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Introduction: Left ventricular reverse remodeling (LVRR) is associated with decreased

cardiovascular mortality and improved cardiac survival and also crucial for therapeutic

options. However, there is a lack of an early prediction model of LVRR in first-diagnosed

dilated cardiomyopathy.

Methods: This single-center study included 104 patients with idiopathic DCM.

We defined LVRR as an absolute increase in left ventricular ejection fraction (LVEF)

from >10% to a final value >35% and a decrease in left ventricular end-diastolic

diameter (LVDd) >10%. Analysis features included demographic characteristics,

comorbidities, physical sign, biochemistry data, echocardiography, electrocardiogram,

Holter monitoring, and medication. Logistic regression, random forests, and extreme

gradient boosting (XGBoost) were, respectively, implemented in a 10-fold cross-validated

model to discriminate LVRR and non-LVRR, with receiver operating characteristic (ROC)

curves and calibration plot for performance evaluation.

Results: LVRR occurred in 47 (45.2%) patients after optimal medical treatment. Cystatin

C, right ventricular end-diastolic dimension, high-density lipoprotein cholesterol (HDL-C),

left atrial dimension, left ventricular posterior wall dimension, systolic blood pressure,

severe mitral regurgitation, eGFR, and NYHA classification were included in XGBoost,

which reached higher AU-ROC compared with logistic regression (AU-ROC, 0.8205

vs. 0.5909, p = 0.0119). Ablation analysis revealed that cystatin C, right ventricular

end-diastolic dimension, and HDL-C made the largest contributions to the model.

Conclusion: Tree-based models like XGBoost were able to early differentiate LVRR

and non-LVRR in patients with first-diagnosed DCM before drug therapy, facilitating
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disease management and invasive therapy selection. A multicenter prospective study is

necessary for further validation.

Clinical Trial Registration: http://www.chictr.org.cn/usercenter.aspx (ChiCTR2000

034128).

Keywords: idiopathic dilated cardiomyopathy, heart failure, reverse remodeling, predictive model, machine

learning

INTRODUCTION

Dilated cardiomyopathy (DCM) is the third leading cause of
heart failure with decreased ejection fraction and the most
important cause of heart transplantation (1, 2). Its 1-year
mortality rate is as high as 25–30%, and its 5-year survival rate
is <50% (3). Significant improvements in left ventricular end-
diastolic diameter (LVDd) and left ventricular ejection fraction
(LVEF) are referred to as left ventricular reverse remodeling
(LVRR) (4). Despite the use of angiotensin-converting enzyme
inhibitors (ACEIs), β-blocker, and mineralocorticoid receptor
antagonists, LVRR happened only in approximately 37–52% of
DCM patients (5–10). Therapy-induced LVRR has become an
important prognostic tool in the management of patients with
DCM (5, 11). If a patient is not responsive tomedication, not only
an early implantable cardioverter defibrillator may be necessary
but also the timing of device therapy and insertion in the
transplant list are important considerations since these aspects
differ from those who are responsive to medication. Despite an
increasing understanding of the progression of DCM, prognostic
stratification of patients with early phases of DCM remains a
challenge (12). It can be seen that early prediction of LVRR will
help us to achieve precise management of patients with DCM.

Several early studies have reported the association between
some clinical indexes and LVRR in DCM. Kawai et al. (13)
first demonstrated that higher systolic blood pressure and lower
pulmonary arterial wedge pressure at diagnosis were predictors
of LVRR with medical therapy. Afterward, cardiac magnetic
resonance was used for the prediction of LVRR. Several studies
reported that late gadolinium enhancement at baseline provides
a better prediction of LVRR (10, 14–17). However, there is
no definite agreement in previous studies in regard to late
gadolinium enhancement as an early predictor of LVRR (18).
Genotype is also proven to associate with LVRR in DCM. It
is reported that an inverse and independent association exists
between structural cytoskeleton Z-disk gene rare variants and
LVRR (19). Verdonschot et al. (7) also demonstrated that the
model including mutation status performs better than the model
with only clinical parameters (AUC = 0.760 vs. 0.742, p =

0.008). However, the difficult and expensive measurement limits
their clinical application. Ruiz-Zamora et al. (20) found a simple
logistic model including five variables with an AUC of 0.83.
However, this model included several variables obtained at the
end of follow-up, so we cannot make an early prediction for
LVRR, which usually happens within 1 to 2 years in patients
with DCM. Therefore, if we can identify LVRR in DCM when
first diagnosed with a combination of several usual clinical

parameters, it could help to make important clinical decisions
concerning the need and timing of some therapies in patients
with DCM.

