

Results and discussion

Estimation of accuracy for actual tumor data

To estimate the accuracy with which we can determine
the contribution of Shiraishi-type mutational signatures
to the mutation load of an individual tumor, we proceed
as follows:

1. For a given set of T tumors, using the R package
pmsignature [3] we collectively derive a set of
Shiraishi signatures S and their corresponding
contributions/weights w®, ¢t e (1, T) to the tumor
genomes. We take these computed weight vectors as
“truth” set.

2. We take either each single tumor out of the set
(leave-one-out test) or, for larger sets, a randomly
chosen subset (test set). The remaining tumors are
used to collectively recompute signatures S’ as in 1.

3. For each individual tumor t* to be tested, we estimate
the contributions/weights w/®") using our tool
(decompTumor2Sig) on the test signatures S/, i.e.,
on the signatures that were derived without mutation
data from £*. Note, this constitutes a realistic
application where one has a given set of signatures
and wants to apply them to a novel tumor sample.

4. We determine a 1:1 mapping between the test
signatures S and the original signatures S (minimum
Frobenius distance between the signature matrices),
so that we can compare the contributions w/®"),
estimated by decompTumor2Sig, to the “true”
contributions originally computed using
pmsignature in step 1.
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Please note that with this procedure we actually under-
estimate the accuracy of decompTumor2Sig because
during a de novo signature inference, as is done by
pmsignature, exposures are determined along with
the the signatures themselves, leading to a much higher
number of parameters to be estimated. Signature refit-
ting, as we do here, is a comparably limited problem and
gives more accurate exposures, as we demonstrate below.
Nonetheless, we will use the evaluation procedure out-
lined above because it best reflects the general use case
where one has a novel tumor sample that has not been
included in the de novo signature inference.

Evaluation for actual tumor data

We performed two tests to show that our tool can effec-
tively decompose the mutation catalog of an individual
tumor and determine the relative contributions of a given
set of Shiraishi signatures:

1. We performed a leave-one-out cross validation using
somatic mutations from a set of 21 breast cancer genomes
[14]. Given the limited size of the dataset, we decomposed
the tumors into four Shiraishi signatures, as was
done for breast cancer by Shiraishi et al. [3].

2. We performed a second test using 435 tumor
genomes with at least 100 somatic mutations from
ten different tumor entities [2] (acute lymphoblastic
leukemia, acute myeloid leukemia, chronic
lymphocytic leukemia, breast cancer, liver cancer,
lung cancer, pancreas cancer, B-cell lymphoma,
medulloblastoma, and pilocytic astrocytoma). We
randomly selected 44 tumors (*10%) as a test set.
Due to the larger cohort, we could decompose the
tumors into 15 signatures.
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Figure 4 compares the weights predicted for individual
tumors (decompTumor2Sig) to those computed using
the entire set of tumors (pmsignature). Interestingly,
in the leave-one-out cross validation using 21 tumors,
we obtained two extreme outliers with a highly discor-
dant prediction (see left panel of Fig. 4). We found these
to be predictions for a hyper-mutated sample (PD4120a;
33,073 somatic SNVs within genomic regions with a
defined transcription strand, as opposed to a median of
2334 for the remaining tumors). Removing this tumor
for the leave-one-out test significantly affects the signa-
tures derived from the remaining tumors and hence the
contributions/weights predicted for the hyper-mutated
tumor.

Both tests demonstrate a good prediction performance,
yielding a generally high concordance between predicted
and “true” weights. For the leave-one-out test on 21 breast
cancers, the median deviation (absolute difference) of
predicted and expected weights is 0.018 (mean: 0.0317
including and 0.0197 excluding the outliers); for the 44
out of 435 tumors of different cancer types, the median
deviation is 0.0187 (mean: 0.0262, max: 0.155).

Figure 5 illustrates that the majority of exposure devi-
ations for the 44 out of 435 tumors of different cancer
types tends indeed to be very small. As can be seen, 90% of
the deviations are smaller than 0.06, and 99% are smaller
than 0.1.

