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IMPORTANCE: Multistate models yield high-fidelity analyses of the dynamic 
state transition and temporal dimensions of a clinical condition’s natural history, 
offering superiority over aggregate modeling techniques for addressing these 
types of problems.

OBJECTIVES: To demonstrate the utility of these models in critical care, we 
examined acute kidney injury (AKI) development, progression, and outcomes in 
COVID-19 critical illness through multistate analyses.

DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study at an 
urban tertiary-care academic hospital in the United States. All patients greater 
than or equal to 18 years in an ICU with COVID-19 in 2020, excluding patients 
with preexisting end-stage renal disease.

MAIN OUTCOMES AND MEASURES: Using electronic health record data, 
we determined AKI presence/stage in discrete 12-hour time windows and fit mul-
tistate models to determine longitudinal transitions and outcomes.

RESULTS: Of 367 encounters, 241 (66%) experienced AKI (maximal stages: 
88 stage-1, 49 stage-2, 104 stage-3 AKI [51 received renal replacement therapy 
(RRT), 53 did not]). Patients receiving RRT overwhelmingly received invasive me-
chanical ventilation (IMV) (n = 60, 95%) compared with the AKI-without-RRT  
(n = 98, 53%) and no-AKI groups (n = 39, 32%; p < 0.001), with similar mor-
tality patterns (RRT: n = 36, 57%; AKI: n = 74, 40%; non-AKI: n = 23, 19%;  
p < 0.001). After 24 hours in the ICU, almost half the cohort had AKI (44.9%; 
95% CI, 41.6–48.2%). At 7 days after stage-1 AKI, 74.0% (63.6–84.4) were 
AKI-free or discharged. By contrast, fewer patients experiencing stage-3 AKI 
were recovered (30.0% [24.1–35.8%]) or discharged (7.9% [5.2–10.7%]) after 
7 days. Early AKI occurred with similar frequency in patients receiving and not re-
ceiving IMV: after 24 hours in the ICU, 20.9% of patients (18.3–23.6%) had AKI 
and IMV, while 23.4% (20.6–26.2%) had AKI without IMV.

CONCLUSIONS AND RELEVANCE: In a multistate analysis of critically ill 
patients with COVID-19, AKI occurred early and heterogeneously in the course of 
critical illness. Multistate methods are useful and underused in ICU care delivery 
science as tools for understanding trajectories, prognoses, and resource needs.

KEY WORDS: acute kidney injury; COVID-19; critical illness; hospital outcomes; 
statistical modeling

Analyzing the natural history, response to treatment, and outcomes of 
critical illness syndromes is made difficult by these syndromes’ hetero-
geneity in terms of organ involvement, severity, clinical interventions, 

and time (1). For such entities—which are both dynamic and longitudinal—
commonly used approaches frequently fall short. For example, cross-sectional 
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evaluations may be at risk for bias due to unequal ob-
servation time (2), whereas traditional time-to-event 
models lack intrinsic handling of competing risks and 
informative censoring (3, 4) and themselves may be at 
risk for time-dependent bias (5).

In contrast, modern longitudinal analytic 
approaches such as multistate models can assess meas-
ures that change over time and in response to inter-
ventions, offering superiority over aggregate modeling 
techniques for addressing this type of clinical problem. 
The multistate model conceptualizes a stochastic pro-
cess (e.g., a patient’s clinical ICU course) in terms of 
a set of comprehensive, mutually exclusive states and 
the transitions among them, accounting for compet-
ing events at each transition (6, 7). By evaluating pa-
tient transitions in and out of these states over time, 
multistate models explicate longitudinal cohort-level 
outcomes with high granularity (e.g., some patients 
with respiratory failure require mechanical ventila-
tion immediately in their critical illness, while others 

deteriorate slowly and still others have an abrupt late 
respiratory collapse).

As an example of how such models might inform 
clinical and administrative decision-making in the 
ICU, we performed multistate analyses examining the 
clinical courses and outcomes of critically ill COVID-
19 patients at risk for acute kidney injury (AKI) at an 
academic hospital in 2020. AKI is a well-described 
complication of COVID-19 critical illness, including 
high rates of renal replacement therapy (RRT) and (es-
pecially during the initial surge) lower-than-expected 
rates of renal recovery (8–13). Given the frequency of 
resource constraints—and risks of rationed care—in 
earlier pandemic waves, a detailed understanding of 
critically ill patients at risk for AKI and RRT might 
have informed planning and allocation of finite re-
sources such as RRT devices and supplies, appropri-
ately trained staff, and electrolyte replacement fluids 
(14–17), which necessitated alterations in dialysis dos-
ing, schedule, modality, and staffing in prior waves (18, 
19). In this applied example, we provide insight into 
the practicalities and pitfalls of using multistate mod-
eling in critical care outcomes research.