Machine learning performs more objectively in selecting
predictor variables and handles possible non-linear effects of
variables better than traditional statistical methods. A tree-based
ensemble algorithm can aggregate multiple weak learners to
attain a stronger ensemble model by bagging and boosting
two different ensemble ways, among which random forests and
extreme gradient boosting (XGBoost) are, respectively, their
representative methods. Random forests can use the bootstrap
sampling method for avoiding instability of the model, while
XGBoost algorithm was developed mainly for penalizing the
structure of a decision tree to avoid overfitting (21). It has been
found that this XGBoost technique outperforms other machine
learning and deep learning methods in many competitions such
as Kaggle and KDDCup (22). It has been successfully applied in
numerous bioinformatics studies (23, 24) and medical studies
(25, 26). Therefore, we conducted a retrospective real-world
study and analyzed clinical data by using tree-based learning
algorithms to build a predictive model and validate it.

MATERIALS AND METHODS

Study Population
This study was a single-center real-world study. The clinical
data of patients were collected from consecutively admitted
patients with their first diagnosis of DCM at the Sun Yat-
sen Memorial Hospital of Sun Yat-sen University between
January 2014 and December 2017, and each of the patients
had several follow-up records. DCM was diagnosed in
keeping with the Chinese guidelines for the diagnosis and
treatment of DCM (27) as follows: (1) LVDd >5.0 cm
(female) or LVDd >5.5 cm (male); (2) LVEF <45% and left
ventricular shortening fraction <25%; and (3) exclusion of
valvular heart disease, congenital heart disease, ischemic heart
disease, tachycardiomyopathy, and secondary DCM caused by
systemic diseases. Patients with any of the following conditions
were excluded: (1) alcoholic cardiomyopathy, peripartum
cardiomyopathy, and other acquired DCM; (2) a history of
HF treatment including ACEIs/angiotensin receptor blockers
(ARBs)/angiotensin receptor-neprilysin inhibitors (ARNIs),
adrenergic beta-receptor blockers, and mineralocorticoid
receptor antagonists; (3) coronary heart disease (having
narrowed coronary arteries 50% or more according to coronary
angiography or coronary CTA), pulmonary heart disease, organic
heart valvular disease, congenital heart disease, hypertensive
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heart disease, or pericardial disease; (4) not receiving medical
therapy recommended by the Chinese Guidelines for the
Diagnosis and Treatment of Heart Failure 2018 (28); (5) systemic
diseases that may affect the structure and function of the
heart, such as hyperthyroidism, hypothyroidism, amyloidosis,
pheochromocytoma, systemic lupus erythematosus, or Behcet’s
disease; (6) cancer, severe infection, or severe renal dysfunction
(estimated glomerular filtration rate (eGFR) <15ml min−1·1.73
m−2); and (7) receiving cardiac resynchronization therapy
or left ventricular assist device during follow-up. This study
was approved by the institutional review board of Sun Yat-
sen Memory Hospital and had therefore been performed in
accordance with the ethical standards laid down in the 1964
Declaration of Helsinki and its later amendments. No informed
consent was required because the data in our study were
anonymized. All patients received standard medical therapy
according to current guidelines (27, 28).

Data Collection
All data of baselines and return visits were obtained
from electronic health records including demographic
characteristics, physical sign, comorbidities, laboratory
indicators, electrocardiogram, 24-h dynamic electrocardiogram,
echocardiographic data, and medication. The blood samples
were collected after fasting for 12 h overnight. LVEF was
measured using the apical biplane method and transthoracic
echocardiography was performed as recommended by the
American Society of Echocardiography (29) by a senior
echocardiographer at admission and during the follow-up
period. The New York Heart Association (NYHA) class was
evaluated in this study within the first 8 h of admission.

Definition of Variables
According to the European Association of Cardiovascular
Imaging and the American Society of Echocardiography (30), the
relative wall thickness was calculated as the ratio of two times the
posterior wall thickness to LVDd. Left ventricular mass (LVM)
was calculated according to the formula in (1). The normalization
of LVM for body surface area was regarded as the left ventricular
mass index. Body surface area was estimated by the formula in
(2) (31). The eGFR was calculated using the modification of diet
in renal disease equation (32). The doses of ACEIs/ARBs/ARNIs
and β-blockers were evaluated by the ratio of the practical dose
and target dose of certain drugs within 6 months (28).

LVM(g) = 0.8×1.04×[(LVDd(cm)+ LVPWd + IVSd)3

−LVDd3]+ 0.6 (1)

Bodysurfacearea(m2) = 0.007184×height(cm)0.725

×weight(kg)0.425 (2)

Return Visits
The patients underwent a return visit as required. The end
of visits was December 2018, the date of death or heart
transplantation. Transthoracic echocardiography was performed
in all visits. LVRR was defined as an absolute increase in LVEF

from >10% to a final value >35% accompanied by a decrease
in LVDd ≥10% (10) as assessed at any one visit and lasted until
the last visit (median time 24 months, IQR 15–31). Non-LVRR
was defined as an absolute increase in LVEF <10% or final value
<35% or a decrease in LVDd<10% as assessed at all visits, except
those in <9 months. Patients who did not meet the definition of
LVRR and have a last visit <9 months were excluded (Figure 1).

