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Heterogeneous crosstalk between tumor cells and CD8+ T cells leads to substantial
variation in clinical benefits from immunotherapy in melanoma. Due to spatial distribution
and functional state heterogeneity, it is still unknown whether there is a crosstalk
propensity between tumor cells and CD8+ T cells in melanoma, and how this crosstalk
propensity affects the clinical outcome of patients. Using public single-cell transcriptome
data, extensive heterogeneous functional states and ligand–receptor interactions of tumor
cells and CD8+ T cells were revealed in melanoma. Furthermore, based on the association
between cell–cell communication intensity and cell state activity in a single cell, we
identified a crosstalk propensity between the tumor intermediate state and the CD8+ T
exhausted state. This crosstalk propensity was further verified by pseudo-spatial
proximity, spatial co-location, and the intra/intercellular signal transduction network. At
the sample level, the tumor intermediate state and the CD8+ T exhausted state
synergistically indicated better prognosis and both reduced in immunotherapy-resistant
samples. The risk groups defined based on these two cell states could comprehensively
reflect tumor genomic mutations and anti-tumor immunity information. The low-risk group
had a higher BRAFmutation fraction as well as stronger antitumor immune response. Our
findings highlighted the crosstalk propensity between the tumor intermediate state and
the CD8+ T exhausted state, which may serve as a reference to guide the development of
diagnostic biomarkers for risk stratification and therapeutic targets for new
therapeutic strategies.
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INTRODUCTION

Skin cutaneous melanoma (SKCM) is the most lethal
malignancy of the skin and is characterized by high inter-
tumor and intra-tumor heterogeneity due to its high
mutational load and increased cellular plasticity (1–3).
Recently, numerous researchers have demonstrated the
existence of phenotypic and transcriptional subpopulations of
tumor cells (3, 4) and CD8+ T cells (4–6) in melanoma, often
referred to as cell states, both within and between patients. The
MITF (melanocyte-inducing transcription factor)-rheostat
model incorporates the six different phenotypic states found
in melanoma to date. These cell states are ranked from high to
low according to MITF activity into the hyperdifferentiated
state, the melanocytic state, the intermediate state, the
starvation state, the neural crest stem-like cell state, and the
mesenchymal-like state (7). Intratumor CD8+ T-cell
population showed strong similarity in three independent
melanoma cohorts, with greater heterogeneity in subsets of
CD8+ T cells, including transitional and exhausted states,
compared with naive/memory and cytotoxic CD8+ T cells (4,
5, 8). The analysis of the heterogeneity of cell states makes it
crucial to explore the mechanisms generating the different cell
states and how individual cell states influence melanoma
biological processes, such as metastasis (3) and therapy
response (5, 9–13). The single-cell analysis of CD8+ T cells
revealed that TCF7+ memory-like state frequency in tumor
tissue predicts immunotherapy response and better
survival (5).

Technological advances have allowed single-cell analysis to
reveal that cell–cell communication (CCC) plays a crucial role
in numerous biological processes by a dynamic communicating
network formed through communication and cooperation
between cells, such as tissue homeostasis (14, 15), cell
development (16–18), disease pathogenesis and progression
(4, 19), and therapy resistance (20). CCC is ubiquitous in
melanoma ecosystems composed of multiple cell types and is
often mediated by ligand–receptor interactions (4, 19).
Moreover, accumulated evidence demonstrated that CCC
between tumor cells and CD8+ T cells can influence cellular
functions. For instance, PD-L1 (programmed cell death 1
ligand 1)–PDCD 1 (programmed cell death 1) (21, 22), CD38
molecule–adenosine receptor (23), and loss of HLA related
ligand–receptor interactions (24) can suppress the effector
function of CD8+ T cells. Among CCC between tumor cells
and CD8+ T cells, some ligands or receptors are cell state-
specific; for example, PD-L1 is a classical marker of the CD8+ T
exhausted state (25). In addition to ligand–receptor
interactions, the distance between immune cells and tumor
cells might directly reflect the lethality of immune cells toward
tumors or, vice versa, the interference of tumor cells with
immune cells (26). The spatial distribution analysis
demonstrated that PD-L1+ cells within proximity to tumor
cells and intra-tumoral CD8+ density predict response to anti-
PDCD1 therapy in melanoma (27).

In the present study, we utilized the public single-cell
transcriptome data to explore the crosstalk propensity between
Frontiers in Immunology | www.frontiersin.org 2
tumor cells and CD8+ T cells based on the association between
CCC and cell state in melanoma. The crosstalk propensity
between the tumor intermediate state and the CD8+ T
exhausted state was identified and verified, where those two
cell states were both associated with better prognosis and
reduced in immunotherapy-resistant samples. Our goal was to
explore the underlying mechanisms associated with tumor
progression and immunotherapy response from the crosstalk
propensity perspective.
MATERIALS AND METHODS

