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Abstract
Trichobilharzia spp. have been identified as a causative agent of swimmers’ itch, a skin disease provoked by contact with these
digenean trematodes in water. These parasites have developed a number of strategies to invade vertebrates. Since we have little
understanding of the behavior of these parasites inside the human body, the monitoring of their invasion in snail host populations
is highly recommended. In our research, lymnaeid snails were collected from several Polish lakes for two vegetation seasons. The
prevalence of bird schistosomes in snail host populations was significantly lower than that of other digenean species.We were the
first to detect the presence of the snails emitted Trichobilharzia regenti (potentially the most dangerous nasal schistosome) in
Poland. In addition, by sequencing partial rDNA genes, we confirmed the presence of the snails positive with Trichobilharzia
szidati in Polish water bodies, showing that swimmer’s itch is more frequent during summermonths and that large snails are more
often infected with bird schistosomes than small ones.
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Introduction

Digenea include parasites with a complex life cycle.
Generally, they use snails as their first intermediate hosts,
and vertebrates, as final (Cheng 1986; Cichy et al. 2011).
Many digenetic trematodes pose threat to animal and human

health (Cheng 1986). These parasites include bird schisto-
somes, whose invasion on humans has been recently reported
in many countries (Rao et al. 2007; Valdovinos and Balboa
2008; Gohardehi et al. 2013; Marie et al. 2015; Marszewska
et al. 2016; Caron et al. 2017). The disease caused by cercariae
of these trematodes occurs globally and is considered to be re-
emerging (Kolářová et al. 2010).

The first intermediate hosts of widely spread Trichobilharzia
spp. include freshwater snail species of the family Lymnaeidae
(Horák et al. 2002). Their final hosts include waterfowl of the
families Ardeidae, Podicipedidae, Ciconiidae, and Anatidae
(Sulgostowska and Czaplińska 1987; Rudolfová et al. 2007;
Jouet et al. 2009). The specificity of bird schistosomes is much
lower in relation to the final than to the intermediate host.
According to Horák et al. (2002), the same species can develop
and sexually reproduce in representatives of different bird fami-
lies. Cercariae of the parasites are released from snails and seek
their final vertebrate hosts using chemoreceptors. They respond
to external stimuli (e.g., shadow) and signals from a potential
host (e.g., fatty acids) (Horák et al. 2008). When the search is
complete, larvae penetrate the host through the skin. In this pro-
cess, the products of parasite’s penetration glands are activated
(Horák et al. 1997; Mikeš et al. 2005). The similarity between
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some lipid components in the integument of humans and birds
makes the parasites attack peoplewading, swimming, orworking
in water (Haas and van de Roemer 1998). The consequence of
such invasions is a skin disease known as swimmers’ itch
(Kolářová et al. 2010), whose first symptoms appear within 2 h
after the exposure to cercariae.Within the next 2 days, the symp-
toms worsen. The rash, which initially causes only redness and
itching, develops into small, red bumps (Żbikowska et al. 2002).
The severity of symptomsmay vary, depending on the number of
parasites attacking the skin (Żbikowska 2003). The affected area
is warm, swollen, and painful. A pricking, tingling, and some-
times burning sensation leads to discomfort and even insomnia
(Żbikowska et al. 2002). The condition may be accompanied by
other symptoms including swollen lymph nodes, diarrhea, nau-
sea, or fever (Horák et al. 2002; Żbikowska et al. 2002).
Occasionally, anaphylactic shocks or respiratory system disor-
ders may also be observed (Bayssade–Dufour et al. 2001). The
disease intensity depends on the individual susceptibility of the
host (Kolářová et al. 2013a).