Statistical Analysis
Normally distributed variables are presented as the means ±

standard deviations, while non-normally distributed variables
are presented as medians with interquartile ranges. NT-proBNP,
cTNT, D-dimer, and hsCRP were logarithmically transformed to
approximate a normal distribution. The Levene test was used
to explore the homogeneity of variance, and a p-value of <0.1
was considered to indicate heterogeneity of variance. Differences
between groups were tested by the independent t-test or Mann–
Whitney U-test for continuous variables and the chi-square test
for categorical variables. De long test was used to detect if the
difference between AUCs was statistically significant. Statistical
significance was defined as a two-sided p-value of <0.05.

Data Imputation
A total of 102 features were included for analysis and are
described in Supplementary Table 1. Moreover, 65 variables had
no missing data, 23 variables had <10% missing data, and the
remaining 14 variables had >10% missing data. None of the
variables had>50%missing data. All variables were standardized
when selecting features and building models to mitigate the effect
of the differences in dimensions between variables. The specific
method is described in (3), where Xk0 and Xk are the kth values
of a certain variable before and after standardization, while Xmin

and Xmax are the minimum and maximum values of a certain
variable, respectively. K-nearest neighbors were used for the
imputation of continuous and discrete variables, which took the
average of K samples nearest to the missed point as its value.

Xk =
Xk0−Xmin

Xmax−Xmin
(3)

Model Development
We chose three standard supervised machine learning methods
for our data: XGBoost (21), random forest (33), and logistic
regression with l1 penalty (34). The cases and controls involved
in this study were randomly divided into training and testing sets
with the ratio, train:test = 6:4. These models were trained on the
training set with 10-fold cross-validation and were validated on
the testing set (Figure 1). A grid search scheme was performed
on the training set through the 10-fold cross-validation to search
for the optimal combination of parameters of the model, where
the training set was randomly split into 10 subsets. For each
combination of parameters, nine subsets were trained for amodel
and the remaining one was used for validation of the model.
The process was repeated for 10 times so that each subset was
tested once and the average of their results was collected to
measure the performance of the parameter combinations. As
a result, we selected the parameter combination that reached
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FIGURE 1 | Overall flowchart and main results of this study. CRT, cardiac resynchronization therapy; CysC, cystatin C; DCM, dilated cardiomyopathy; eGFR,

estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; HF, heart failure; LA, left atrial dimension; LVDd, left ventricular end-diastolic diameter;

LVEF, left ventricular ejection fraction; LVPWd, left ventricular posterior wall dimension; LVRR, left ventricular reverse remodeling; LR, logistic regression; MR, mitral

regurgitation; NYHA, New York Heart Association; RF, random forest; RVDd, right ventricular end-diastolic dimension; SBP, systolic blood pressure; XGBoost, extreme

gradient boosting.

the highest AUC to train a model based on the whole training
set, and then the model was tested on the independent test
set. The discrimination of models was evaluated using the
receiver operating characteristic (ROC) curve. The calibration
was performed using the isotonic regression (35) and evaluated
by a calibration plot.

Feature Selection
The distribution of each feature is shown in
Supplementary Figure 1. Feature selection was also performed
to optimize the feature combination in constructing a prediction
model. In this study, we used a greedy feature selection

algorithm based on the important features recommended by a
specific model.

In general, a specific model was first pretrained to obtain the
important features with 10-fold cross-validation on the training
set, from which we select the feature greedily according to AUC.
The important features included the features with an importance
greater than zero. In the greedy searching process, the selection
algorithm began with an empty set of features and iteratively
searched the best feature from the remaining feature set and
added the best feature to the empty set for a higher AUC. This
procedure was repeated until the remaining feature set was empty
or AUC no longer increased, leading to a best feature subset for
building a final prediction model.
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TABLE 1 | Characteristics of patients grouped by left ventricular reverse remodeling.

