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Abstract: Vitamin C is an essential nutrient for humans and is involved in a plethora of health-related
functions. Several studies have shown a connection between vitamin C intake and an improved
resistance to infections that involves the immune system. However, the body cannot store vitamin C
and both the elevated oral intake, and the intravenous application have certain disadvantages. In this
study, we wanted to show a new formulation for the liposomal packaging of vitamin C. Using freeze
etching electron microscopy, we show the formed liposomes. With a novel approach of post-processing
procedures of real-time sonography that combines enhancement effects by contrast-like ultrasound
with a transducer, we wanted to demonstrate the elevated intestinal vitamin C resorption on four
participants. With the method presented in this study, it is possible to make use of the liposomal
packaging of vitamin C with simple household materials and equipment for intake elevation. For
the first time, we show the enhanced resorption of ingested liposomes using microbubble enhanced
ultrasound imaging.
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1. Introduction

Vitamin C is ubiquitous in nature, particularly in fruits and vegetables, with oral ingestion as the
primary route of administration in humans, since most vertebrates cannot synthesize ascorbic acid [1].
L-gulonolactone oxidase catalyzes the final step in the biosynthesis of ascorbic acid, but is inactive in
primates due to evolutionary conserved deletions. Vitamin C (ascorbic acid) functions as an essential
water-soluble electron donor by donating an electron to a substrate. The reduced form of vitamin C is
ascorbate, which acts as an antioxidant, and is required as a cofactor for various biological reactions [2].
Moreover, several studies have shown that ascorbate modulates vasorelaxation and regulates the
activity of NADPH oxidases involved in inflammatory gene response [3]. Most prominently, vitamin C
is known for its ability to prevent and cure scurvy, which appears clinically when the plasma level is
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below 11µmol/L resulting from a continuous intake of less than 10 mg/day [4]. Interestingly, individuals
with scurvy are highly susceptible to potentially fatal infections, such as pneumonia [5], which links
vitamin C to the immune system and immune cell function [6,7]. Furthermore, vitamin C also has an
influence on the susceptibility and the duration of colds [8]. Animal studies imply a broader role for
vitamin C in the immune response to infections, including pneumonia and sepsis [9–11]. Moreover,
vitamin C has been shown to protect broiler chicks against an avian coronavirus [12–14]. In addition to
this, vitamin C was reported to increase the resistance to infections by a coronavirus of chick embryo
tracheal organ cultures 40 years ago [15]. Additionally, under vitamin C shortage, influenza leads to
more severe lung damage [16] and an influenza infection caused a decrease in vitamin C concentration
in bronchoalveolar lavage fluid in mice [17]. Many infections cause the release of reactive oxygen
species (ROS) by activated phagocytes [5], which link the antioxidant properties of vitamin C and
the immune response. In addition, ROS are important factors involved in mitochondrial damage,
which can cause the loss of function of enzymes in the electron transfer system and/or cell death [18].
Studies in critically ill septic patients suggest a problem in cellular respiration rather than in oxygen
delivery since oxygen levels in tissue were observed to be elevated while the oxygen consumption was
decreased [19]. Thus, antioxidants and antioxidant enzymes are required to reduce oxidative stress
during a viral infection or critical illness.

With an oral intake of approximately 200 mg/day of vitamin C in healthy people, the blood level
reaches a value of approximately 70 µmol/L that does not increase despite higher intake [20]. However,
the recommended intake for vitamin C is 500 mg/day and, therefore, up to one hundred-fold higher
than that for many other vitamins [21], and is still controversially debated [22]. Even if this intake is
accomplished, some studies imply benefits of further supplementation [5] and a higher demand may
arise from physical or psychological stress [23,24]. However, higher doses of orally applied vitamin C
lead to gastrointestinal tract dysfunction. Vitamin C is soluble in water and is available in its anionic
form (>99.9%) at neutral pH and only diffuses across the plasma membrane at a slow rate, even in the
presence of a concentration gradient. Carrier proteins facilitate the diffusion across membranes but
require an electrochemical gradient. However, increasing oral doses are associated with decreasing
absorption fraction due to the saturation of the sodium ion dependent active vitamin C transporter
(SVCT1) [25]. In contrast, SVCT2 is widely expressed in all organs and ensures the distribution of
vitamin C from the blood stream into the cells in order to secure local demands [26,27]. In cancer
treatment, it has been shown that high blood levels of vitamin C can be achieved with intravenous
administration [28]. However, high blood levels do not necessarily correlate with the concentration in
tissue and cells.