The swimmer’s itch is a recurrent disease listed also in
Poland. Therefore, there are several reasons for monitoring
the prevalence of these parasites Trichobilharzia spp. in snail
populations: (i) the abundance of snails releasing cercariae of
Trichobilharzia spp., (ii) the abundance of water birds, (iii)
frequent cases of itchy rashes (with a range of symptoms),
especially in children, (iv) the lack of data on the behavior
of cercariae invading humans through the skin. It is recom-
mended that monitoring should be conducted in two ways: (i)
using molecular method to identify particularly dangerous na-
sal schistosomes and (ii) conducting environmental inspection
of recreational water bodies. The present study was aimed at
investigating the diversity of Trichobilharzia species in Poland
and highlighting the risk of swimmer’s itch based on the
spread of bird schistosomes in intermediate snail host popula-
tions (prevalence and seasonal fluctuations of parasite inva-
sion, shell size of snail hosts) and in comparison with overall
risk of Digenea invasion.

Material and methods

Field sampling

Lymnaeid snails (intermediate hosts of Tricholilharzia spp.),
namely Lymnaea stagnalis, Radix spp., and Stagnicola palustris
were collected monthly from May to September in 2016 and
2017. In 2016, they were collected from seven lakes of central
and northern Poland: Głuszyńskie (52° 29′ 8″N, 18° 38′ 13″ E),
Ostrowąskie (52° 49′ 46″ N, 18° 42′ 3″ E), Służewskie (52° 51′
14″ N, 18° 38′ 38″ E), Skulskie (52° 28′ 0″ N, 18° 19′ 18″ E)
(Kuyavian-Pomeranian Voivodeship), Skulska Wieś (52° 28′
58″ N, 18° 19′ 34″ E) (Greater Poland Voivodeship),
Szymbarskie (53° 36′ 52″ N, 19° 30′ 39″ E) (Warmian-

MasurianVoivodeship), and Wodna Dolina (Water Valley) (54°
10′ 45″ N, 16° 11′ 15″ E) (West Pomeranian Voivodeship),
while in 2017, from three lakes: Głuszyńskie, Skulskie, and
Skulska Wieś. Research sites were selected based on a combi-
nation of factors such as preliminary parasitological tests of
snails in 2015, the presence of waterfowl, and previous reports
of swimmer’s itch episodes.

The snails, collected from the littoral zone (depth of ca.
0.5–1.5 m) of each lake by two researchers within the span
of 1 h and under stable weather conditions, were transported to
the laboratory in containers with lake water and examined for
Digenea invasion.

Snail/cercaria examination

Piechocki’s and Wawrzyniak-Wydrowska’s (2016) and
Jackiewicz’s (2000) keys were used for morphological and ana-
tomical identification of snails. Shell sizes (shell lengths) were
measured using an electronic caliper (accuracy of 0.1 mm).
Snails were placed individually in beakers with a small amount
of conditioned tap water and exposed to artificial light for 3 h to
stimulate the release of cercariae. Larval species were preliminar-
ily determined using a light microscope (Primostar Carl Zeiss)
and available keys, descriptions, and pictures from numerous
publications on these parasites (Combes 1980; Našincová
1992; Faltýnková et al. 2007, 2008; Cichy and Żbikowska
2016). When no cercariae were released into water, an autopsy
of snail hepatopancreas and gonads was carried out. The dige-
netic species were identified from fully developed cercariae.
Morphologically classified larvae of bird schistosomes were sub-
jected to molecular identification.