MATERIALS AND METHODS

Study Population and Setting

At Barnes-Jewish Hospital, a 1,300-bed urban quat-
ernary care center in St. Louis, MO, we performed a 
retrospective cohort study of all adults (≥ 18) admit-
ted to an ICU with COVID-19 between March 16, 
2020, and December 31, 2020. We included all hos-
pitalizations with a positive polymerase chain re-
action test for severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) within 14 days prior to 
admission or the first 7 days of hospitalization. We 
restricted the cohort to index hospitalizations and 
excluded patients who were receiving RRT prior to 
hospital admission (i.e., those with end-stage renal 
disease [ESRD]). All procedures were followed in ac-
cordance with the Helsinki Declaration of 1975 and 
the ethical standards of the Washington University 
Institutional Review Board, which reviewed this 
project (No. 202008041, “Clinical Phenotyping 
of COVID-19 and Other Viral Pneumonias using 
Unsupervised Machine Learning,” August 17, 2021) 
and waived the need for approval, with a waiver of 
informed consent.

 KEY POINTS

• Question: What are the trajectories and out-
comes of acute kidney injury (AKI) among criti-
cally ill adult patients with COVID-19?

• Findings: As proof-of-concept, we fit multistate 
models on electronic health record data from a 
single hospital to describe longitudinal AKI tra-
jectories, transitions through worsening and re-
covery, and outcomes of critically ill patients with 
COVID-19. Of 367 encounters, 241 (66%) experi-
enced AKI (maximal stages: 88 stage-1, 49 stage-
2, 104 stage-3 AKI [51 received renal replacement 
therapy, 53 did not]). At 7 days after stage-1 AKI, 
74.0% (63.6–84.4%) were AKI-free or discharged; 
by contrast, fewer patients experiencing stage-3 
AKI were recovered (30.0% [24.1–35.8%]) or dis-
charged (7.9% [5.2–10.7%]) after 7 days.

• Meaning: Multistate models can evaluate dy-
namic longitudinal data and outcomes effectively, 
making them ideal methodologic approaches for 
evaluating many critical illness syndromes over 
time.
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Data and Measurements

We extracted electronic health record (EHR; Epic, 
Verona, WI) data from Washington University’s insti-
tutional research data warehouse (6, 20). These data 
included admission, discharge, and room change dates 
and times, sociodemographic information, laboratory 
results, diagnosis codes, level of care (i.e., inpatient 
floor, ICU), intubation and mechanical ventilation 
procedures, and outcomes (i.e., death, discharge) for 
all patients as charted throughout hospitalization. Via 
chart review, we confirmed the presence and modality 
of RRT for each patient’s first 14 days of critical care 
because these data were insufficiently available in the 
research data warehouse’s flowsheets.

We determined the presence and stage of AKI using 
the Kidney Disease: Improving Global Outcomes sys-
tem’s creatinine-based criteria (21). Due to insuffi-
ciently charted data, we did not include urine output 
within AKI determinations. For each patient, we 
estimated baseline creatinine values in a two-tiered 
process. First, we used the mean prehospital serum 
creatinine from all values recorded between 1 year 
and 7 days prior to hospitalization (22). If no prehos-
pital data were available, we imputed values accord-
ing to a gender-fixed equation (23). We chose this 
equation over race-based alternatives given emerg-
ing evidence that such models inflate estimated glo-
merular filtration rate for Black patients (24), which 
would inappropriately underclassify their AKI in 
some instances.

Analyses

We fit two distinct multistate models on the data. 
Multistate models for continuous-time stochastic pro-
cesses allow subjects to move—“transition”—among a 
finite number of states over time (25, 26). State transi-
tion models, in their most simple construction, involve 
one or more initial states, one or more transient states, 
and one or more absorptive states (Fig. 1). Initial states 
represent patient entry into the model; no transi-
tions into initial states are possible. Absorptive states 
are those from which patients cannot transition sub-
sequently (e.g., an end state such as death). Between 
initial states and absorptive states are transient states 
(e.g., stage I AKI, which can worsen or resolve). These 
intermediate states occur (or do not) after an initial 
state but before an end state and change the risk of the 

subsequent end state if encountered. Transient states 
can be entered and exited once, more than once, or not 
at all. Importantly, if an individual enters a transient 
state, they must also depart said state at some time 
point. The state structure is then specified by a statis-
tical model of the hazard function for each possible 
transition.