Variables LVRR (n = 47) Non-LVRR (n = 57) p-value

Age (years) 54.7 ± 15.3 55.1 ± 14.0 0.899

Female, n (%) 12 (25.5) 14 (24.6) 0.909

Body mass index (kg/m2 ) (38)a 24.67 ± 4.74 (52) 25.05 ± 4.25 0.692

SBP (mmHg) 130.2 ± 19.3 120.7 ± 20.8 *0.016

DBP (mmHg) 83.6 ± 16.6 79.0 ± 13.5 0.125

Heart rate (/min) 91.3 ± 16.3 87.0 ± 17.2 0.199

NYHA class *0.042

I, n (%) 4 (8.5) 2 (3.5)

II, n (%) 15 (31.9) 10 (17.5)

III, n (%) 22 (46.8) 34 (59.6)

IV, n (%) 6 (12.8) 11 (19.3)

Smoking, n (%) 20 (42.6) 22 (38.6) 0.682

Drinking, n (%) 6 (12.8) 12 (21.1) 0.266

Hypertension, n (%) 18 (38.3) 18 (31.6) 0.473

Diabetes, n (%) 8 (17.0) 7 (12.3) 0.493

Atrial fibrillation, n (%) 5 (10.6) 14 (24.6) 0.067

VT or VF, n (%) 2 (4.3) 4 (7.0) 0.858

Atrioventricular block, n (%) 6 (12.8) 8 (14.0) 0.850

ICD, n (%) 31 (66.0) 29 (50.9) 0.121

Laboratory values

White blood cell (×109/L) 7.81 (6.28–10.01) 7.42 (6.12–8.78) 0.376

Hemoglobin (g/L) 137.1 ± 19.0 138.9 ± 16.4 0.613

Platelet (×109/L) 251.1 ± 84.4 209.3 ± 53.5 0.004**

Lymphocyte (%) 24.1 ± 7.5 24.7 ± 9.7 0.718

Lymphocyte (×109/L) 1.92 ± 0.51 1.86 ± 0.71 0.611

Neutrophils (%) 66.8 ± 8.5 67.0 ± 10.0 0.908

Neutrophils (×109/L) 5.84 ± 2.69 5.52 ± 2.62 0.532

Mononuclear cell (%) 6.4 ± 2.2 6.0 ± 2.2 0.350

Mononuclear cell (×109/L) 0.553 ± 0.326 0.474 ± 0.209 0.156

RDW-CV (%) 0.14 ± 0.02 0.14 ± 0.02 0.390

Prothrombin activity (%) (46) 78.5 ± 19.7 69.0 ± 23.5 0.032*

Fibrinogen (g/L) (46) 3.28 ± 1.06 2.98 ± 0.91 0.124

Prothrombin time (s) (46) 12.2 (11.4–12.9) 12.7 (11.7–14.5) 0.034*

APTT (s) (46) 27.7 (25.1–31.6) 28.9 (26.1–31.8) 0.403

International normalized ratio (46) 1.08 (1.00–1.14) 1.11 (1.02–1.25) 0.053

lg D-dimer (mg/L) (45) −0.36 ± 0.51 −0.09 ± 0.50 0.007**

lg NT-proBNP (pg/ml) 3.28 ± 0.51 (56) 3.41 ± 0.52 0.191

lg CTNT (pg/ml) (43) 1.25 ± 0.41 (46) 1.38 ± 0.41 0.130

Creatine kinase (U/L) 66 (46–101) 83 (52–140) 0.153

Creatine kinase MB (U/L) 11 (9–14) 13 (10–16) 0.106

ALT (U/L) 25.0 (15.0–49.0) (56) 29.0 (18.0–51.8) 0.193

AST (U/L) 23.0 (20.0–39.0) (56) 29.5 (21.0–45.3) 0.138

γ-Glutamyltransferase (U/L) (46) 44.5 (20.8–94.0) (55) 58.0 (30.0–97.0) 0.417

FBG (mmol/L) 4.8 (4.3–5.7) (56) 4.9 (4.4–5.6) 0.538

Cystatin C (mg/L) (27) 0.94 ± 0.22 (40) 1.06 ± 0.30 0.084

Urea (mmol/L) 5.7 (4.7–7.8) 6.7 (5.6–8.1) 0.087

CO2CP (mmol/L) 25.3 ± 4.8 24.9 ± 3.5 0.576

eGFR (ml·min−1·1.73 m−2 ) 78.87 ± 46.58 66.18 ± 17.02 0.059

Uric acid (µmol/L) 479.1 ± 170.6 (56) 546.6 ± 178.4 0.054

Triglyceride (mmol/L) 1.08 (0.88–1.57) (55) 1.28 (0.87–1.57) 0.692

(Continued)
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TABLE 1 | Continued