DNA extraction, PCR amplification, sequencing,
and phylogenetic analyses

The suspension of bird schistosome cercariae was centrifuged.
The isolated larvae were preserved in ethanol (96%) and frozen
(at − 20 °C) for subsequent molecular identification (Jouet et al.
2008). Several dozens of cercariae were used for DNA extrac-
tion. Prior to DNA extraction, cercariae were centrifuged at
5000g for 5 min and washed three times in PBS buffer
(pH 7.4). Total genomic DNA was isolated with Sherlock AX
(A&A Biotechnology, Gdynia, Poland), according to the manu-
facturer’s instruction. The quality and quantity of the isolated
DNAwas assessed in gel electrophoresis (1% agarose gel). The
partial nuclear ribosomal 28S rDNA (D1–D3) gene (28SrDNA)
of cercariae released from Radix spp. was amplified using the
forward primer DLS1 (5′-ACCCGCTGAACTTAAGCATA
TCACTAAGC-3′) (Laskowski and Rocka 2014) and the reverse
primer 1500R (5′-GCTATCCTGAGGGAAACTTCG-3′)
(Tkach et al. 2003). A fragment of the ribosomal DNA of bird
schistosomes invading L. stagnalis, spanning the sequences of
internal transcribed spacers 1, 2, and 5.8S (ITS), was amplified
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using the forward primer its5Trem (5′-GGAAGTAAAAGTCG
TAACAAGG-3′) and the reverse primer its4Trem (5′-TCCT
CCGCTTATTGATATGC-3′) (Dvorák et al. 2002) according to
PCR conditions described by Dvorák et al. (2002).The amplified
products were purified with Clean-Up (A&A Biotechnology,
Gdynia, Poland) according to the producer’smanual. DNAprod-
uct sequencing in both directions was carried out by Genomed S.
A., Warsaw. From the obtained genetic material, one sample
from each research site for each snail species was used for se-
quencing. Furthermore, species membership of the analyzed in-
dividuals was identified with phylogenetic approach within two
datasets (28rDNA and ITS). Newly sequenced haplotypes, along
with homological DNA sequences from GenBank
(Supplementary Material 1, 2), were first aligned using Muscle
algorithm (Edgar 2004) implemented in Seaview software
(Gouy et al. 2010). After the alignment, the sequences were cut
to obtain a uniform block of sequences and amodel of nucleotide
substitution was chosen for each dataset using jModelTest 2.1.10
(Darriba et al. 2012). Next, both datasets were analyzed with
MrBayes 3.2.6 (Ronquist et al. 2012) using GTR +G as the
best-fit model. Two independent runs of four chains starting from
different random trees were used. The trees were sampled every
100th generation for 25,000,000 generations of Markov chain
steps and all trees making up the final tree were probed when
the average standard deviation between the runs was much lower
than 0.01.

Statistical analysis

Seasonal infection fluctuations were calculated and the results
were analyzed using Friedman rank test followed by post-hoc
Wilcoxon signed-rank test. A chi-square test of contingency table
was used to determine statistical differences in the number of
snails infected with bird schistosomes and uninfected ones be-
tween four shell size classes. The same analysis was used to
compare the numbers of snails infected and uninfected with
Digenea. Next, post hoc test based on standardized residuals
was used. Standardized residuals presented the degree to which
an observed value deviates from the expected value in terms of a
z score (Sidanius et al. 2008). A standardized residual (SR) of
plus or minus 1.96 presented a significant deviation from 0 at the
p = 0.05 level (Sidanius et al. 2008). Statistical analysis was pre-
pared based only on data on bird schistosomes from L. stagnalis.
The term prevalence was used for the description of one snail
species invaded by one parasite species.

Results

Larval trematode infection in Lymnaeidae

We collected a total of 3456 snails (2484 in the first and 972 in
the second year of study): 2325 individuals of L. stagnalis, 890

Radix spp., and 240 S. palustris. Over 30% of the collected
Lymneaidae were infected with Digenea. The infection wasmost
frequent among L. stagnalis (36.34%) (Table S1), followed by
S. palustris (21.25%) (Table S2), and Radix spp. (18.08%)
(Table S3). The following species were most frequent in
L. stagnalis: Diplostomum pseudospathaceum Niewiadomska,
1984 (in 27.3% of infected snails), Opisthioglyphe ranae
(Frolich, 1791) (20%), Plagiorchis elegans (Rudolphi, 1802)
(12.5%), and Echinoparyphium aconiatum (Dietz, 1909)
(11.5%). Radix spp. were most frequently invaded by O. ranae
(19.9%), Cotylurus sp. (13.7%), Echinoparyphium recurvatum
(Linstow, 1873) (12.4%), and P. elegans (8.1%), while
S. palustris, by D. pseudospathaceum (27.5%), E. aconiatum
(9.8%), Hypoderaeum conoideum (Bloch, 1782) (9.8%),
Molinella anceps (Molin, 1859) (9.8%), and O. ranae (9.8%).
Bird schistosomes were recorded in 1.24% of all examined
snails. L. stagnalis were the most common host of bird schisto-
somes (1.68%), followed by Radix spp. (0.44%). S. palustris
were not infected with these parasites (Fig. 1). L. stagnalis were
found in all seven studied lakes, while Radix spp., only in two
(Fig. 1).