Data Collection of Melanoma Samples
The processed scRNA-seq dataset was downloaded from the
GEO database under the accession code GSE115978, where
tumor cells and CD8+ T cells were extracted according to the
cell labels defined in the original studies. Raw read counts were
counts per million (CPM)-normalized and genes that were
expressed in less than 10% of the CD8+ T and tumor cells
were filtered out using Seurat4.0 R package, respectively (28).
The gene expression data, mutation data, clinical data, and
immune feature profiles of the TCGA-SKCM cohort were
available in the article (29). Bulk expression profiles, namely,
GSE22153 and GSE91061, were also obtained for survival
analysis and immunotherapy resistance analysis, respectively.
The bulk datasets for primary and metastatic analyses were
gathered from the GEO database under the accession codes
GSE8401, GSE46517, and GSE59455. The mRNA profiles of 48
melanoma cell lines before and after 6 hours of treatment with
interferon-gamma were downloaded under the accession code
GSE154996. The RNA-seq data of CD8+ tumor-infiltrating
lymphocytes from wild-type and Prdm1 conditional knockout
(cKO) mice bearing B16F10 melanoma were obtained by
GSE113221. Moreover, spatial transcriptome data and H&E-
stained annotation information of a melanoma sample were
obtained from previous research (30). The RNA-seq data of
222 histologically distinct micro-regions (~5–20 cells per region)
extracted from a melanoma patient were downloaded under the
accession code GSE171888.

Inference of Tumor Cell States
The defined transcriptional factor (TF) motif-based regulons
related to tumor cell states were collected from the published
research (3) (Table S1). Among those regulons, we applied the
AUCell method to calculate activities of regulons with
normalized count profile using the AUCell R package (31) and
scaled activities by the maximum difference normalization
method. Consensus unsupervised clustering result was
obtained based on 1,000 k-means clustering of scaled regulons
activities using the ComplexHeatmap R package (32). The
clustering results with K set to 4 best matched the TF regulons’
pattern of tumor cell states reported in previous research (3). In
addition, we used the gene signatures obtained from the
literature (3) and CancerSEA (33) to characterize and validate
the functional features of identified tumor clusters (Table S1).
July 2022 | Volume 13 | Article 766852
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Inference of CD8+ T-Cell States
The top 2,000 variable genes were identified from the normalized
and scaled data, and principal component analysis (PCA) was
performed on the expression matrix of the variable genes.
Clusters were detected through the FindClusters function at
resolution 0.5 and visualized by uniform manifold
approximation and projection (UMAP). Then, CD8+ T
clusters were annotated using canonical cell state markers (25)
(Table S1) and cluster-specific markers identified by the
FindAllMarkers function (log fold change threshold of 0.25
and FDR threshold of 0.05). Meanwhile, the top 2,000 variable
genes were also used as input to the Monocle 2 algorithm (34) to
construct the development trajectory of diverse CD8+ T-
cell subpopulations.

Identifying Significant Ligand–Receptor
Interactions
We integrated known ligand–receptor pairs from five public
resources and screened 3,218 pairs supported by at least two
resources for subsequent analysis (35–39) (Figure S1A, Table
S2). We then defined a ligand or receptor as an “expressed”
gene in a certain cell cluster if more than 20% of cells had its
expression level by cutoff 0, and set the expression value of
unexpressed ligand/receptor to zero. The interaction score of a
given ligand–receptor pair between cell cluster A and cell
cluster B was the product of average ligand expression across
all cells in cluster A and the average receptor expression across
all cells in cluster B. Statistical significance was then assessed by
randomly shuffling the cell state labels of all tumor cells and
CD8+ T cells respectively and repeating the above steps, which
generated a null distribution of interaction score for each
ligand–receptor pair in each pairwise comparison between
tumor clusters and CD8+ T clusters. After running 1,000
times permutations, p-values were calculated as the fraction
of permuted ligand–receptor interaction scores larger than real
interaction scores.

The ligand–receptor interaction network was visualized by
Cytoscape, and functional enrichment analysis and gene mode
analysis in the protein–protein interaction network were
performed by Metascape at http://metascape.org/gp/index.
html#/main/step1 (40).

Identifying the Crosstalk Propensity
Between Tumor Cells and CD8+ T Cells
To better correlate CCC with cell state at the single-cell level, we
applied NicheNet to predict ligand activities in each signal
receiver cell by the predict_ligand_activities function in default
parameters (41). The differential gene signature was identified as
cell state-specific signatures through the FindAllMarkers
function in Seurat (log fold change threshold of 0.25 and FDR
threshold of 0.05).

Next, we identified cell state-related ligands during signal
transduction. For sender cells, we identified cell state-related
ligands whose expression levels were significantly correlated with
the average expression of cell state-specific signature (Pearson
correlation test, FDR < 0.05). For receiver cells, we identified
Frontiers in Immunology | www.frontiersin.org 3
state-related ligands whose predicted activities were significantly
correlated with the average expression of cell state-specific
signature (Pearson correlation test, FDR < 0.05). The above
analyses were performed in parallel with the two signal
transduction directions (from CD8+ T to tumor and from
tumor to CD8+ T). During signal transduction, the ligands
both significantly related to a tumor state and a CD8+ T state
were considered as the shared ligands between them. The
hypergeometric test analysis was performed to explore whether
the number of shared ligands has a significant over-occurrence,
which could indicate a significant association between CCC and
cell states.