Simulated genomes

In addition to the evaluation based on experimental data
from real tumors, we tested our tool on simulated tumor
data using the 15 signatures obtained from the 435 can-
cers as a starting point for the construction of simulated
genomes:

04 0.6 08
I

Predicted exposure (from leave-one-out)

0.2

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7

Exposure (all samples)

Fig. 4 Evaluation of decompTumor2Sig. Comparison of the contributions/weights (“exposures”) predicted for individual tumors
(decompTumor2Sig;y-axis) and the collectively computed “true” exposures (pms ignature; x-axis). Left panel: leave-one-out test on 21 breast
cancers (r = 0.923); right panel: test set of 44 out of 435 tumors (r = 0.807)

Predicted exposure (from leave-one-out)

Exposure (all samples)




Kriiger and Piro BMC Bioinformatics 2019, 20(Suppl 4):152

Page 8 of 15

50
|

Frequency
40
|

30
|

[ I
0.00 0.05

| exposure (decompTumor2Sig) — exposure (pmsignature) |

Fig. 5 Evaluation of decompTumor2Sig. Absolute differences between the exposures to 15 signatures predicted by decompTumor2Sig for 44
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e Each of the 15 signatures was used as a driving
signature to generate 1000 simulated genomes: the
exposure (or contribution) of the driving signature
was set to 80% (=0.8), and the remaining 20% were
distributed uniformly among the other signatures.

e Each possible combination of two signatures was
used as driving signatures to generate 1000 simulated
genomes: the exposures of the driving signatures
were set to 50% and 30%, and the remaining 20% were
distributed uniformly among the other signatures.

e Each possible combination of three signatures was
used as driving signatures to generate 1000 simulated
genomes: the exposures of the driving signatures were
set to 40%, 25% and 15%, and the remaining 20% were
distributed uniformly among the other signatures.

e Each possible combination of four signatures was
used as driving signatures to generate 1000 simulated
genomes: the exposures of the driving signatures
were set to 30%, 20%, 10% and 10%, and the
remaining 30% were distributed uniformly among the
other signatures.

For each simulated genome, a set of mutations was
randomly assigned to the signatures according to the
probabilities defined by their simulated contributions.
Finally, each simulated genome was decomposed with
decompTumor2Sig and the deviation (absolute differ-
ence) of the predicted exposures to those set for both
the driving signatures and the remaining signatures was
verified.

Since for tumors with low mutation burdens the decom-
position tends to be more affected by stochastic muta-
tional or systematic sampling noise, we tested different
numbers of mutations for the construction of the simu-
lated genomes:

e The median number of mutations in the 21 breast
cancer genomes (considering only mutations in
genomic regions with a defined transcription strand):
2334 mutations.

® A representative mutation count for the larger set of
435 tumors of various cancer types: 770 mutations,
which correspond approximately to the mode, or
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highest peak, of the log-scaled distribution of the
mutation counts (considering only genomic regions
with a defined transcription strand) shown Figure S1
in Additional file 1.

¢ Finally, 200 mutations and 100 mutations, because
for low mutation counts noise levels are naturally
higher due to the random assignment to mutational
signatures.

In all the simulations, most deviations from the
expected exposures were negligible, capturing well both
the high contributions of the driving signatures and the
low contributions of the remaining signatures. We show
this exemplarily for 200 mutations in Fig. 6. All other
figures can be found in Additional file 1 (Figures S2 to S4).
As expected, for higher mutation counts the results are
less spurious. For 2334 mutations, for example, most pre-
dicted exposures of the driving signatures fall within 2%
of the expected value, and next to all exposures of the low
contributing signatures within 1% of the expected value.
But even for a low mutation count of 200, where both the
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construction of simulated genomes and their decomposi-
tion entail higher noise levels, most of the predictions stay
within 5% of the expected value for the high contribut-
ing driving signatures and within 2% of the remaining,
low contributing signatures (see Fig. 6). The results for
100 mutations are less accurate but still within reasonable
bounds.

Identification of the most relevant signatures

One problem for an accurate decomposition of tumor
genomes is that with an increasing number of signa-
tures, the predictions become more spurious. (Likewise,
the original construction of the signatures becomes less
reliable.) For comparison, we have evaluated the decom-
position of 44 out of 435 tumor genomes with 27 instead
of 15 signatures, since Shiraishi et al. have proposed
this number of signatures in their original paper [3].
(In practice, however, Shiraishi et al. have determined a
smaller number of signatures for individual tumor types
and then merged the results to obtain a final set of 27
signatures).
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The predicted exposures were less accurate with respect
to the true exposures than for 15 signatures (see Figure S5
in Additional file 1 and compare to the right panel of
Fig. 4).