Multistate transition intensities provide individual 
hazards for movement from one state to another, allow-
ing determination of mean times within a particular 
state as well as the number of subjects in each state at 
a certain moment. Thus, for each model, we estimated 
the longitudinal probability of a patient developing 
each clinical status after entering one of several spe-
cific stages. Each of our models was based in mutually 
exclusive and exhaustive clinical states involving the 
patient’s worst clinical state within consecutive 12-hour 
discrete time windows beginning at ICU admission. In 
the first approach, we categorized patients into one of 
six clinical states consisting of their current stage of 
AKI or the competing risks of discharge or death. In 
the second approach, we condensed the AKI stages 
into permutations with and without invasive mechan-
ical ventilation (IMV), yielding six total states. These 
dual approaches allowed us to triangulate the longitu-
dinal dynamics of AKI stages and the relative timing 
of AKI and IMV. We used Aalen-Johansen nonpara-
metric analyses to evaluate clinical state switching for 

Figure 1. Frameworks for multistate analysis of transitions 
between acute kidney injury (AKI) stages and related clinical 
states. Blue connectors indicate single-direction transitions, while 
black connectors indicate bidirectional transition possibilities. 
States are: 1) no AKI, 2) stage 1 AKI, 3) stage 2 AKI, 4) stage 
3 AKI, 5) discharge, 6) death. ICU admission is depicted to 
demonstrate that patients could enter one of several states 
immediately.
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individual patients, accounting for unequal observa-
tion times among patients (Supplementary Appendix 
1, http://links.lww.com/CCX/B78) (6, 25, 26). We also 
used alluvial plots to depict clinical state trajectories 
over time; alluvial plots demonstrate flow of either in-
dividual data points or groups of observations through 
different categorical states over time (27).

We also estimated instantaneous hazard rates for spe-
cific outcomes from prespecified states, regardless of 
intermediate states (analogous to its role in other time-
to-event analyses, the hazard function models the in-
stantaneous risk of transitioning from a particular state 
to another one, conditional on not having previously 
made said transition). In the first model, we estimated 
the instantaneous hazard rates for any AKI, stage 3 AKI, 
discharge, and death from ICU admission. We also esti-
mated the instantaneous hazard rates for AKI resolution, 
stage 3 AKI, discharge, and death from the onset of stage 
1 AKI, and the instantaneous hazard rates for AKI resolu-
tion, discharge, and death from the onset of stage 3 AKI. 
In the second model, we estimated the instantaneous 
hazard rate for AKI from the onset of IMV, and the in-
stantaneous hazard rate for IMV from the onset of AKI.

For each analysis, “time zero” was the entry into 
that particular state. Censoring occurred at discharge, 
death, or the end of ICU day 14.

Sensitivity Analyses

To demonstrate the robustness of our findings, we 
conducted two prespecified sensitivity analyses. In 
the first, we reestimated baseline creatinine using the 
Modification of Diet in Renal Disease (MDRD) equa-
tion instead of gender-fixed imputation (28). In the 
second, we reestimated baseline creatinine using the 
first-available creatinine from hospitalization when a 
known baseline was unavailable (23, 28). We refit all 
models within each sensitivity analysis.

Analysis Considerations

We summarized data using frequencies with propor-
tions or medians with interquartile ranges and com-
pared data using Kruskal-Wallis and chi-square tests. 
We considered p values of less than or equal to 0.05 
significant. We performed all analyses using R 4.1 
(R Foundation for Statistical Computing, Vienna, 
Austria) and the tidyverse, mstate, survival, and table-
one packages (29–32).

RESULTS

Of 386 ICU admissions, 19 were excluded for preex-
isting ESRD. The final cohort contained 367 hospital-
izations in the ICU. Overall, 116 patients (32%) had 
prehospitalization serum creatinine measurements, 
leaving 251 patients to be imputed according to the gen-
der-fixed formula. Serum creatinine values and results 
from imputation can be found in Supplemental Table 
1 (http://links.lww.com/CCX/B78) and Supplemental 
Figure 1 (http://links.lww.com/CCX/B78).