In addition, we repeated the above analysis when CD8+ T
cells act as senders, replacing the cell state-specific signatures of
tumor cells and CD8+ T cells with tumor cell state-related TF
sets and the canonical cell function markers of the CD8+ T
cell, respectively.

Pseudo-Space Construction
Using cell state labels and TPM expression profile of tumor cells
and CD8+ T cells as input, three-dimensional pseudo space
analysis was carried out by CSOmap (39) at https://doi.org/10.
24433/CO.8641073.v1.

The Inter/Intra-Cellular Signal Network
Construction
First, we applied scMLnet (42) to obtain intercellular ligand–
receptor interactions and intracellular signal transduction
networks in signal receiver cells and constructed ligand–
receptor–TF links. Then, transcriptional regulons were
identified using SCENIC (31) to obtain candidate TF–ligand
links. Finally, we integrated the above results by connecting TF–
ligand links and ligand–receptor–TF links with the intersection
of ligands as the intermediary to construct the TF–ligand–
receptor–TF network.

Calculation of Cell State Abundance Score
For spatial transcriptome data and bulk transcriptome data
TCGA-SKCM, GSE22153, GSE91061, GSE8401, GSE46517,
GSE59455, GSE154996, GSE171888, and GSE113221, single-
sample gene set enrichment analysis (ssGSEA) (43) was
applied to calculate activity scores for the tumor intermediate
state and the CD8+ T exhausted state based on cell state-specific
signatures. The ssGSEA algorithm was implemented in the
GSVA package.

Survival Analysis
Hazard ratios (HRs) and p-values were derived using a Cox
proportional hazards model to evaluate the prognostic effect of
ssGSEA score of cell state-specific signature in both TCGA-
SKCM and GSE22153 cohorts. Patients in cohorts were classified
into two groups according to the median value of the ssGSEA
scores. Kaplan–Meier survival curves were used to visualize
survival differences between the two groups, and log-rank test
was utilized to assess the significance.
July 2022 | Volume 13 | Article 766852
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Risk Group Analysis
According to the median values of ssGSEA scores of the tumor
intermediate state and the CD8+ T exhausted state, the
patients in the TCGA-SKCM cohort were classified into
high- and low-risk groups. Patients in the low-risk group
not only had higher ssGSEA scores of the tumor intermediate
state but also had higher ssGSEA scores of the CD8+ T
exhausted state. The other patients were in the high-risk
group. Fisher’s test was used to explore the association
between risk groups and other features of patients,
including immune subtypes , mutant subtypes , and
gene mutations.

Statistical Analysis
Kaplan–Meier curves and forest plot were visualized using the
survminer package. The HRs and p-value were calculated with
survival package. The significance of differences between the two
groups was determined by Wilcoxon rank-sum test. The chi-
squared test and Fisher’s test were used to determine the
significance of the overlap between two categorical variables.
Pearson correlation test was used to explore the correlation
between two continuous variables. All analyses were performed in
R version 4.0.5. “ns” denoted non-significant, * denoted p < 0.05,
** denoted p < 0.01, *** denoted p < 0.001, and **** denoted
p < 0.0001.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Inference Cell States of Tumor Cells and
CD8+ T Cells
According to transcriptional regulons related to tumor cell states in
previous research (3), four cell states were identified by
unsupervised clustering analysis on the regulon activity profile of
2,018 tumor cells (Figure 1A; gene names are listed in Table S1).
Tumor cell states could coexist in melanoma patients rather than
just one tumor cell state (Figure 1B); this phenomenon has been
reported in multiple studies (4, 13). The melanocytic state exhibited
elevated regulon activities of lineage-specific transcription factors
(e.g., SOX10 and MITF) and significantly higher pigmentation and
proliferation potential (Figures 1A,C,D). Compared to the
melanocytic state, the mesenchymal-like state lost regulon
activities of melanocytic transcription factors and had significantly
higher stemness and invasion potential (Figures 1A,E,F). The
majority of the tumor cells were in the intermediate state, which
was governed by the EGR3, NFATC2, and SOX6 (Figure 1A). The
intermediate state was also characterized by intermediate MITF
regulon activity and increased regulon activities related to
mesenchymal-like (e.g., JUN and SOX9) and immune modulators
(e.g., IRF3 and STAT1), which was a transitional state from a
melanocytic state to a mesenchymal-like state as previous research
reported (3) (Figure 1A). A few tumor cells resided in a neural
A

B D E FC

FIGURE 1 | Inferred cell states of tumor cells from SKCM patients. (A) Unsupervised clustering results of 2,018 tumor cells (samples n = 23) based on regulon activity
profiles, including 4 clusters annotated by different colors. For each TF (rows), the number of genes contained in its regulon is shown in parentheses and its cell state specificity
is indicated by color. (B) The composition of tumor cell states in each sample, where the number of cells contained in the sample is shown in parentheses on each row. (C-F)
The functional differences between the 4 tumor states are shown in the box diagram, including pigmentation shown in (C), proliferation shown in (D), stemness shown in (E),
and invasion shown in (F). ns denoted non-significant, *** denoted p < 0.001, and **** denoted p < 0.0001.
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crest-like state, as identified by co-localized SOX11 and TFAP2B
regulon activities, and exhibited a low level of melanocytic regulon
activity compared to intermediate, except for SOX10 (Figure 1A).