Therefore, we implemented and evaluated a possibil-
ity to identify the smallest subset of signatures that can
explain a given fraction of the variance of the parameters
that describe the mutational patterns of a tumor genome.
Figure 7 exemplifies that often already small subsets of
signatures can explain the majority of the variance.

To evaluate whether the exposures predicted for sub-
sets of signatures can still describe the tumor genomes, we
computed the predictions obtained for different thresh-
olds of minimum explained variance. For each of 44 tumor
genomes we compared the exposures obtained for the
reduced subset of signatures with the exposures which
we obtained for the same signatures when using all 15
signatures for tumor decomposition. Figure 8 shows the
comparison for two thresholds, 90% and 97.5% of variance
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explained. For achieving 90% of the explained variance,
for example, in most cases seven or less signatures are
sufficient. It should, however, be noted that not for all of
the 44 tumors such high fractions of explained variance
could be reached, but as illustrated in Fig. 9, generally the
variance of the mutation patterns of tumor genomes could
be explained well.

Comparison of exposures from refitting and de novo
inference

As already justified above, our evaluation procedure
actually underestimates the accuracy of the predicted
exposures. This can be shown when analyzing how
well the exposures obtained from signature refitting
(decompTumor2Sig) explain the variance of the muta-
tion frequencies of all 435 tumors, and directly compar-
ing the variance that can be explained when taking the
exposures originally obtained from the de novo signa-
ture inference (pmsignature). Figure 10 proves that the
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exposures obtained from signature refitting are indeed
more accurate than those originally obtained from the
signature inference with pmsignature.

decompTumor2Sig for Alexandrov-type signatures
Although this article discusses mostly Shiraishi-type sig-
natures, decompTumor2Sig can also be used to quan-
tify the contributions of, or exposures to, Alexandrov-type
signatures using the same function calls, as described
above. Figure 11 shows examples for four different tumor
types. The lung adenocarcinoma, for instance, is strongly
characterized by Alexandrov signature 4, which is most
likely associated with tobacco smoking [2]. Also the other
three examples show significant contributions of signa-
tures that have been found in many tumors of the respec-
tive tumor types (see supplementary material to [2]).

decompTumor2Sig for converted Alexandrov-type
signatures

Finally, we illustrate the decomposition of the same
four tumors shown in Fig. 11 using not the orig-
inal Alexandrov-type signatures from COSMIC, but
their respective Shiraishi-type signatures obtained with
convertAlexandrov2Shiraishi (see Implementa-
tion). In three out of four cases, the estimated exposures
obtained for the converted signatures (see Fig. 12) have
a strikingly high concordance with those presented in
Fig. 11. For the lung adenocarcinoma (lower left panel),
for example, changes in estimated exposures are observed
mostly for marginally contributing signatures. For the
medulloblastoma (upper left panel) and the liver cancer
(lower right panel), slightly more pronounced changes
can be observed, because in both cases the second most
contributing signature changes: for the medulloblastoma
COSMIC signature 3 is substituted by the converted sig-
nature 16, and for the liver cancer COSMIC signature 12
is substituted by converted signature 26. In both cases
this can be explained by the fact that after the conversion,
these signatures are very similar to each other (Frobenius
distance of 0.30 and 0.17, respectively, while the average
pairwise Frobenius distance is 0.83 with a standard devi-
ation of 0.29). The conversion of COSMIC signatures 12
and 26, for example, constitutes a particularly evident loss
of specificity. As illustrated in Fig. 13, after conversion
the two signatures are nearly identical, justifying that one
is substituted for the other when decomposing the liver
cancer genome. A similar case can be made for COS-
MIC signatures 3 and 16 and their substitution for the
medulloblastoma (not shown). For more complex tumor
genomes, as the breast cancer in the upper right panels of
Figs. 11 and 12, the exposure prediction after conversion
is more divergent. Nevertheless, the exposures of many of
the most important signatures are still predicted quite well
(namely signatures 1, 8, 9 and 13).
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Mapping between Shiraishi and Alexandrov signatures
When converting the thirty Alexandrov-type signatures
from COSMIC to the Shiraishi model, and downgrad-
ing our fifteen Shiraishi-type signatures to sequence
triplets without transcription-strand information, we can
observe, for example, the best match for the signature
shown in Fig. 2 to be, as expected, the COSMIC sig-
nature for age-related spontaneous deamination of 5-
methylcytosine of Fig. 1.