Variables LVRR (n = 47) Non-LVRR (n = 57) p-value

Total cholesterol (mmol/L) 4.49 ± 0.89 (55) 4.44 ± 1.57 0.861

LDL-C (mmol/L) 2.86 ± 0.67 (55) 2.81 ± 0.82 0.743

HDL-C (mmol/L) 1.10 ± 0.32 (55) 0.93 ± 0.26 0.005**

Albumin (g/L) (46) 37.0 ± 4.8 (55) 36.0 ± 5.1 0.319

lg hsCRP (mg/L) (45) 0.60 ± 0.76 (54) 0.69 ± 0.64 0.491

Hemoglobin A1c (%) (35) 6.04 ± 0.65 (43) 6.15 ± 1.07 0.563

Free T3 (pmol/L) (41) 4.88 ± 1.36 (49) 4.58 ± 0.97 0.235

Free T4 (pmol/L) (41) 18.75 ± 4.51 (49) 18.04 ± 3.31 0.393

TSH (mIU/L) (42) 1.43 (0.98–2.68) (49) 1.66 (0.93–3.11) 0.558

Superoxide dismutase (U/L) (45) 123.4 ± 17.4 (54) 121.0 ± 18.9 0.516

Adenylic deaminase (U/L) (31) 10.00 ± 2.53 (45) 11.29 ± 3.87 0.084

Free fatty acid (µmol/L) (44) 556.8 ± 243.8 (54) 706.9 ± 346.0 0.014**

K (mmol/L) 3.86 ± 0.37 3.93 ± 0.43 0.403

Na (mmol/L) 140.52 ± 2.94 139.59 ± 2.92 0.111

Cl (mmol/L) 104.0 ± 3.7 103.4 ± 3.3 0.446

Ca (mmol/L) 2.20 ± 0.12 2.19 ± 0.10 0.686

P (mmol/L) (44) 1.24 ± 0.20 (53) 1.26 ± 0.36 0.738

Electrocardiograph

PR interval (ms) (40) 163.3 ± 35.2 (43) 161.2 ± 40.0 0.802

QRS interval (ms) (36) 110.8 ± 32.9 (49) 110.3 ± 33.5 0.945

QTc interval (ms) (44) 442.6 ± 82.2 (54) 434.1 ± 51.4 0.532

Left bundle branch block 11 (23.4) 5 (8.8) 0.040*

Holter

Number of VPB (28) 54 (8–1,126) (38) 657 (58–1,995) 0.066

Number of APB (28) 20 (6–45) (38) 15 (0–55) 0.490

Echocardiography

LVEF (%) 30.2 ± 5.8 30.2 ± 6.9 0.963

LVDd (mm) 69.0 ± 8.6 67.2 ± 8.4 0.282

AOR (mm) 21.8 ± 2.1 21.3 ± 1.7 0.174

LA (mm) 41.3 ± 6.7 44.3 ± 6.2 0.020*

RVDd (mm) 21.7 ± 3.9 23.8 ± 4.3 0.011*

IVSd (mm) 9.3 ± 1.7 9.3 ± 1.9 0.905

LVPWd (mm) 9.4 ± 1.7 9.3 ± 1.9 0.795

LVMI (g/m2 ) (38) 173.8 ± 44.5 (52) 160.5 ± 43.5 0.147

RWT 0.28 ± 0.06 0.29 ± 0.08 0.535

Mitral regurgitation

Severe, n (%) 10 (21.3) 23 (40.4) 0.038*

Tricuspid regurgitation

Moderate and severe, n (%) 11 (23.4) 25 (43.9) 0.029*

Medication

ACEI/ARB/ARNI (%) 43 (91.5) 48 (84.2) 0.264

ACEI/ARB/ARNI doses (%) 0.50 (0.50–1.00) 0.50 (0.33–1.00) 0.301

Increasing doses of

ACEI/ARB/ARNI (%)

3 (6.4) 2 (3.5) 0.825

β-Blocker 37 (78.7) 44 (77.2) 0.852

β-Blocker doses 0.20 (0.06–0.25) 0.13 (0.06–0.25) 0.371

Increasing doses of β-blocker 8 (17.0) 6 (10.5) 0.334

MRA 44 (93.6) 54 (94.7) >0.999

Diuretic 45 (95.7) 57 (100) 0.202

Digoxin 37 (78.7) 45 (78.9) 0.978

Statin 14 (29.8) 16 (28.1) 0.847

(Continued)
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TABLE 1 | Continued

Variables LVRR (n = 47) Non-LVRR (n = 57) p-value

Anticoagulation 2 (4.3) 10 (17.5) 0.035*

Antiplatelet 7 (14.9) 10 (17.5) 0.716

Amiodarone 7 (14.9) 7 (12.3) 0.698

Trimetazidine 8 (17.0) 21 (36.8) 0.025*

Ivabradine 0 (0) 3 (5.3) 0.314

ACEIs, angiotensin-converting enzyme inhibitors; ALT, alanine aminotransferase; AOR, aortic root diameter; APB, atrial premature beat; APTT, activated partial thromboplastin time;

ARBs, angiotensin receptor blockers; ARNIs, angiotensin receptor-neprilysin inhibitors; AST, aspartate aminotransferase; CO2CP, carbon dioxide combining power; DBP, diastolic

blood pressure; eGFR, estimated glomerular filtration rate; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; ICD, implantable cardioverter defibrillator; IVSD,

interventricular septal dimension; LA, left atrial; LDL-C, low-density lipoprotein cholesterol; LVDd, left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction; LVMI, left

ventricular mass index; LVPWd, left ventricular posterior wall dimension; LVRR, left ventricular reverse remodeling; MRA, mineralocorticoid receptor antagonist; NYHA, New York Heart

Association; RDW-CV, red cell distribution width variable coefficient; RWT, relative wall thickness; RVDd, right ventricular end-diastolic dimension; SBP, systolic blood pressure; TSH,

thyroid stimulating hormone; VF, ventricular fibrillation; VPB, ventricular premature beat; VT, ventricular tachycardia.
aThe remaining valid data regardless of the missing data.