Molecular analyses of cercariae of bird schistosomes

As a result of sequencing, we revealed four haplotypes for the
ITS and one haplotype for the 28SrDNA (GenBank accession
numbers: MH190224, MH190225, MH190226, MH190227,
MH190228). Phylogenetic tree created with 28S rDNA
(Fig. 2) (Table S4) showed that the one haplotype presented
in this study belonged to Trichobiharzia regenti. Haplotype
from our study, along with sequence of T. regenti possessed
from GenBank NCBI, created one clade with the highest pos-
sible probability (100%) of the common node. Similarly, phy-
logenetic tree created for ITS (Fig. 3) (Table S5) allowed to
determine species belonging of four revealed in this study
haplotypes as Trichobiharzia szidati.All four haplotypes from
this study connected with five sequences of T. szidati from
GenBank and formed very well-supported (100% posterior
probability) and distinct genetic clade.

Seasonal fluctuations of Digenea larvae invasion
in L. stagnalis

Snails infected with bird schistosomes were found in all re-
search months in 2016. Statistically significant seasonal fluc-
tuations of schistosome infection were observed (N = 7, χ2 =
12.036, df = 4, p = 0.017) (Fig. 4a). A similar trend (Fig. 4b) is
reflected in statistically significant differences for seasonal
infection of all Digenea species found inside L. stagnalis in-
dividuals (N = 7, χ2 = 14.857, df = 4, p = 0.005). The post hoc
test indicated that L. stagnalis infected with Digenea larvae
was most frequently recorded in July and August.
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Infection of L. stagnalis with Digenea larvae related
to four shell size classes

Bird schistosomes were found in snails whose shell length
ranged from 30.9 to 63.1 mm. We identified four shell size
classes: class size I < 40.0 mm of shell length, class size II
40.1–44.9 mm, class size III 45.0–49.9 mm, and class size IV
≥ 50.0 mm. The number of bird schistosome hosts from

individual size classes was significantly different (χ2 = 9.42,
df = 3, p = 0.02). The post hoc test indicated that infected indi-
viduals of the highest shell size class were statistically signifi-
cant. Similarly, the number of L. stagnalis infected with all
Digenea (Fig. 5) was significantly dependent on correlated with
shell size classes (χ2 = 119.83, df = 3, p < 0.001).Moreover, the
post hoc test indicated that individuals from the highest and also
lowest classes were statistically significant (Fig. 5).
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Discussion

Symptoms of swimmer’s itch caused by bird schistosomes
depend greatly on their species. Since morphological and an-
atomical identifications of cercariae are unreliable (Dvorák
et al. 2002; Horák et al. 2002; Rudolfová et al. 2005;
Podhorský et al. 2009), human health risk assessment should
be based on a molecular analysis of these larvae. Recent re-
ports (Jouet et al. 2008, 2015; Christiansen et al. 2016) show
much higher species divers i ty within the genus
Trichobilharzia in Europe than previously thought. The fol-
lowing species have been recorded: Trichobilharzia anseri
(Jouet et al. 2015), Trichobilharzia franki (Müller and
Kimmig 1994), Trichobilharzia mergi (Kolářová et al.
2013b), Trichobilharzia salmanticensis (Simon-Martin and
Simon-Vicente 1999), T. regenti (Horák et al. 1998), and
T. szidati (Neuhaus 1952). Our study is the first to report the
presence of T. regenti in Polish water bodies. The results also
confirm widespread occurrence of T. szidati in Polish fresh-
water snails. What is surprising, despite the examination of
nearly 1000 Radix sp. individuals, none of them was infected
with T. franki—a bird schistosome widely distributed in the
European populations of snail and waterfowl (Jouet et al.
2010). Both recorded species, as well as mentioned T. franki
are widely recognized as causal agents of swimmer’s itch
(Müller and Kimmig 1994; Żbikowska 2004). Bird schisto-
somes have been found in the majority of Polish lymnaeid