Vitamin C plasma concentration can be increased by oral application of liposomes. Lipid aggregates
can prevent vitamin C degradation in the gastrointestinal tract [29–32]. Davis et al. showed that the
oral application of 4 g of vitamin C encapsulated in liposomes increased the plasma concentration
up to Cmax (about 200 µM) after 3 hours [33]. Liposomes composed of phosphatidylcholines are an
important component of a balanced diet [32]. Despite cholines and phosphatidylcholines being crucial
for a wide range of physiological functions, most of the population’s consumption remains far below
the recommendations [34]. Phospholipids are not only an important part of a balanced diet, but
also exert a positive impact on inflammation and several diseases [35–37]. Willer et al. have shown
that phosphatidylcholine can inhibit HIV-1 infected cell growth in vitro, and concluded that formula
containing phosphatidylcholines are well tolerated by humans, and might be applicable during early
stages of HIV-1 infections in order to reduce the number of virus producing cells [38]. It should
be noted that in some medical conditions the supplementation with vitamin C is contraindicated.
Patients with hemochromatosis or glucose-6-phosphate dehydrogenase (G-6-PD) deficiency should
avoid any vitamin C supplementation, and individuals that take iron chelators should not exceed an
intake of vitamin C of more than 200 mg/day [39,40]. Additionally, there are conflicting reports over
whether excessive vitamin C intake increases urinary oxalate excretion [41–43]. Therefore, people with
preexisting kidney impairments should be careful with vitamin C supplementation. Here, we present
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a new composition for the oral intake of vitamin C together with liposomes that adds to the numerous
benefits of vitamin C and phospholipids, enables the oral application of elevated doses for extended
periods of time, and causes no intestinal disturbances in healthy children and adults.

2. Experimental Section

2.1. Liposomal Packaging

A total of 477 g of distilled water, 115 g of Ethanol (98% vol., Weisshaus GmbH, Füssen, Germany),
161 g of ascorbic acid (Golden Peanut GmbH, Garstedt, Germany), and 13 g of MgCl2 is mixed in
a glass flask and constantly stirred while placed in an ultra-sonic water bath, until all parts of the
solution are completely dissolved. Subsequently, 197 g of lecithin (Powder, from Sunflower, IVOVITAL,
Hofgeismar, Germany) is added and mixed with a blender using average speed. The mixture is
incubated at 4 ◦C for 24 h and stirred every 6 hours for 4 minutes. Afterwards, the mixture is poured
in a glass flask and placed in an ultra-sonic bath for 45 minutes in order to degas the mixture, in which
causes foam on the surface area. The foam is discarded and the remaining mixture is placed in an
ultra-sonic water bath again for another 45 minutes. During the two ultra-sonic bath treatments, the
water temperature might increase, and in that, case should be replaced by cold water since liposomes
tend to resolve when exposed to a higher temperature than 37 ◦C. The mixture is divided into 50 ml
portions for oral intake, of which each one consist of 11.0 g of lecithin, 6.4 g of ethanol (98%), 33.5 g of
purified water, and 9 g of vitamin C. Noteworthy, all ingredients can be purchased in online shops or
in local drug stores.

2.2. Ascorbic Acid Detection

A 2,6-Dichloroindophenol sodium salt hydrate (Sigma Aldrich, St. Louis, MO, USA) solution has
a deep blue color. Addition of ascorbic acid reduces the blue 2,6-Dichloroindophenol to the colorless
aminodiphenol-form. Although this reaction can be initiated by any strong antioxidant, vitamin C is
the only candidate for this in our formulation. The reaction of liposomal vitamin C, a control group
based on the same concentration of vitamin C, as well as purified water, was tested. The test solution
was a 0.01 mM solution of 2,6-dichloroindophenol sodium salt hydrate. Moreover, 0.8 mL liposomal
and non-liposomal vitamin C was diluted with 40 mL of water. Subsequently, the diluted vitamin C
was added to the 2,6-Dichloroindophenol in 10 µL steps, stirred and afterwards the absorbance was
measured photometrically at a wavelength of 600 nm with a multiwell plate reader (VarioScan, Thermo
Scientific, Waltham, MA, USA).