*p < 0.05, **p < 0.01.

Machine Learning and Statistical Tools
The research data of our study were assessed with the machine
learning tools of the scikit-learn project. The tool environment
we applied was Python 3.7.6 with scikit-learn 0.22 running on
Anaconda 3 (4.8.5-Linux-x86_64) for data processing, modeling,
and evaluation. SPSS version 22.0 (IBM SPSS Statistics, IBM
Corporation, Armonk, NY, USA) was used to perform the
descriptive statistics.

RESULTS

Baseline Characteristics
A total of 378 inpatient clinical data points from 104 patients
were collected. Among the 104 patients analyzed, LVRR was
observed in 47 individuals (45.2%) (Figure 1). The characteristics
and the distribution of the patients are shown in Table 1

and Supplementary Figure 1. Patients who developed LVRR
were more likely to have a higher systolic blood pressure,
higher platelet count, lower serum D-dimer level, higher high-
density lipoprotein cholesterol (HDL-C) level, smaller left atrial
dimension, and smaller right ventricular end-diastolic dimension
and were less likely to suffer from severe mitral regurgitation
(MR). The use or doses of ACEIs/ARBs/ARNIs and β-blockers
were not significantly different between the two groups.

Data From Visits
All patients completed return visits. The details of the time
distributions of visits are shown in Supplementary Figure 2.
LVEF and LVDd were similar between the two groups at
baselines, but in the LVRR group, LVEF, LVDd, left atrial
dimension, and severity of MR were improved significantly
and tended to be stable after 1 year (Figures 2A,B,D,G). Right
ventricular end-diastolic dimension, left ventricular posterior
wall dimension, and interventricular septal dimension showed
no obvious change during return visits both in LVRR and non-
LVRR groups (Figures 2C,E,F). NYHA functional class in the
LVRR group was better than that in non-LVRR groups at each
time point (Figure 2H).

Classifier Model Development and
Validation
The individual features were tested in their ability to classify the
LVRR and the non-LVRR. As indicated by Figure 3A, there are
more than 20 features (30.12%) with an AUC that only reached
slightly more than 0.5, and only five features with an AUC larger
than 0.65. The maximum AUC of all features is <0.7. Thus, it
is necessary to identify the combined effects of the features in
discriminating the LVRR and the non-LVRR.

The feature selection procedure is shown in Figure 3B. The
tree-based model was first pretrained on the training set to
obtain the important features (we describe the result of XGBoost
here). Finally, 33 features were selected as important. From these
features, we used greedy search to obtain the feature subset which
can reach an accurate classification result. The greedy searching
provided nine features. Figure 3C shows their importance rank.
These features were used to train an XGBoost model with 10-fold
cross-validation, which consequently achieved AUC 0.8463 and
0.8205 on the CV (cross-validation) set and test set, respectively
(Figure 3D and Supplementary Figure 3). The similarity of the
AUC on training and testing set also accounts for the robustness
of the model.

Ablation analysis was performed with 10-fold cross-validation
to estimate the contributions of each feature in the prediction. As
shown in Figure 3E, the absence of each of them could cause a
decline of the AUC. Moreover, we observed that cystatin C is the
most important feature above all. The ablation of cystatin C can
reduce the AUC from 0.8205 to 0.6591.

By comparison, we tested other machine learning methods
including logistic regression with l1 penalty and random forests
with the same process shown in Figure 3B. As shown in
Figure 3D, our method using XGBoost and random forests
achieved better AUCs than the linear model on the test set, with
AUCs of 0.8205 (95% CI 0.6775–0.9497, p = 0.0119 vs. LR) and
0.7989 (95% CI 0.6589–0.9408, p = 0.0258 vs. LR), respectively.
From the confusion matrix of each model shown in Figure 4,
we found that the XGBoost can correctly classify 13 of 22 LVRR
patients and 16 of 20 non-LVRR patients on the test set, while
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FIGURE 2 | Characteristics of the LVRR group and non-LVRR group at the first visit and return visits. Line chart for the averages of (A) LVEF, (B) LVDd, (C) RVDd, (D)

