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Abstract

Introduction: The frequently used Cox regression applies two critical assumptions,

which might not hold for all predictors. In this study, the results from a Cox regression

model (CM) and a generalized Cox regressionmodel (GCM) are compared.

Methods: Data are from the Survey of Health, Ageing and Retirement in Europe

(SHARE), which includes approximately 140,000 individuals aged 50 or older followed

over seven waves. CMs and GCMs are used to estimate dementia risk. The results are

internally and externally validated.

Results: None of the predictors included in the analyses fulfilled the assumptions of

Cox regression. Both models predict dementia moderately well (10-year risk: 0.737;

95% confidence interval [CI]: 0.699, 0.773; CM and 0.746; 95% CI: 0.710, 0.785;

GCM).

Discussion: The GCM performs significantly better than the CM when comparing

pseudo-R2 and the log-likelihood. GCMs enable researcher to test the assumptions

used by Cox regression independently and relax these assumptions if necessary.
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1 INTRODUCTION

Dementia is one of the leading causes of dependency and disability in

older individuals, with no cure yet.1,2 However, evidence from recent

studies shows the protective effects of lifestyle changes (eg, healthy

diet and physical activity), regardless of genetic risk, have opened

opportunities for dementia risk reduction via the implementation of

behavioral interventions.3,4 Hence, the identification of individuals at

high risk of developing dementia is pivotal to apply preventive pro-

grams and to inform selection into clinical trials.
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Multiple dementia risk prediction models have been developed in

the last decade.5-7 However, only a few have been recommended for

clinical use, largely due to their multiple methodological weaknesses.

For instance, some of the methodological limitations of the models

reviewed include the overreliance on one data source and lack of inter-

nal and external validation; important concerns about the analytical

techniques used were also highlighted.6,8,9 The review of Goerdten

et al.9 summarizes the analytical techniques commonly used to derive

dementia risk prediction models. Cox proportional hazards regression

was one of these frequently used techniques. It belongs to the class of
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survival models, where the time until the event of interest, for exam-

ple, death or disease diagnosis, is analyzed. With Cox regression, the

influence of multiple predictors on the hazard, that is, risk of death

or the disease, can be modeled. But this model relies on two critical

assumptions: the proportional hazards (PH) and the log-linearity (LL)

of covariates. The PH assumption supposes that the ratio of hazards

between two individuals remains constant over the studied period.

However, in dementia studies in which the effects of risk factors are

observed over two or three decades certain individual factors may be

of benefit at a time and disadvantage at another time. For instance,

in a recent study Ritchie et al.10 showed that high plasma beta amy-

loids were associated with an increased risk in the preclinical phase

only and tended to flatten out in the approach to diagnosis while per-

formances of cognitive tests were lowered across the 10 years before

diagnosis.

Published Cox regression analyses typically impose a priori the

assumption that continuous covariates have a linear effect on the

logarithm of the hazard. This LL assumption implies that dementia

risk changes gradually with increasing value of the prognostic factor,

so that, for example, the relative risk for a 60-year-old subject com-

pared to a 50-year-old is the same as that when comparing subjects

aged 80 versus 70 years. However, if the true relationship between

the continuous independent variable and the outcome does not

fulfil the LL assumption, then the conventional log-linear model may

result in incorrect identification of high-risk subgroups and biased

prognosis.

In this article, we use generalized Cox regression models,

which can incorporate non-linear and/or time-dependent effects

of variables to model dementia risk.11 To demonstrate the ben-

efits of this modeling approach for dementia risk prediction,

we compare results obtained from this methodology to results

obtained from Cox regression, which is used frequently in the

field.9

2 METHODS

2.1 Study population

The Survey of Health, Ageing and Retirement in Europe (SHARE) is

a multidisciplinary and cross-national panel database with data col-

lected on health, socio-economic status, and social and family net-

works. SHARE comprises approximately 140,000 participants aged

50 and older from 27 European countries and Israel. Follow-up of

respondents was carried out in waves (Wave 1 to 7). SHARE was

described elsewhere in more detail.12 We use information from

Wave 2 to 7,13-18 as from Wave 2 forward the information regard-

ing dementia diagnosis was collected from respondents aged 60 and

older. Wave 3 was not included, as it focused on the childhood of

respondents.14 In SHARE participants with only baseline measures, a

dementia diagnosis at baseline and/or missing information for the pre-

dictor variables were excluded, which resulted in a cohort of 11,603

participants.