2.3. Freeze-Etching

About 1.5 µL of the liquid sample was applied onto a gold carrier for freeze-etching (BALTIC
preparation, Wetter, Germany) and immediately frozen by plunging it into liquid nitrogen. The
carrier was placed onto a sample holder of the freeze-etching device (T:·−183 ◦C) and loaded into the
freeze-etch unit (CFE-50; p < 10−6 mbar; Cressington, Watford, UK). The frozen sample was fractured
with a cold knife (T < −175 ◦C) and etched for 4 minutes at a temperature of T = −97 ◦C (sublimation
of the surface water of the sample; ’freeze-etching’). Afterwards, the sample was coated with 1 nm
Pt/C (Platinum/Carbon; electron beam evaporation) under an angle of 45 ◦C, and with about 10 nm
carbon at 90 ◦C for the stabilization of the replica. After removal of the samples from the freeze-etch
unit, the replicas were floated onto the surface of sulfuric acid (70%) in order to remove the remainder
of the organic substance. The replica was washed three times with distilled water and finally collected
onto copper grids with a high transparency (Hex600; G2670C, Plano, Wetzlar, Germany). The samples
were analyzed and micrographs taken at 80 kV with an EM 902 transmission electron microscope
(Zeiss, Oberkochen, Germany), equipped with a 2k × 2k side-entry CMOS camera (Tröndle TRS,
Moorenweis, Germany).
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2.4. Ultrasound Examination of Intestinal Absorption

All examinations were performed by one experienced certified examiner (DEGUM 3), with over
20 years of sonogram experience, using a multi frequency convex transducer (C1-6Mhz) on a high-end
machine (LOGIQ-E9 GE Healthcare, Milwaukee, USA). Image storage was done via single images
and cine-loops in DICOM (Digital Imaging and Communications in Medicine) and was sent to PACS
(Picture Archiving and Communication System) for independent reading.

After informed consent, and in compliance with the Declaration of Helsinki, four healthy
volunteers (1 woman, 1 man, and 2 children, the family of the first author) were included in the
study and were preconditioned by fasting for 12 h before the test. Prior to the application of the
liposomal suspension a high-resolution ultrasound of the abdomen, the stomach to the duodenum
and small bowl to the colon, the liver, kidneys and the bladder was performed. This examination was
repeated after drinking either purified water or 50 mL (adults) and 25 mL (children), respectively of
the mixture with liposomal vitamin C. The whole family has consumed this food supplement twice a
week for a long time in combination with a sufficient fluid intake. Ultrasound images were acquired
after 15 min, 30 min, 60 min, 90 min, and 120 min. A double mode from B-mode and microbubble
enhanced ultrasound (MEU) was used for the documentation of the bubble penetration through
the intestinal wall and to visualize vascular changes such as echo enhancement in the mesenteric
vessels and the liver vessels. The mechanical index was reduced to lower than 0.16 (MI ≤ 0.16).
Hybrid mode refers to post-processing procedures of real-time sonography that combines the method
of 1–5MHz (C1-5-D convex probe) contrast enhanced ultrasound (CEUS) (without contrast agent
administration) with a 6–9MHz probe (9L-D linear probe) and a matrix 6–15MHz transducer (ML
6–15-D Matrix Array Linear Probe) [44]. A positive vote by the ethics committee of the Regensburg
University for the use of ultrasound for the assessment of abdominal organ perfusion in children exists
(reference number 14-101-0015). According to the statement of the European Federation of Societies
for Ultrasound in Medicine and Biology (EFSUMB), ultrasound is the primary imaging procedure
especially in pediatrics [45]. For the quantification of signal intensities ImageJ (Fiji) [46] was used.
Statistical significance between signal intensities was assessed using student’s t-test. A p-value below
0.05 was considered significant.

3. Results

3.1. Ascorbic Acid Detection

To reach a complete decoloration of the 2,6-Dichloroindophenol sodium salt hydrate solution, less
than 40 µL of water and vitamin C mixture was enough while 70 µL of liposomal packed vitamin C
was needed (Figure 1). An absorbance value below 0.037 was considered as a complete decoloration
because of the measured optical density of purified water (0.035 ± 0.0004).
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3.2. Freeze-Etching

Examples of TEM images obtained from the freeze-etched liposomal vitamin C suspension are
shown in Figure 2. The liposomes vary in size between 400 and 3000 nm. Arrows in Figure 2B indicate
lipid layers.