With graph-based clustering on the expression profile of
1,759 CD8+ T cells, six clusters were detected (Figure 2A).
The expression levels of well-known functional state markers
(25) and cluster differential genes suggested cell states of CD8+ T
cells (Figures 2B,C; gene names are listed in Table S1). Cluster
C1 was denoted as exhausted state, which exhibited the elevated
expression of exhausted markers (e.g., HAVCR2, PDCD1, and
LAG3) and cytotoxicity-related genes (e.g., GZMB, PRF1, GZMA,
and NKG7) (4, 8). Cluster C2 was defined as a transitional state
as it moderately expressed cytotoxic markers and highly
expressed GZMK, which widely featured the intermediate state
between naive and exhausted T-cell states (8). Cluster C3
resembled the naive-like CD8+ T state through the enrichment
of naive/memory-related genes (e.g., IL7R, CCR7, SELL, and
TCF7). The state definition of the above three major cell clusters
was consistent with a continuous progression process in
trajectory analysis (Figure 2D). In addition, there were three
other smaller clusters, in which cluster C4 expressed a higher
level of interferon induction gene (e.g., IFI44L, IFIT1, and IFIT3).
Compared to C2, C5 expressed a low level of GZMK and
additional proliferation gene MKI67. Cluster C6 expressed
Frontiers in Immunology | www.frontiersin.org 5
high-level ENTPD1 and was located at the beginning of the
trajectory and close to naive-like cells (Figure 2D). In addition,
the above CD8+ T-cell subsets have varying proportions from
each patient (Figure 2E).

The Landscape of Tumor–CD8+ T
Crosstalk Characterized by
Ligand–Receptor Interactions
Here, the scRNA-seq dataset was annotated by integrated human
ligand–receptor pairs from five published resources (35–39)
(Figure S1A, gene names are listed in Table S2). These
annotations were used to infer putative cell state-specific
ligand–receptor interactions to construct a tumor–CD8+ T
interactome (19, 39) (Figures S1B, C; for details, see Materials
and Methods), resulting in a ligand–receptor interaction network
(Figure S2A). Genes in this network were involved in cell
adhesion, leukocyte migration, extracel lular matrix
organization, and immune response (Figures S2B-D).

Notably, tumor cells expressed relatively high levels of
chemokines and ligands associated with antigen presentation and
TGF-beta signaling pathway, while the corresponding receptors
were widely expressed in CD8+ T cells, suggesting that these ligands
play significant roles in influencing immune cell infiltration in
melanoma (Figure 3A). Conversely, ligand IFNG and its related
A

B

D E

C

FIGURE 2 | Inferred cell states of CD8+ T cells from SKCM patients. (A) UMAP plot of 1,759 CD8+ T cells (samples n = 31), including 6 clusters annotated by
different colors. (B) Heatmap showing expression levels of canonical CD8+ T-cell function-associated markers in each CD8+ T cluster. (C) UMAP feature plot
representation of selected cluster-specific differential markers within individual CD8+ T-cell clusters. Each column corresponds to six clusters in order. (D) The
trajectory distribution of CD8+ T-cell clusters. (E) The composition of CD8+ T-cell clusters in each sample, where the number of cells contained in the sample is
shown in parentheses on each row.
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proinflammatory cytokine TNF, and ligands related to tumor
necrosis factor family and cytotoxicity were expressed in CD8+ T
cells, indicating the killing potential of CD8+ T cells against tumor
cells (Figure 3A). Interactions of VIM-CD44 between tumor cells
and CD8+ T cells were commonly observed, which was involved in
epithelial–mesenchymal transition (44, 45).

Of note, intermediate and neural-crest-like tumor cells have
the highest number of and largely shared ligand–receptor
interactions out of all cell states, whether tumor cells act as
senders or receivers (Figures 3B,C, S1D). Those results
suggested that intermediate and neural-crest-like tumor cells
may more frequently crosstalk with CD8+ T cells. Specifically,
ligand–receptor interactions related to antigen presentation
machinery (e.g., HLA-A-CD3G and B2M-KLRD1) were mainly
observed between intermediate tumor cells and almost all CD8+
T clusters (Figure 3A). The above findings implied that
intermediate tumor cells are capable of presenting more
immunogenicity. CD8+ T clusters C1 and C5 expressed GZMB
Frontiers in Immunology | www.frontiersin.org 6
interacting with the corresponding receptors that were expressed
in intermediate and neural-crest-like tumor cells, suggesting the
presence of cytotoxic effect in the two tumor cell states (46)
(Figure 3A). In particular, PTDSS1-SCARB1 was only observed
between CD8+ T cells and melanocytic tumor cells (Figure 3A).
The loss of SCARB1 has been demonstrated to downregulate TF
MITF related to the melanocytic state in human melanoma (47),
suggesting that ligand–receptor interaction may affect the cell
state of signal receivers.