LA, (E) LVPWd, and (F) IVSd. (G,H) Ratio of the severity of MR and NYHA functional class over time. The data are presented as the mean ± standard error (A–F). In

(A–F), *p ≤ 0.05 by non-paired Student’s t-test between two groups. In (G), *p ≤ 0.05 comparing the percentage of patients who are above moderate or severe in

both groups by chi-square test. In (H), *p ≤ 0.05 by Mann–Whitney U-test. IVSd, interventricular septal dimension; LA, left atrial dimension; LVDd, left ventricular

end-diastolic dimension; LVEF, left ventricular ejection fraction; LVPWd, left ventricular posterior wall dimension; LVRR, left ventricular reverse remodeling; MR, mitral

regurgitation; NS, no statistically significant difference; NYHA, New York Heart Association; RVDd, right ventricular end-diastolic dimension.

the random forests can correctly classify 18 of 22 LVRR patients
and 13 of 20 non-LVRR patients. The above fact indicated that
XGBoost and random forests showed different advantages in
classifying the non-LVRR patients and LVRR patients. Moreover,
these two tree-based models are both superior to the logistic
regression model in classifying LVRR and non-LVRR. Table 2

also reveals the truth by comparing the recall and the sensitivity
measurements in classifying LVRR and non-LVRR. Furthermore,
we did calibration analysis of the above three models in
order to get more statistic evidence for model performance
comparison. As shown in Figure 3F, these models had
similar calibration.
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FIGURE 3 | Building model procedure and contributions of the selected features in the prediction. (A) AUC distribution obtained by individual features in the prediction

of LVRR and non-LVRR; (B) flowchart of greedy feature selection by XGBoost; (C) greedy feature selection provides the nine best features and the comparison of their

importance; (D) receiver operating characteristic curve of three models in testing set. Green, blue, and red curves were generated by the logistic regression, the

(Continued)
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FIGURE 3 | random forest, and the XGBoost algorithms, respectively; (E) ablation analysis is performed to evaluate the contributions of each feature in the prediction;

(F) calibration plot of three models. Blue, green, and red curves were generated by the logistic regression, the random forest, and the XGBoost algorithms,

respectively. CysC, cystatin C; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LA, left atrial; LVPWd, left ventricular posterior

wall dimension; MR, mitral regurgitation; NYHA, New York Heart Association; RVDd, right ventricular end-diastolic dimension; SBP, systolic blood pressure.

FIGURE 4 | Confusion matrices of the predictive models. The confusion matrix of the logistic regression model (A), random forest (B), and XGBoost (C) in the testing

set (∼40% of the cohort). Predicted label: the sum of each column represents the predicted sample number of the classes. True label: the sum of each row represents

the true sample number of the classes.

DISCUSSION

In this study, our key findings are as follows: (1) the XGBoost
and random forest classifiers combining routine clinical indexes
collected before treatment show higher accuracy than logistic
regression in predicting LVRR in patients with DCM. (2) Baseline
cystatin C, right ventricular end-diastolic dimension, andHDL-C
are the most important features in this model, but not LVEF and
LVDd. These machine classifiers might be useful to identify the
patients who may not respond to the medication and in whom

early clinical monitoring and early implementation of preventive
strategies may be helpful.

To the best of our knowledge, this is the first study
using ensemble tree models of machine learning to predict
LVRR. Compared with traditional regression, these models avoid
presupposing a linear relation between different variables and
the assumptions that are required for correctness of statistical
models. In our study, optimized classifiers such as XGBoost
and random forest performed with similar better accuracy in
predicting LVRR. These ensemble tree models might be useful
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TABLE 2 | Comparison of model performance.

Models Classification Precision Recall F1 score

Random forest Non-LVRR 0.7647 0.5909 0.7027

LVRR 0.72 0.8182 0.7660

XGBoost Non-LVRR 0.64 0.8 0.7111

LVRR 0.7647 0.5909 0.6667

Logistic regression Non-LVRR 0.5263 0.5 0.5128

LVRR 0.5652 0.5909 0.5778

LVRR, left ventricular reverse remodeling.

for improvement in risk factor management in DCM. Unlike
the assessment for business risk or the prediction for mortality
risk, we pay more attention to better discrimination in the early
identification of non-LVRR in DCM, which may be followed
more intensively. For the XGBoost model that performed more
accurately in differentiating non-LVRR, it was chosen as the final
model for subsequent analysis. Moreover, we also found that a
single clinical index cannot predict LVRR well, which indicated
that LVRR is a consequence of coaction of several factors. At
last, we built the XGBoost model including four echocardiogram
indexes, three routine laboratory indexes, systolic blood pressure,
and NYHA functional class. LVRR is more likely to occur in
patients with NYHA functional class I–II, compared with those
with NYHA functional class III–IV [61.3% (19/31) vs. 38.4%
(28/73), p= 0.032]. Patients withNYHA functional class I–IImay
be in the early stages of the disease. It has been reported that a
shorter duration of disease is associated with a higher likelihood
of recovery of LVEF (4). This result is also consistent with some
prior reports (20, 36).