species, but many reports have been limited to giving their
complex name T. ocellata (Żbikowska 2004; Żbikowska
et al. 2006; Cichy 2013). Only isolated cases of the presence
of T. szidati in L. stagnalis (Żbikowska 2005) and S. palustris
(Cichy 2013) as well as T. franki in R. auricularia (Żbikowska
2004) have been reported. In our previous study (Marszewska
et al. 2016), we made an assumption that cercariae found in
R. balthica belonged to the nasal bird schistosome species
T. regenti. Molecular analysis performed in the present study
confirmed this assumption. Also, the successful experimental
infection of R. balthica by miracidia of T. regenti confirms the
developing of this bird schistosome inside this species of
Radix snails (Marszewska et al. 2018). However, the lack of
molecular diagnosis of the Radix individuals naturally infect-
ed with T. regenti larvae does not allow to give the species
name of hosts, that the conchological and anatomical data
indicate that they were not snails belonging to the
R. auricularia (Jackiewicz 2000; Piechocki and
Wawrzyniak-Wydrowska 2016). For humans, the invasion
of T. regenti may be more dangerous than that of other bird
schistosomes. Nasal schistosomesmigrate inside the final host
through the nervous system (Kolářová et al. 2001; Leontovyč
et al. 2016). Experimental studies have indicated that the
movement of T. regenti within the nervous system of unusual
mammalian hosts led to leg paralysis (Kouřilová et al. 2004;
Lichtenbergová et al. 2011; Horák and Kolářová 2001).
Although so far bird schistosomes have not been found inside
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the human body (Horák et al. 2015), it should be emphasized
that in laboratory larvae of Trichobilharzia sp. invaded mam-
mals through the skin and migrated to their internal organs
(Horák and Kolářová 2001). In an experiment using mice,
schistosomules of bird schistosomes were found in the lungs

(Appleton and Brock 1986; Haas and Pietsch 1991; Horák and
Kolářová 2000), heart, kidneys, liver, and intestines of these
rodents (Haas and Pietsch 1991). According to Olivier (1953),
they have also been found in the lungs of other mammalian
hosts including hamsters, guinea pigs, rabbits, and even
rhesus monkeys.

In Polish lakes, the prevalence of bird schistosomeswas very
low (Fig. 1), which corresponds to the observations of other
European water bodies. The prevalence of Trichobilharzia
spp. in intermediate hosts ranges from 0.05 to 5% (Soldánová
et al. 2013) and is far lower than that of other Digenea. It should
be noted that low prevalence of snails infected with these par-
asites does not exclude high risk of swimmer’s itch (Chamot
et al. 1998; Lévesque et al. 2002; Farahnak and Essalat 2003;
Skírnisson and Kolárová 2005; Jouet et al. 2008). This can be
explained by very high bird schistosome cercarial emission
(significantly higher than of other Digenean species)
(Żbikowska 2005). Even low prevalence of invaded snails is
sufficiently balanced by high intensity of cercarial release.