Of these 367 patients, 241 (66%) experienced AKI 
of any degree. Specifically, 51 patients (13%) received 
RRT while in the ICU, and a further 53 (14%) patients 
experienced stage 3 AKI without receiving RRT. Of the 
remaining patients experiencing AKI, 49 (13%) sus-
tained stage 2 AKI while in the ICU, and 88 (24%) did 
not progress beyond stage 1 AKI. Patient characteris-
tics differed among the groups of patients receiving 
RRT, experiencing AKI but not receiving RRT, and 
not experiencing AKI (Table 1). There were no sta-
tistical differences between the initial peak (March–
July) and the second peak (August–December) in 
terms of AKI rates (n = 115 [69%] vs n = 200 [63%]; 
p = 0.2), but RRT use was significantly lower (n = 31 
[19%] vs n = 20 [10%]; p = 0.018; Supplemental Fig. 
2, http://links.lww.com/CCX/B78) during the second 
peak.

Patient outcomes were worse in the RRT and non-
RRT AKI groups than in the no-AKI group (Table 1). 
Trends in IMV and RRT use were similar over time 
(Supplemental Fig. 2, http://links.lww.com/CCX/
B78). The presence of AKI and RRT were associated 
with stepwise increases in the composite of hospital 
mortality and hospice discharge (AKI: n = 74, 40%; 
RRT: n = 36, 57%) compared with non-AKI patients  
(n = 23, 19%; p < 0.001). Among patients receiving 
RRT in the ICU, 10 (16%) were discharged with a per-
sistent RRT requirement.

After 24 hours in the ICU, almost half the cohort 
was experiencing AKI (44.9%; 95% CI, 41.6–48.2%; 
Fig. 2; Table 2), with advanced stages also occurring 
early in the course of critical illness. At this point, 
22.1% of the cohort (17.4–26.7%) had stage 2 or stage 
3 AKI. By ICU day 7, these rates were 29.4% with any 
AKI (20.8–38.0%) and 18.7% (13.3–24.3%) with stage 
2 or stage 3 AKI; the competing risks of death or hos-
pice discharge comprised another 11.8% (8.6–15.1%) 
at this point.

http://links.lww.com/CCX/B78
http://links.lww.com/CCX/B78
http://links.lww.com/CCX/B78
http://links.lww.com/CCX/B78
http://links.lww.com/CCX/B78
http://links.lww.com/CCX/B78
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Although advanced stages of AKI occurred early 
within ICU stays, patient trajectories from stage 1 
AKI most frequently involved rapid resolution (Fig. 
3, A and B). Approximately nine in 10 patients expe-
riencing stage 1 AKI had resolved after 24 hours  
(92.1% [88.5–95.7%]). At 7 days after stage 1 AKI, 
74.0% (63.6–84.4%) of patients had either been dis-
charged or were AKI-free. By contrast, fewer patients 
experiencing stage 3 AKI had recovered (30.0% 

[24.1–35.8%]) or been discharged (7.9% [5.2–10.7%]) 
after 7 days. Instantaneous hazard estimations (Fig. 
3C) confirmed these findings.

The second multistate model demonstrated that 
early AKI occurred with similar frequency in patients 
receiving and not receiving IMV: after 24 hours in the 
ICU, 20.9% of patients (18.3–23.6%) had AKI and were 
intubated, while 23.4% of patients (20.6–26.2) were 
experiencing AKI but were not mechanically ventilated 

TABLE 1. 
Patient Characteristics and Outcomes Stratified by Presence of Acute Kidney Injury and 
Receipt of Renal Replacement Therapy

Patient Characteristics  
and Outcomes No AKI, n = 126 

AKI Without RRT, 
n = 190 RRT, n = 51 p 

Patient characteristics

 Age, median (IQR) 60.0 (42.0–69.0) 68.0 (60.0–76.0) 65.0 (55.0–70.0) < 0.001

 Female, n (%) 55 (44) 65 (34) 16 (31) 0.246

 Race, n (%)    0.014

  Other 12 (9.5) 10 (5.3) 1 (2.0)  

  Asian 4 (3.2) 1 (0.5) 1 (2.0)  

  Black 58 (46) 107 (56) 37 (73)  

  White 52 (41) 72 (38) 12 (24)  