Conclusions

We have implemented a tool for dissecting mutational
catalogs of individual tumor samples in terms of both
the simplified mutational signature model proposed by
Shiraishi et al. [3] and the full mutational signature model
proposed by Alexandrov et al. [1, 2]. The tool is provided
as a user-friendly R package, decompTumor2Sig, and
shows a good performance as illustrated by the examples
we have discussed in this article.
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mutations in regions with a defined transcription strand of the 435 cancers
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spontaneous deamination of 5-methylcytosine according to the Shiraishi
model and displayed using pmsignature. (PDF 120 kB)

Abbreviations

A: adenine; C: cytosine; COSMIC: Catalogue Of Somatic Mutations In Cancer
[13]; CpG: cytosine-guanine dinucleotide; DNA: deoxyribonucleic acid; G:
guanine; MPF: Mutation Position Format; RSS: residual sum of squares; SNV:
single nucleotide variant; T: thymine; UV: ultraviolet; VCF: Variant Call Format

Acknowledgements

We wish to thank Yuichi Shiraishi for insightful discussions on the topic. We are
also grateful for the anonymous reviewers’ excellent suggestions which
helped to improve our work.

Funding
Publication of this article was sponsored by the German Research Foundation
and the Open Access Publication Fund of the Freie Universitét Berlin.

Availability of data and materials

The decompTumor2Sig package is freely available at the project website
http://rmpiro.net/decompTumor2Sig/ or at GitHub (https://github.com/
rmpiro/decompTumor2Sig) and has been accepted for inclusion in
Bioconductor. All used data is publicly available as described in the main text.

About this supplement

This article has been published as part of BMC Bioinformatics Volume 20
Supplement 4, 2019: Methods, tools and platforms for Personalized Medicine in the
Big Data Era (NETTAB 2017). The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-20-supplement-4.


https://doi.org/10.1186/s12859-019-2688-6
http://rmpiro.net/decompTumor2Sig/
https://github.com/rmpiro/decompTumor2Sig
https://github.com/rmpiro/decompTumor2Sig
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-4
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-4

Kriiger and Piro BMC Bioinformatics 2019, 20(Suppl 4):152

Authors’ contributions

SK has implemented and evaluated the basic functions. RMP has designed the
study, created the R package, analyzed the results, and written the paper. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

!Institute of Computer Science and Institute of Bioinformatics, Freie
Universitat Berlin, Berlin, Germany. 2Institute of Medical Genetics and Human
Genetics, Charité — Universitdtsmedizin Berlin, Berlin, Germany. 3German
Cancer Consortium (DKTK) partner site Berlin, and German Cancer Research
Center (DKF2), Heidelberg, Germany.

Published: 18 April 2019

References

1. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton M.
Deciphering signatures of mutational processes operative in human
cancer. Cell Rep. 2013;3(1):246-59.

2. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S,
Biankin AV, Bignell GR, Bolli N, Borg A, Barresen-Dale A-L, Boyault S,
Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjord J. E,
Foekens JA, Greaves M, Hosoda F, Hutter B, llicic T, Imbeaud S,
Imielinski M, Imielinsk M, Jager N, Jones DTW, Jones D, Knappskog S,
Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi NC, Nakamura H,
Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS,
Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P,
Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt ANJ,
Valdés-Mas R., van Buuren MM, van't Veer L, Vincent-Salomon A,
Waddell N, Yates LR, Initiative APCG, Consortium IBC, Consortium IM-S,
PedBrain I, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P,
Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM,
Campbell PJ, Stratton MR. Signatures of mutational processes in human
cancer. Nature. 2013;500:415-21. https://doi.org/10.1038/nature12477.

3. Shiraishi Y, Tremmel G, Miyano S, Stephens M. A simple model-based
approach to inferring and visualizing cancer mutation signatures. PLoS
Genet. 2015;11(12):1005657.

4. Alexandrov LB, Stratton MR. Mutational signatures: the patterns of
somatic mutations hidden in cancer genomes. Curr Opin Genet Dev.
2014;24:52-60.