On the other hand, high risk of swimmer’s itch in European
lakes results from seasonal fluctuations of the invasion. The re-
sults of our present and previous studies (Żbikowska 2004) con-
firm bird schistosome infection in snails collected from May to
September, with the highest prevalence in the peak of the sum-
mer season (Fig. 4a). Therefore, risk assessment and preventive
measures (e.g., removing snails from lakes) are extremely impor-
tant (Chamot et al. 1998; Lévesque et al. 2002; Caumes et al.
2003; Verbrugge et al. 2004; Jouet et al. 2008).

Many authors have described seasonal changes in the preva-
lence of bird schistosomes and other Digenean species in snail
hosts, indicating the highest rate during the warmest and the
lowest during the coldest months (Loy and Haas 2001;
Żbikowska et al. 2006; Żbikowska and Nowak 2009; Brown
et al. 2010). This results from the fact that temperature has a huge
impact on the life cycle of trematodes (Mas-Coma et al. 2009;
Żbikowska and Cichy 2012). High temperature facilitates the
transmission of parasites in the environment (Poulin 2006;
Cichy et al. 2016) and stimulates the production of cercariae
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inside molluscs (Kendall and McCullough 1951; Lo and Lee
1996; Poulin 2006).

Finally, bird schistosome invasion inside host snails is an
important factor affecting swimmer’s itch risk level. Our re-
search shows that large snails aremore often infectedwith flukes
than small ones (Fig. 5), which is in line with the observations of
other researchers (Loker 1983; Brown et al. 1988; Sorensen and
Minchella 1998; Graham 2003; Sichun et al. 2005). According
to Sichun et al. (2005), this correlation is beneficial for the par-
asite. Larger host snails provide greater energy resources and/or
more space for the production of invasive cercariae (Graham
2003; Sichun et al. 2005). More intensive invasion of Digenea
in snail hosts results in a bigger number of cercariae released into
water and therefore with a higher risk of swimmer’s itch. The
fact that larger snails are more often infected with these trema-
todes depends on many factors (Sturrock 1966; Baudoin 1975;
Wilson and Denison 1980; McCarthy et al. 2004; Żbikowska
et al. 2006; Miura and Chiba 2007). First of all, it may be
connected to the preferences of parasites, which choose larger
host snails over small ones (Baudoin 1975). On the other hand, it
is well-know that the parasite may affect the host’s phenotypic
traits, for example as the size of the shell (Miura and Chiba
2007). Scientists postulate that digenetic trematodes contribute
to the abnormally large shells of host molluscs, known as para-
sitic gigantism (Wilson and Denison 1980; McCarthy et al.
2004; Żbikowska et al. 2006). However, when the snails are
not yet infected, bigger snails are usually older snails and have
more time to meet potentially a larger number of invasive larvae
(Graham 2003; Sichun et al. 2005). Finally, smaller (younger)
host snails are characterized by greater mortality because of the
parasite (Sturrock 1966; Baudoin M; 1975) and as a result,
smaller infected individuals are harder to find in the environ-
ment. This point of view is supported by our observation that
large specimens of L. stagnalis invaded with bird schistosomes
were collected in early May. Taking into account that the devel-
opment of bird schistosomes from miracidia to cercariae takes
about 7weeks (Amen andMeuleman 1992), we can assume that
snails releasing cercariae in May were invaded in autumn
(McMullen and Beaver 1945; Jarcho and van Burkalow 1952)
and survived winter (Horák et al. 2002). This situation is ben-
eficial for bird schistosomes and increases the risk of
swimmer’s itch, especially in the situation of recent climate
change, and the earlier beginning of the recreational season
in the temperate zone.

In conclusion, there are numerous indicators of real risk of
swimmer’s itch including the following: (i) recent detection of
the presence of potentially most dangerous nasal schistosome
T. regenti in Poland, (ii) widespread presence of snails infected
with T. szidati in Polish water bodies, (iii) widespread presence
of these parasites during the summer season, (iv) frequent pres-
ence of these parasites in larger (more resistant) hosts. In view
of these facts, we believe that it is necessary to develop effective
methods of protection against cercarial dermatitis.
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