 Body mass index, median (IQR) 28.73 (23.41–36.51) 29.29 (25.21–35.42) 31.48 (26.64–37.85) 0.364

 Baseline creatinine without im-
putation, median (IQR)

1.00 (0.91–1.21) 1.26 (0.93–1.63) 2.94 (2.31–4.38) < 0.001

 Chronic kidney disease, n (%) 4 (3.2) 61 (32) 15 (29) < 0.001

 Liver disease, n (%) 2 (1.6) 3 (1.6) 4 (7.8) 0.061

 HIV, n (%) 0 (0.0) 2 (1.1) 0 (0.0) 0.619

 Cancer, n (%) 8 (6.3) 11 (5.8) 2 (3.9) 0.820

 Solid tumor, n (%) 2 (1.6) 7 (3.7) 3 (5.9) 0.235

 Bone marrow transplant, n (%) 1 (0.8) 0 (0) 0 (0.0) 0.606

 Immunodeficiency, n (%) 4 (3.2) 7 (3.7) 2 (3.9) 0.960

 Congestive heart failure, n (%) 27 (21) 57 (30) 8 (16) 0.057

 Hypertension, n (%) 76 (60) 148 (78) 39 (76) 0.002

 Diabetes, n (%) 52 (41) 94 (49) 32 (63) 0.033

Patient outcomes

 Hospital death, n (%) 16 (13) 77 (41) 27 (53) < 0.001

 Hospice discharge, n (%) 3 (2.4) 9 (4.7) 1 (2.0) 0.435

 Hospital LOS, d, median (IQR) 12.1 (5.7–19.7) 14.5 (8.8–24.9) 25.3 (15.0–32.8) < 0.001

 ICU LOS, d, median (IQR) 5.3 (1.9–11.1) 8.0 (3.4–15.2) 18.3 (9.0–25.5) < 0.001

 Invasive mechanical ventilation, 
n (%)

44 (34.9) 104 (54.7) 48 (94.1) < 0.001

 Ventilator-free days at day 28, 
median (IQR)

28.0 (20.0–28.0) 8.0 (0.0–28.0) 0.0 (0.0–10.0) < 0.001

AKI = acute kidney injury, IQR = interquartile range, LOS = length of stay, RRT = renal replacement therapy.
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Figure 2. Clinical acute kidney injury (AKI) trajectories and longitudinal outcomes among critically ill patients with COVID-19 in 2020 
(n = 367). A, The x-axis of the alluvial plot represents specific days in the ICU, while the y-axis indicates the number of patients in the 
cohort. Each day contains strata (colored rectangles) representing the number of patients in a state on that day. Multiple alluvia (curves 
color-coded by current state) demonstrate the number of patients transitioning between states on the days shown. B, The proportion 
of patients estimated to be in each AKI stage at any given time point after ICU admission, accounting for the transitions patients have 
made over time. All patients had 14 d of observation time after ICU admission. RRT = renal replacement therapy.

TABLE 2. 
Multistate-Based Estimated Proportions of Patients in Each Acute Kidney Injury Stage 
Over Time (n = 367)

Patient 
Character-
istics and 
Outcomes 

No AKI, %  
(95% CI) 

AKI Stage 1, % 
(95% CI) 

AKI Stage 2 
(95% CI) 

AKI Stage 3 
and/or RRT, % 

(95% CI) 
Discharged, % 

(95% CI) 
Dead/Hospice, 

% (95% CI) 

Days since ICU admission

 1 55.1 (51.8–58.4) 22.3 (18.6–26.1) 7.2 (4.8–9.5) 14.9 (12.6–17.2) 0 (0–0) 0.6 (0–1.3)

 3 55.4 (51–59.7) 16.8 (12.9–20.7) 3.9 (1.9–5.8) 15.2 (12.2–18.1) 3.9 (1.9–5.8) 5 (2.8–7.1)

 7 44.6 (39.7–49.5) 10.7 (7.5–14) 5.5 (3.2–7.8) 13.2 (10.1–16.4) 14 (10.5–17.6) 11.8 (8.6–15.1) 

 14 26.4 (22.1–30.8) 6.1 (3.7–8.4) 5.2 (3.2–7.3) 5.2 (3.2–7.2) 33.3 (28.6–38.1) 23.7 (19.4–28)

Days since AKI stage 1

 1 92.1 (88.5–95.7) 5.6 (2.6–8.5) 0.6 (0–1.6) 1.2 (0–2.6) 0 (0–0) 0.6 (0–1.5)