5. Baez-Ortega A, Gori K. Computational approaches for discovery of
mutational signatures in cancer. Brief Bioinforma. 2017bbx082. https://
doi.org/10.1093/bib/bbx082.

6. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C.
deconstructSigs: delineating mutational processes in single tumors
distinguishes DNA repair deficiencies and patterns of carcinoma
evolution. Genome Biol. 2016;17(1):31. https://doi.org/10.1186/513059-
016-0893-4.

7. Lynch AG. Decomposition of mutational context signatures using
quadratic programming methods. F1000Research. 2016;5:1253. https://
doi.org/10.12688/f1000research.8918.1.

8. Kelley MR, Logsdon D, Fishel ML. Targeting DNA repair pathways for
cancer treatment: what's new?. Futur Oncol. 2014;10(7):1215-37.

9. Berwin A, Weingessel A. quadprog: functions to solve quadratic
programming problems (R package version 1.5-5). 2013. https://cran.r-
project.org/package=quadprog. Accessed 16 Jan 2019.

10. Goldfarb D, Idnani A. Dual and primal-dual methods for solving strictly
convex quadratic programs. In: Hennart JP, editor. Numerical Analysis.
Berlin: Springer; 1982. p. 226-39.

Page 15 of 15

Goldfarb D, Idnani A. A numerically stable dual method for solving strictly
convex quadratic programs. Math Program. 1983;27:1-33.

Obenchain V, Lawrence M, CareyV, Gogarten S, Shannon P, Morgan M.
VariantAnnotation: a Bioconductor package for exploration and
annotation of genetic variants. Bioinformatics. 2014;30(14):2076-8.
Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG,
Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M,
Jubb H, Sondka Z, Thompson S, De T, Campbell PJ. COSMIC: somatic
cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):
777-83. https://doi.org/10.1093/nar/gkw1121.

Nik-Zainal S, Alexandrov LB, Wedge DC, Loo PV, Greenman CD, Raine K,
Jones D, Hinton J, Marshall J, Stebbings LA, Menzies A, Martin S, Leung K,
Chen L, Leroy C, Ramakrishna M, Rance R, Lau KW, Mudie LJ, Varelal,
McBride DJ, Bignell GR, Cooke SL, Shlien A, Gamble J, Whitmore |,
Maddison M, Tarpey PS, Davies HR, Papaemmanuil E, Stephens PJ,
McLaren S, Butler AP, Teague JW, Jonsson G., Garber JE, Silver D, Miron P,
Fatima A, Boyault S, Langered A, Tutt A, Martens JWM, Aparicio SAJR,
Borg A,, Salomon AV, Thomas G, Berresen-Dale A-L, Richardson AL,
Neuberger MS, Futreal PA, Campbell PJ, Stratton MR. Mutational
processes molding the genomes of 21 breast cancers. Cell. 2012;149(5):
979-93. https://doi.org/10.1016/j.cell.2012.04.024.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions


https://doi.org/10.1038/nature12477
https://doi.org/10.1093/bib/bbx082
https://doi.org/10.1093/bib/bbx082
https://doi.org/10.1186/s13059-016-0893-4
https://doi.org/10.1186/s13059-016-0893-4
https://doi.org/10.12688/f1000research.8918.1
https://doi.org/10.12688/f1000research.8918.1
https://cran.r-project.org/package=quadprog
https://cran.r-project.org/package=quadprog
https://doi.org/10.1093/nar/gkw1121
https://doi.org/10.1016/j.cell.2012.04.024

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Alexandrov signatures
	Shiraishi signatures
	Mutational signatures in individual tumor samples

	Methods
	Contribution of signatures to individual tumor samples
	Positive definiteness of STS
	Variance explained by subsets of signatures
	Implementation and usage of decompTumor2Sig
	Mapping between different sets of signatures

	Results and discussion
	Estimation of accuracy for actual tumor data
	Evaluation for actual tumor data
	Simulated genomes
	Identification of the most relevant signatures
	Comparison of exposures from refitting and de novo inference
	decompTumor2Sig for Alexandrov-type signatures
	decompTumor2Sig for converted Alexandrov-type signatures
	Mapping between Shiraishi and Alexandrov signatures

	Conclusions
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