Figure 2. TEM images of freeze-etched liposomes. (A) Overview. The diameter of liposomes reaches
from ca. 400 nm to ca. 3000 nm. Bar measures 1000 nm. (B) Multiple lipid layers can be observed
(arrows). Bar measures 500 nm.

3.3. Ultrasound Examination of Intestinal Absorption

Microbubble enhanced ultrasound (MEU) was performed through oral application of 50 mL of
the mixture containing 9 g of vitamin C for adults and 25 mL with 4.5 g of vitamin C for children. With
the intake of purified water, no signal changes and no penetration trough the intestinal wall could be
detected by high-resolution ultrasound. There was no enhanced signal in the mesenteric and liver
vessels. After ingestion of the mixture with vitamin C, the substance was immediately detected as an
echo amplification by ultrasound in the stomach (Figure 3).

Figure 3. Ultrasound image of the stomach. B-mode after ingestion of the mixture with vitamin C,
the substance was immediately detected as an echo amplification by ultrasound in the stomach. The
microbubbles (MEU) migrated to the stomach wall and are clearly visible.
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After only 10 to 15 minutes, an uptake trough the wall of the jejunum could be detected. Some of
the microbubbles could be seen in the lumen of the mesenteric vessels up to the portal vein after 30
to 60 min and after 120 min, the signal appeared to be enhanced. Figure 4 shows one patient before
and 90 min after liposomal vitamin C uptake with a high signal in the mesenteric vessels, liver and
little signal in the stomach as an expression of small remains of the mixture. Signal intensities in
mesenteric vessels preceding the oral vitamin C intake, and following the oral vitamin C application,
were quantified for all four patients (Figure 5).

Figure 4. High-resolution ultrasound, multi-frequency C1-6 MHz probe. Abdominal ultrasound
images before (A) and 90 minutes after oral application of vitamin C formula (B) from one volunteer.
The circles show the mesenteric vessels. There is a clear microbubble signal indicating the intestinal
absorption of liposomes.
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Figure 5. Microbubble signal intensities in mesenteric vessels prior to and following oral vitamin
C application for all four patients. Mean and Standard derivations are shown (p-value: 0.0013
(**: p-value < 0.01)).

Figure 6 shows the direct comparison of B-mode, MEU, and a hybrid mode, demonstrating the
uptake of high echo bubbles into the mesenteric vessels. After detection in the mesenteric vessels, the
signal was also seen in the liver vessels (Figure 7). No signal was seen in the kidney (Figure 8).

Figure 6. High resolution Ultrasound, multi-frequency C1-6 MHz probe, direct comparison of B-mode
(A), microbubble enhanced ultrasound (MEU) (B), and hybrid mode (C) 90 minutes after liposomal
vitamin C uptake. (A) B-mode after application of the microbubbles with vitamin C (B): enhanced
signal in the subtraction image with low MI ≤ 0.16, high signal intraluminal in the stomach-duodenum,
mesenteric vessels, and liver corresponding to the enhancement of the MEU. (C) Visualization of the
microbubbles with the hybrid subtraction mode. Clear enhancement of the bubbles in the intraluminal
vessels, stomach/duodenum, and liver.
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Figure 7. Ultrasound image of liver. Visualization of the microbubbles with the hybrid subtraction
mode. Clear enhancement of the bubbles in the larger and smaller liver vessels (arrow).

Figure 8. Ultrasound image of kidney. No enhanced signal is detected in the kidney.

4. Discussion

Vitamin C is not only an essential nutrient with antioxidant properties, but also plays an important
role for the immune system [5,7,47]. Both the oral application and the intravenous administration have
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limitations when trying to reach and maintain saturated plasma levels [10,28,32]. However, liposomal
packing of vitamin C might be a way to overcome these limitations. It has already been shown that
an oral application of liposomal packed vitamin C can raise the plasma level [32]. Although many
studies evaluate liposomes and related compounds as a drug delivery system, our method stands out
because of the simplicity of the procedure. We investigated the intestinal absorption and the tolerability
of liposomal packed vitamin C with a newly revised formula that can be reproduced with simple
materials and equipment easily available. Additionally, phospholipids themselves have a beneficial
effect on the human body.