Our ablation analysis showed that serum cystatin C
contributes remarkably for the predictive model, which is a
similar finding to those of previous studies on prognosis of
dilated cardiomyopathy. It has been reported that cystatin
C was the best predictor of LVEF increase in DCM patients
(37). Chatterjee et al. (38) revealed that baseline cystatin
C showed incremental benefit in the prediction of cardiac
resynchronization therapy non-response compared with
conventional renal markers. As we all know, cystatin C is not
subject to variability in renal filtration and is considered to be
a more stable renal marker, which is less sensitive to gender
and age. However, cystatin C may not only serve as a marker of
intersecting cardio-renal pathways in patients with DCM but
also associate with cathepsin B inhibition, collagen accumulation,
and myocardial fibrosis, as an inhibitor of cathepsins, which
play a role in the degradation of the extracellular matrix
(39). It has been reported that an excess of cystatin C leads
to extracellular tissue inhibitor of metalloproteinase-1 and
osteopontin accumulation in human cardiac fibroblast cells (40).
We speculate that cystatin C takes part in alterations in collagen
metabolism and the process of cardiac fibrosis in DCM, which
was shown as a key determinant of left ventricular remodeling
in DCM (14). Hence, the combination of cystatin C and eGFR
(calculated by creatinine) leads to obvious improvement in our
model for LVRR in DCM.

In the ablation analysis, we can see that there are four
important clinical indexes of cardiac structure obtained by
echocardiography. Echocardiography represents the first-
line examination in patients with DCM. Our results are
similar to those of previous studies on prognosis and dilated
cardiomyopathy. Barison et al. (41) reported that prognosis
in patients with <35% LVEF was not significantly worse
than those with LVEF >35% (p = 0.476). La Vecchia et al.
(42) reported that right ventricular end-diastolic volume but
not LVEF was demonstrated as an independent predictor
of transplant-free survival. Recent studies also found that
right ventricular function can be used for prediction in the
prognosis of DCM (42, 43). Furthermore, baseline right
ventricular dysfunction was proven as a stronger predictor than
other known prognostic factors, such as NYHA functional
class, functional mitral regurgitation (43), and systolic
blood pressure (5, 13). Right ventricular dysfunction may
reflect an increased pulmonary artery pressure (44), which
may represent an advance stage of ventricular remodeling.
Although, right ventricular end-diastolic dimension did not
adequately reflect right ventricular function, the combination
of adverse remodeling characteristics, such as functional mitral
regurgitation and enlargement of other chambers, can provide
valuable information for prediction.

HDL-C was another important variable that contributes
much in a predictive model from ablation analysis. Emmens
et al. (45) reported an inverse association between HDL-
C and all-cause mortality or MACE in HFrEF, but not in
HFpEF. Freitas et al. (46) also obtained a similar result. The
mechanism underlying the association between HDL-C and
left ventricular reverse remodeling is not yet clear. Emerging
evidence shows that subfractions of HDL have antioxidant,
anti-inflammatory, and endothelial cell protective capacity (47–
49). Sampietro et al. (50) also found a significant association
between HDL-C level and idiopathic DCM and a negative
correlation between HDL-C level and inflammation markers,
which are similar to our results (Supplementary Figure 4). It
may be because serum NT-proBNP levels at first admission
can indicate only a short congestive state (51), and there
are several novel mechanisms between HDL-C level and left
ventricular reverse remodeling in patients with DCM; in our
study, there are obvious differences in the HDL-C level but
not in hsCRP and NT-proBNP between the LVRR and non-
LVRR groups. In addition, DCM is a kind of clinical syndrome
which has an impact on multiple organ systems and diverse
etiologies. We need the timely identification of LVRR, which
can be helpful for their precise management. Machine learning
applications might be an attractive option to provide a solution
to this problem.

Study Limitations
A limitation of our study is that it is a single-center
and retrospective study, so we should obtain stronger
evidence by performing a large sample prospective study
and external validation. A further limitation is that
we focused on the predictive performance rather than
statistical inference. Therefore, we cannot draw a conclusion
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about risk factors. In addition, compared with the linear
models, tree-based models usually own some unexplainable
feature mechanism.

CONCLUSIONS

XGBoost and random forest algorithms exhibit good
performance for predicting LVRR in patients with DCM.
The combination of routine laboratory indicators and
echocardiography indexes can be used for predicting
LVRR in DCM. These machine learning classifiers might
be useful for accurate management and risk evaluation of
patients with DCM.
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