Deciphering the Crosstalk Propensity
Between Tumor Cells and CD8+ T Cells
To further identify ligand–receptor interactions predicted to be
associated with cell states, our analysis firstly applied NicheNet (41)
to obtain the ligand activity of each signal receiver cell (Figures 4A–
B). Obvious differential activities of some ligands between tumor
cell states were observed when tumor cells act as receivers, such as
intermediate tumor cells that received the strongest ligand IFNG
A

B C

FIGURE 3 | The landscape of ligand–receptor interactions between tumor cells and CD8+ T cells. (A) Bubble heatmap showing the interaction strength for selected
ligand–receptor pairs. Dot size indicates p-value generated by the permutation test and dot color represents interaction strength. (B) The number of significant
ligand–receptor pairs between tumor cells and CD8+ T cells when tumor cells act as senders. Each link is colored by the tumor cell states and link thickness
represents the number of significant ligand–receptor pairs. (C) The number of significant ligand–receptor pairs between tumor cells and CD8+ T cells when CD8+ T
cells act as senders. Each link is colored by the CD8+ T-cell states.
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signal compared to other tumor cell states (Figures 4A,C).
However, this phenomenon was not obvious when CD8+ T cells
act as receivers (Figures 4B, D). Next, we identified cell state-related
ligands when cells act as senders (Figures 4E,F, top) and receivers
(Figures 4E,F, bottom) (for details, see Materials and Methods;
Pearson correlation test, FDR < 0.05). Interestingly, there were very
few CD8+ T-cell state-related ligands when they act as senders, it is
speculated that CD8+ T cells may use the common ligands to
perform some functions together (Figure 4F, top).

We further explore the association between CCC and cell
state using cell state-related ligands as mediators (for details, see
Materials and Methods). The significant over-occurrence of
Frontiers in Immunology | www.frontiersin.org 7
ligands shared between the tumor intermediate state and the
CD8+ T exhausted state was observed when tumor cells send
signals to CD8+ T cells (hypergeometric test, p < 0.001), which
figured out that intermediate tumor cells may affect CD8+ T
exhausted state cells by those shared ligands (Figure 4G).
However, this phenomenon was not detected in the other case
when CD8+ T cells act as sender cells (Figure 4H). To further
verify whether the above phenomenon is due to CD8+ T cells
functioning through common ligands rather than state-specific
ligands (Figure 4F, top), we repeated this process with
functionally dependent ligands, such as cytotoxic, exhausted,
and naive ones (for details, see Materials and Methods). Indeed,
A

B
D

E

F G

IH

C

FIGURE 4 | Deciphering the association between cell–cell communication and cell state. (A) Among ligands expressed by CD8+ T cells (n = 78), predicted ligand
activity in receiver tumor cells by the NicheNet method. (B) Among ligands expressed by tumor cells (n = 112), predicted ligand activity in receiver CD8+ T cells by
the NicheNet method. (C) The difference in predicted ligand IFNG activities between tumor cell states. (D) The difference in predicted HLA-A activities between CD8+
T clusters. (E) The top panel of the correlation heatmap shows the ligands associated with the tumor cell states, and the bottom panel shows the ligands associated
with the CD8+ T-cell states when CD8+ T cells act as signal receivers. (F) The top panel of the correlation heatmap shows the ligands associated with the CD8+ T-
cell states, and the bottom panel shows the ligands associated with the tumor cell state when the tumor cells act as signal receivers. (G, H) The intersection of cell
state-related ligands between tumor cells and CD8+ T cells when CD8+ T cells act as signal receivers is shown in (G), as well as when tumor cells act as signal
receivers shown in (H). (I) The intersection of function-related ligands between tumor and CD8+ T cells when tumor cells act as signal receivers. ns, non-significant, *
denoted p <0.05, ** denoted p <0.01, *** denoted p <0.001, and **** denoted p <0.0001.
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the cytotoxicity-related ligands in almost all CD8+ T cells
significantly cooccurred with immune-related ligands in
intermediate tumor cells (Figure 4I, left). In addition,
exhaustion-related ligands in CD8+ T exhausted cells
significantly cooccurred with mesenchymal-related ligands in
intermediate tumor cells (Figure 4I, right). In general, the
influence of ligand–receptor interaction between tumor and
CD8+ T cells is more likely to occur between the CD8+ T
exhausted state and the tumor intermediate state, suggesting a
crosstalk propensity between them.