Our formula contains liposomes, which are depicted in the electron microscopy images of
the freeze-etched sample. These liposomes contain vitamin C, which is indicated by the delayed
decoloration of 2,6-Dichloroindophenol sodium salt hydrate when ascorbic acid is combined with
lecithin. During ultrasound monitoring, we received a signal from these liposomes that resembles that
of ultrasound contrast agents. These are made up of encapsulated microbubbles in suspension and
are applied to evaluate the perfusion, to characterize tumors, to assess vesicoureteral reflux and other
indications [48–50]. The gas core (e.g., sulfur hexafluoride) of these contrast agents is surrounded
by a stabilizing shell of phospholipids, albumin, or other material, and enables a higher level of
persistence in the circulatory system for several minutes. The bubbles remain strictly intravascular
and are not filtered by the glomeruli [51]. The microbubbles scatter the ultrasound beam due to their
size and difference in acoustic impedance. We hypothesize that the ultrasound brings the liposomes
in oscillation, which causes distinctive echoes when compared to the tissue. We have used a low
mechanical index of (MI ≤ 0.16) to preserve the microbubbles and to avoid inducing substantial
bio effects. Further investigation in vitro is needed to understand the exact interaction between the
ultrasound waves, the mechanical index pulses, and the liposomes.

For the first time, we monitored that the progress of vitamin C loaded liposomes from the stomach
to the duodenum and to the distal small bowl using dynamic high-resolution ultrasound. Noteworthy,
oral application of the liposomal mixture showed a significant uptake trough the duodenum and
jejunum. In addition, 30 to 60 min later, the liposomes were detected in the mesenteric vessels and
became a lot more distinct after 90 minutes; we were able to see the signal from the liver vessels. We
demonstrated that the liposomes adhered to the intestinal wall, producing an intensified signal and
then penetrate through the mucosa [52]. We assume that hypervascularization occurs and that the
bubbles can migrate into the mesenteric vessels. It is important to notice that our data originates from a
small number of individuals. Especially the results regarding the signal intensity quantification should
be interpreted with care due to the limited number of participants. However, our results can be seen as
a proof of principle, nevertheless.

For the first time we were able to show changes of the echo signal in the luminal and mural
structure of the bowel and the mesenteric vessels. In general, the transabdominal ultrasound is mostly
used for the detection and evaluation of gastrointestinal wall and lesions. Liur et al. developed
a method of transabdominal ultrasound after oral administration of an echo rich cellulose-based
gastric ultrasound contrast agent (TUS-OCCA) [53]. In contrast to the echo rich cellulose-based agent
(Huzhou East Medical Devices, Huzhou, Zhejiang, China) that remains in the intestinal lumen, our
microbubbles migrated through the intestinal wall and transferred the active substance, in this case
ascorbic acid, into the blood circulation and the cells [54]. Of course, the possibilities for liposomal
packing and the successive resorption enhancement are not limited to vitamin C. With little adjustments
to the procedure, enhanced resorption after liposomal packing might be possible for a large variety
of essential nutrients. However, worldwide tragedies like the corona virus pandemic remind us of
the importance of the prevention of infections and the strengthening of the immune system. The four
volunteers, including the two children aged 9 and 12 years, consume the mixture regularly and can
confirm that it is very well tolerated by the intestine and body. However, because of the conflicting
results regarding the connection between vitamin C intake and kidney stone formation, people with
renal diseases should be careful with vitamin C supplementation.
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The exact mechanism of ultrasound on the liposomes and the intestinal resorption remain to be
elucidated. The results of this study should be confirmed with a higher number of participants from a
randomized sample population. In the future, liposome packing should be evaluated in vitro.

5. Conclusions

Our revised formula for liposomal packed vitamin C can be reproduced easily with simple
household materials and equipment and can be considered a well-tolerated dietary supplement for
healthy individuals. For the first time, we observed the uptake of ingested liposomes following their
way from the gut to the mesenterial vessels and liver vessels as a proof of principle via microbubble
enhanced ultrasound (MEU) with all the advantages of real time imaging.
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