 3 79 (73.9–84) 8.8 (5.6–12.1) 1.2 (0.2–2.3) 2.4 (0.8–4.1) 6 (3–9) 2.5 (0.7–4.4)

 7 55.5 (49.8–61.3) 10.1 (6.8–13.4) 3.5 (1.8–5.2) 4.2 (2.2–6.1) 18.6 (13.8–23.1) 8.2 (5.2–11.3)

Days since AKI stage 2

 1 30.6 (23.2–38.1) 59.3 (51.1–67.5) 4.1 (1.3–6.9) 5 (2–8.2) 0 (0–0) 0.9 (0–2.5)

 3 48.9 (42.1–55.8) 29.8 (23.2–36.4) 4.6 (2.1–7.1) 9 (5.4–12.5) 2.8 (1.3–4.3) 5 (2.1–7.9)

 7 45.5 (39.9–51.1) 13.1 (9.2–17.1) 6.4 (3.7–9.1) 9.5 (6.2–12.8) 13.1 (9.6–16.6) 12.4 (8.4–16.3)

Days since AKI stage 3 and/or RRT

 1 4.7 (0.6–8.8) 35.7 (25.2–46.2) 44.8 (32.6–57) 14.5 (7.2–21.7) 0 (0–0) 0.3 (0–0.9)

 3 21.1 (14.4–27.9) 30.6 (23.2–37.9) 11.6 (6–17.2) 25.3 (17.7–33) 0.8 (0.3–1.4) 10.6 (4.3–16.8)

 7 30 (24.1–35.8) 12.7 (8.7–16.8) 9 (5.2–12.8) 21.2 (14.9–27.5) 7.9 (5.2–10.7) 19.1 (12.5–25.7)

AKI = acute kidney injury, RRT = renal replacement therapy.
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(Fig. 4; Supplemental Table 2, http://links.lww.com/
CCX/B78). Among patients who were intubated and 
had not yet experienced AKI, 29.1% (20.2–38.0%) had 
AKI on day 7, with an additional 10.3% (5.0–15.6%) 
having died at this point. Conditional on being intu-
bated with AKI, however, almost two-thirds of patients 
had died or were still experiencing AKI 7 days later 
(62.6% [44.8–80.3%]). Of these patients, exceedingly 
few were discharged (3.2% [1.5–4.8%]) or free of both 
IMV and AKI (7.4% [4.4–10.4%]) at 7 days. The hazard 
of death rose more quickly than those of recovery or 
discharge (Fig. 3D) at all time points.

Prespecified sensitivity analyses showed similar 
findings to those of the primary analysis, with the ex-
pected finding of slightly lower AKI prevalence at all 
time points. Multistate models fit after missing data 
were imputed with either the MDRD-based equation 
(Supplemental Tables 3 and 4, http://links.lww.com/
CCX/B78) or with the first-recorded serum creatinine 

on hospitalization Supplemental Tables 5 and 6 
http://links.lww.com/CCX/B78) redemonstrated the 
early resolution of many stage 1 AKI instances as well 
as similar time point prevalences of AKI between me-
chanically ventilated and nonventilated patients.

DISCUSSION

Multistate modeling is a powerful and potentially val-
uable methodological approach to evaluating longi-
tudinal and dynamic clinical courses and outcomes, 
with particular strengths including accounting for 
competing risks and conditional probabilities. In this 
applied example, we demonstrate these strengths by 
highlighting the granular and longitudinal nature of 
these models’ results, including the specific measure-
ment of individual transition hazards and the visu-
alizations, which can be generated from the overall 
model. For instance, differentiating the anticipated 

Figure 3. Instantaneous hazards of outcomes from prespecified acute kidney injury (AKI)-related states in the ICU based on multistate 
models. A, Hazards for any AKI, stage 3 AKI, hospital discharge, and the composite of death or hospice from ICU admission. B, Hazards 
from stage 1 AKI for AKI progression, resolution, hospital discharge, and death. C, Hazards from stage 3 AKI for resolution, discharge, 
and death. D, Hazards for AKI without invasive mechanical ventilation (IMV), AKI with IMV, hospital discharge, and the composite of 
death or hospice from ICU admission.

http://links.lww.com/CCX/B78
http://links.lww.com/CCX/B78
http://links.lww.com/CCX/B78
http://links.lww.com/CCX/B78
http://links.lww.com/CCX/B78
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short- and intermediate-term courses of stage 1 AKI 
instances from those of more advanced AKI could 
inform both clinical management strategies and 
ICU administrative decisions such as RRT device 
allocation.