Verifying the Crosstalk Propensity
Between the Tumor Intermediate State
and the CD8+ T Exhausted State
Considering that cell function is often influenced by neighboring
cells (48), we subsequently verified this crosstalk propensity from
the perspective of space. The three-dimensional pseudo space
was reconstructed by the CSOmap algorithm (39) based on
single-cell expression profiles of tumor cells and CD8+ T cells
(Figure 5A). In pseudo space, CD8+ T exhausted cells and
intermediate tumor cells formed the major part of tightly
linked structures (Figures 5B,C) and were closed to each other
at the boundary between the tumor cells and CD8+ T cells
(Figure 5D). Quantitatively, the tumor intermediate state and
the CD8+ T exhausted state had the highest overall connected
cell pairs (Figure 5E), indicating their pseudo-spatial proximity.
The pseudo-space proximity was mainly contributed by antigen
presentation and chemokine-related ligand–receptor
interactions, such as HLA-B-CANX and CXCL10-CXCR3
(Figure 5F). Interestingly, in the microregion sequencing data
of a melanoma tumor MEL1-1 (49), the significantly increased
ssGSEA scores of the CD8+ T exhausted state as well as the
tumor intermediate state were found in the invasive melanoma
boundary (IB) region (Figures 5G-I). In addition, in the spatial
transcriptome data of a melanoma sample (30), some spatial
spots were found to enrich the ssGSEA scores of the tumor
intermediate state and the CD8+ T exhausted state
simultaneously (Figures 5J,K). Those results suggested their
spatial co-localization.

To further investigate which molecules might mediate the
crosstalk propensity between the tumor intermediate state and
the CD8+ T exhausted state, we constructed an inter/
intracellular signal transduction network (TF–ligand–receptor–
TF) and found multiple signaling pathways involved in it
(Figures 6A and S3). Importantly, some signal transduction
links could further confirm the association between CCC and cell
state. For instance, PRDM1 could regulate the expression level of
IFNG ligand that was secreted by CD8+ T exhausted cells and
could bind to the IFNGR1/IFNGR2 receptors on the intermediate
tumor cells, and then activate the downstream mesenchymal-
related TFs, such as FOS and NR3C1. The expression levels of
those molecules in the above TF–ligand–receptor–TF link were
almost significantly positively associated with the CD8+ T
exhausted state and the tumor intermediate state (Figures 6B,
S4A,B, Wilcoxon rank-sum test). To validate it, we collected
experimental datasets and found that the expression level and
Frontiers in Immunology | www.frontiersin.org 8
ssGSEA score of the CD8+ T exhausted specific signature were
reduced in CD8+ tumor-infiltrating lymphocytes of Prdm1 cKO
mice compared to wild type (Figures S4C,D). A recent study also
demonstrated that PRDM1 is essential for the differentiation of
melanoma and its high expression level indicates better survival
in melanoma (50). In particular, for IFNG ligand, interferon-
gamma treatment could induce increased activity of the tumor
intermediate state in 48 melanoma cell lines (Figure 6C,
Wilcoxon rank-sum test). To some extent, these results
reflected the influence of the TF–ligand–receptor–TF link on
cell state, and these TF–ligand–receptor–TF link molecules may
provide new insight into developing potential therapeutic targets.
Collectively, the crosstalk propensity between the tumor
intermediate state and the CD8+ T exhausted state was verified
by three aspects: pseudo-space proximity, spatial co-localization,
and signal transduction network.

The Tumor Intermediate State and the
CD8+ T Exhausted State are
Synergistically Associated with Clinical
Benefit
Subsequently, we explored whether this crosstalk propensity may
be used to gain predictive insights into relevant biological
phenotypes of interest. Surprisingly, there was no difference in
ssGSEA scores of the tumor intermediate state and the CD8+ T
exhausted state between primary and metastatic patients in
melanoma (Figures S5A,B). Therefore, the influence of primary
and metastatic factors on the results was not considered in the
following analysis. Cox proportional hazards (COX-PH) models
and survival curve analysis revealed that the high ssGSEA score of
the tumor intermediate state and the CD8+ T exhausted state both
significantly predicted favorable overall survival (OS) in the
TCGA-SKCM cohort (intermediate: HR = 0.118, coxph p =
1.64e-05, log-rank p = 0.00038; exhausted: HR = 0.104, coxph p
= 1.29e-07, log-rank p < 0.0001) (Figures 7A–C), as well as
progression-free interval (PFI) (intermediate: HR = 0.391, p =
0.0345; exhausted: HR = 0.403, p = 0.00883) (Figure 7A).
Intriguingly, the interaction of the two state score variables was
identified as a better indicator of OS than any of the individual
variables by a multiplication term in the COX-PH model (HR =
0.000153, p = 0.00613), but it was not found in PFI (Figure 7A).
Consistently, survival curve analysis also showed that patients with
both higher tumor intermediate state and CD8+ T exhausted state
scores had significantly longer OS compared to the other groups
(log-rank p < 0.0001) (Figure 7D). The above findings were
confirmed by an independent cohort (Figures S5C-E).

Furthermore, we analyzed the role of the tumor intermediate
state and the CD8+ T exhausted state in immunotherapy response.
Positive associations were significant between interferon-gamma
response and ssGSEA scores of the tumor intermediate state and
the CD8+ T exhausted state in the TCGA-SKCM cohort
(intermediate: R = 0.46, p < 2.2e-16; exhausted: R = 0.62, p <
2.2e-16) (Figure 7E). Intermediate tumor cells and exhausted CD8
+ T cells were both significantly enriched in immunotherapy
untreated samples compared to immunotherapy-resistant
samples in the scRNA-seq dataset (Figure 7F, chi-squared test,
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intermediate p = 1.41e-64, exhausted p = 0.00334). At the same
time, we observed that the shared ligands between the two cell
states were generally expressed at higher levels in immunotherapy
untreated samples (Figures 7G). Moreover, the correlation
between the tumor intermediate state and the CD8+ T
exhausted state was significant in the anti-CTLA4 untreated
group (R = 0.48, p = 0.016), and was not found in the
Frontiers in Immunology | www.frontiersin.org 9
treatment-resistant group (Figure 7H). Additionally, responders
had significantly higher CD8+ T exhausted state scores compared
to non-responders during anti-PDCD1 treatment (Wilcoxon
rank-sum test, p = 0.012) (Figure 7I). In summary, the tumor
intermediate state and the CD8+ T exhausted state were
synergistically associated with favorable prognosis and both
reduced in immunotherapy-resistant samples.
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FIGURE 5 | Pseudo-space proximity and spatial co-location between the tumor intermediate state and the CD8+ T exhausted state. (A) Spatial organization of tumor
cells and CD8+ T cells in the pseudo-space inferred by CSOmap based on the scRNA-seq data. Each dot represents a cell, and its color represents the corresponding
cell state. (B) The cross-section of z = 0 of the pseudo-space. The color of the dots represents cell density. (C) The difference in cell density between 10 cell clusters of
CD8+ T cells and tumor cells. (D) Location of intermediate tumor cells (blue) and CD8+ T exhausted cells (red) in the cross-section of pseudo-space z = 0. (E) Numbers
of cell–cell connections between tumor cell states and CD8+ T-cell states. (F) The top ligand–receptor interactions and their contribution to pseudo-space proximity of the
tumor intermediate state and the CD8+ T exhausted state. (G) The distribution of ssGSEA score of the tumor intermediate state and the CD8+ T exhausted state in
distinct annotated microregions from melanoma tumor MEL1-1 (GSE171888). (H, I) The difference in tumor intermediate state ssGSEA score (H) and CD8+ T exhausted
state ssGSEA score (I) of micro-regions between invasive melanoma boundary region and other regions in the melanoma tumor MEL1-1. (J, K) The CD8+ T exhausted
state ssGSEA score (J), and tumor intermediate state ssGSEA score (K) of spatial spots in another melanoma sample (30).
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Genomic Mutations and Immune-Related
Characteristics of Risk Groups
According to the above survival curve analysis, samples were
classified into high- and low-risk groups in the TCGA-SKCM
cohort, where the low-risk group included the samples with
higher tumor intermediate state and CD8+ T exhausted state
scores. Then, the association between risk groups and other
defined subtypes was investigated. For immune subtypes defined
by immune signatures, the C2-interferon-gamma dominant
subtype was particularly dominant in the low-risk group, while
the high-risk group was enriched in C1-wound healing and C4-
lymphocyte depleted subtypes (Figure 8A). The interplay of risk
groups with the previously defined mutation-based molecular
subtypes was also assessed. It was found that risk groups spanned
across molecular subtypes and had no substantial heterogeneity
in the distribution of molecular subtypes (Figure 8B).
Subsequently, the prognostic analyses of immune and
molecular subtypes showed that the BRAF mutated molecular
subtype indicated more favorable survival than the other three
groups, while the immune subtype was not a good indicator of
survival (Figure S6).

We further investigated the differences in genomic and
immune-related features between low-risk and high-risk
Frontiers in Immunology | www.frontiersin.org 10
groups. BRAF mutated frequently in the samples and it had a
higher mutation fraction in the low-risk group compared to the
high-risk overall (59.4% versus 45%, respectively, p = 0.006),
consistent with the BRAF mutant subtype indicating longer
survival (Figures 8C,D). Compared with the low-risk group,
VIT associated with cell adhesion was mutated only in the high-
risk group (6.3% versus 0%, respectively, p = 0.0009) (Figure 8E).
In terms of immune infiltration, the low-risk group had obvious
higher infi l tration of antitumor immune-associated
lymphocytes, such as CD8+ T, CD4+ T, and activated NK cells
(Figure 8F). In conclusion, the low-risk group had a higher
BRAF mutation fraction and stronger antitumor immune
responses, suggesting that risk groups may comprehensively
reflect both tumor genomic information and anti-tumor
immune microenvironment.
DISCUSSION

In the present study, we deciphered the crosstalk propensity
between the tumor intermediate state and the CD8+ T exhausted
state by public scRNA-seq data. The tumor intermediate state
was a transitional state from a melanocytic state to a
A