Multistate models do have potential limitations and 
pitfalls. First, even sophisticated models are vulnerable 
to poor-quality or unavailable input data. For example, 
time-based RRT status and urine output were not ascer-
tainable from structured data within our EHR reposi-
tory. While the first issue was addressable through chart 
review (which would still preclude full automation of 
such modeling for near-real-time multistate reports or 
forecasts), the second was not due to limited charting. 
These barriers speak to the intrinsic challenges of this 
type of pragmatic EHR-based research and underscore 
the need to develop valid heuristics to identify diagno-
ses, syndromes, and interventions automatically from 
extant data in the EHR (20, 33). Similarly, the inability 
to estimate baseline creatinine from many patients’ 
structured EHR data hampers efforts to scale dynamic 
renal failure models (34, 35); in this example, we in-
tentionally performed relevant sensitivity analyses to 
check the reliability of our baseline assumptions.

Second, and relatedly, interval censoring of obser-
vations affects how precisely time spent within states 
can be modeled. Because serum creatinine is typically 
measured daily or bid, we deliberately chose to assess 
patient status in 12-hour discrete time windows. The 
availability of, for example, hourly urine output mea-
surements could have permitted assessment of transi-
tions at narrower intervals. The extent to which such 
granularity matters will likely depend on the clinical 
question to be answered by modeling.

Third, multistate models have certain intrinsic 
assumptions, including time homogeneity (i.e., tran-
sition probabilities will remain constant over time) 
(36) and (generally) nonexistence or triviality of time-
dependent covariates (37), neither of which may be 
held in some clinical scenarios. Finally, multistate 
models “spend” statistical degrees of freedom with 
each transition rate estimated. The key implication of 
this fact is that for a desired statistical power, sample 
sizes must be larger than for less-complex approaches 
toward answering a given question.

In terms of AKI during COVID-19 critical ill-
ness, our findings validate prior descriptions of AKI 
occurring early and heterogeneously in the course 
of critical illness. Although the epidemiology of 
COVID-associated AKI has been described, the crit-
ical illness trajectories of this syndrome have been 
less well defined, particularly in terms of the timing 
and intensity of AKI burden. We also found that the 
presence of IMV was not strongly associated with 
AKI development, as we had hypothesized it would 
be. However, this finding is limited by the absence 
of control for potential confounders such as severity 
of illness, therapeutic interventions (e.g., corticoste-
roids), supportive care, or temporal trends in other 
unmeasured factors.

Important limitations of our study include its sin-
gle-center dataset from the early stages of the COVID-
19 pandemic. These data precede the emergence of the 
delta and omicron variants, as well as the widespread 
use of SARS-CoV-2 vaccines, monoclonal antibodies, 
and anti-inflammatory therapy such as tocilizumab 
and baricitinib. As such, these results are not gener-
alizable to other settings or to the current stage of the 
pandemic and are instead meant to illustrate a set of 
methods and processes that are transferrable to myriad 
analogous clinical syndromes and settings. Finally, 
because decisions regarding RRT initiation may be 

Figure 4. Clinical acute kidney injury (AKI) and invasive 
mechanical ventilation (IMV) trajectories and longitudinal 
outcomes among critically ill patients with COVID-19 in 2020  
(n = 367). The x-axis of the alluvial plot represents specific days 
in the ICU, while the y-axis indicates the number of patients in the 
cohort. Each day contains strata (colored rectangles) representing 
the number of patients in a state on that day. Multiple alluvia 
(curves color-coded by current state) demonstrate the number 
of patients transitioning between states on the days shown. 
The proportion of patients estimated to be in each AKI- and 
IMV-related state at any given time point after ICU admission, 
accounting for the transitions patients have made over time. All 
patients had 14 d of observation time after ICU admission.
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subjective, we created models in including and ex-
cluding RRT as a component of state definitions.

CONCLUSIONS

In a multistate analysis of critically ill patients with 
COVID-19, we demonstrated that AKI occurred early 
and heterogeneously in the course of critical illness. 
These underused analytic approaches may ultimately 
translate into decision-making tools to improve the 
safety and outcomes of hospitalized patients with AKI 
and other high-risk syndromes through anticipating 
resource needs and optimizing responses.
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