B
C

FIGURE 6 | Inter/intracellular signal transduction network between the tumor intermediate state and the CD8+ T exhausted state. (A) Selected inter/intracellular
signal transduction network (TF–ligand–receptor–TF) between the tumor intermediate state and the CD8+ T exhausted state. (B) Comparison of CD8+ T exhausted
state ssGSEA score (left) and tumor intermediate state ssGSEA score (right) between high- and low-expressed groups defined by the median expression level of
IFNG in the TCGA-SKCM cohort. (C) In 48 melanoma cell lines (GSE154996), comparison of tumor intermediate state ssGSEA score between before (control) and
after 6 hours (treatment) of treatment with interferon-gamma.
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mesenchymal-like state as previous research reported (3). The
melanocytic state highly expressed pigmentation-associated
genes (Figure 1C), which are documented to be recognized by
T cells and thus contribute at least in part to the highly
immunogenic nature of melanoma (51, 52). The absence of
interferon-gamma response mediated by the antigen
processing machinery in tumor cells may result in their failure
to be recognized by the immune system (53, 54). The intersection
of the MITF pathway and the interferon-gamma pathway was
observed in the tumor intermediate state (Figures 1A, 3A),
which promoted tumor cells to be recognized by CD8+ T cells
and might be the cause of the crosstalk propensity. In addition,
the melanocytic state and the mesenchymal-like state were
associated with resistance to target therapy (9–12), and the
Frontiers in Immunology | www.frontiersin.org 11
transition from a melanocytic state to a mesenchymal-like state
was considered as an alternative route for acquiring drug
resistance (10). The tumor intermediate state and the CD8+ T
exhausted state were both associated with improved survival and
both reduced in immunotherapy-resistant samples (Figure 7).
Those results implying the transition of other tumor cell states to
an intermediate state combined with immunotherapy may be a
new therapeutic strategy.

Some shortcomings and prospects of this study should be
addressed. A crosstalk propensity analysis on the association
between CCC and cell state was performed due to the lack of
sequencing data from physically interacting cells, which can
improve the reliability (48). Currently, a few methods that rely
on spatial transcriptome data are also emerging (55), and
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FIGURE 7 | The association of the tumor intermediate state and the CD8+ T exhausted state with clinical benefit. (A) Prognostic value of tumor intermediate state
and CD8+ T exhausted state ssGSEA scores in the TCGA-SKCM cohort. Forest plots show HRs (purple circle) and 95% confidence intervals (horizontal ranges)
derived from Cox regression survival analyses for overall survival and progression-free interval. (B–D) Kaplan–Meier survival curves of overall survival by tumor
intermediate state ssGSEA score (B), CD8+ T exhausted state ssGSEA score (C), and the combination of those two score variables (D) in the TCGA-SKCM cohort.
(E) Correlations of interferon-gamma response scores with tumor intermediate state ssGSEA scores as well as CD8+ T exhausted state ssGSEA scores. (F) The
difference in the proportion of intermediate tumor cells and exhausted CD8+ T cells between immunotherapy untreated and resistant samples in the scRNA-seq
dataset. (G) The difference in the expression level of shared ligands in intermediate tumor cells between immunotherapy untreated and resistant samples in the
scRNA-seq dataset. (H) The correlations of the tumor intermediate state with the CD8+ T exhausted state, which are compared between anti-CTLA4 untreated and
progressed samples in the GSE91061 cohort. (I) Comparison of CD8+ T exhausted state activities between responder and non-responder patients who were on
anti-PDCD1 treatment in the GSE91061 cohort.
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integrating physical contact-dependent and chemical signal-
dependent CCCs will be a trend for future methods and
algorithms. This study was completely based on public
databases, and some of the key genes or results in this study
need to be externally validated by further experiments,
such as showing the direct proximity of crosstalk by
immunohistochemistry.
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In particular, there are many interesting details or
challenges in crosstalk propensity analysis. We applied the
NicheNet method to predict ligand activity for each signal
receiver cell. Although the ligands we analyzed were expressed
in tumor cells or CD8+ T cells, the effect of the ligands also
expressed by other cells in the tumor microenvironment on the
signal receiver cells cannot be excluded. However, at present,
A
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FIGURE 8 | Comprehensive characterization of risk groups. (A, B) The association between risk groups with immune subtypes (A) and TCGA mutant subtypes (B) in the
TCGA-SKCM cohort. (C) The oncoplot of selected genes with significantly different mutation fractions between risk groups. (D, E) The difference in mutation fraction of BRAF
(D) and VIT (E) between risk groups. (F) The difference in immune infiltration between risk groups. ns, non-significant, * denoted p <0.05, ** denoted p <0.01, *** denoted p
<0.001, and **** denoted p <0.0001.
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how to accurately decompose the ligand signal source of a
receiver cell is still a problem to be solved, including the
contribution of individual signal sender cells, and the signal
transduction ability of individual receptors can interact with
that ligand. One of the key questions is whether cell state-
related ligands could be explained by the specific expression of
receptors in a certain cell state influencing the ligand ligation
and/or ligand engagement on cells promoting the state
transition. In other words, whether CCC initiates cell state
transition or cell state transition influences CCC, or whether
these two cellular behaviors complement each other is difficult
to answer in this study.

In addition, the effect of the tumor intermediate state and
the CD8+ T exhausted state on patients does not directly
represent the effect of CCC. However, dissociating CCC
between different cell subpopulations from bulk expression
profiles is a challenge. A deconvolution algorithm has been
performed to obtain the expression profiles of tumor cells and
stromal cells, which were further used to calculate the
intensity of ligand–receptor interactions (56). This intensity
is only the relative intensity of interactions with different
modes of interaction (endocrine and exocrine), rather
than absolute.
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