HIGHLIGHTS

∙ The frequently used Cox regression employs two crucial

assumptions, which might not hold for all predictor vari-

ables, and can lead to incorrect predictions of dementia

risk.

∙ Generalized Cox regression can relax the assumptions

made by Cox regression.

∙ Generalized Cox regression performs better than Cox

regression in predicting dementia risk.

∙ Generalized Cox regression is an interesting extension of

Cox regression, and should be used more frequently in

dementia risk research.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional sources (PubMed) and references from

previous publications.

2. Interpretation: Thepresented findings show the improve-

ments made through the incorporation of splines in the

model, and the relaxation of the assumptions used byCox

regression. Importantly, none of the continuous predictor

variables obeyed the crucial PH assumption. Generalized

Cox regression enables researchers to test the assump-

tions independently and relax the assumptions of Cox

regression if necessary.

3. Future directions: We would like to encourage

researchers to adapt the use of splines in dementia

risk prediction research.

2.2 External validation sample

The Aging, Demographics, and Memory Study (ADAMS) is a supple-

mentary study of the Health and Retirement Study (HRS).19 The HRS

is a longitudinal panel study, looking into the changing health and

economic circumstances of adults over age 50 in the United States.

In ADAMS, in-person clinical assessments were conducted to gather

information on the cognitive status of the participants over four waves

(WaveA toD). Participants are aged70andolder. Thedesign andmeth-

ods of ADAMS are described elsewhere inmore detail.20

2.3 Assessment of dementia and predictors

Dementia diagnosis was recorded by self-report in SHARE. The partic-

ipantswere asked if a doctor ever diagnosed them/told them they have

Alzheimer’s disease, dementia, or senility.21-25
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To have a close and in-depth look at the variables selected as pre-

dictors, we chose to focus on modifiable risk factors identified by Liv-

ingston et al.2 and age.We selected age, years of education, bodymass

index (BMI), hearing loss, high blood pressure, smoking status, depres-

sion, physical activity, and diabetes. The information regarding disease

status and behavioral riskwere collected by self-report.21 BMIwas cal-

culated from height and weight reported by the participants. Hearing

was recorded as “excellent,” “very good,” “good,” “fair,” and “poor.” It

was categorized into 0/1, where “excellent” to “good” was coded as 0

and “fair” to “poor” as 1. For the diagnoses of high blood pressure and

diabetes the participants were asked if a doctor ever told them they

have high blood pressure/hypertension or high glucose level/diabetes.

For the diagnosis of depression, the participantswere asked if they suf-

fered ever/since last wave from symptoms of depression which lasted

at least 2 weeks. Physical activity was recorded as “more than once a

week,” “once aweek,” “one to three times amonth,” and “hardly ever, or

never.” It was categorized into 0/1, where “more than once a week” to

“one to three times amonth”was coded as 0 and “hardly ever, or never”

as 1.

2.4 Generalized Cox regression

Cox proportional hazard regression is commonly used to model cen-

sored survival data. The purpose of the Cox proportional hazards

regression model (CM) is to model the simultaneous effect of multiple

factors on the survival.26 The CM aims to estimate hazard ratios over

time.26 Themodel equation is written as follows:

h(t|z1 , … , zp) = h0 (t) exp (∑
i

𝛽izi)

where (zi)i = 1,…,p are the values of the covariates Z1,… , Zp onwhich the

hazardmay depend and h0(t) represents the baseline hazard. The base-

linehazard is definedas thevalueof thehazardwhen zi = 0, for i in 1, p.

In this study, three flexible models proposed by Mahboubi et al.27

were used, which are generalizations of the CM. With these flexi-

ble models, one or both assumptions used by Cox regression can be

relaxed and tested independently. Cox regression employs the PH and

LL assumption. With the generalized Cox regression model (GCM) it

is possible to model time dependent hazard ratios and/ or non-linear

effects of the predictor variables.

The first flexiblemodel relaxes theproportional hazards assumption

(NPH):

h(t|z1 , … , zp) = h0 (t) exp (∑
i

𝛽i (t) zi)

The second flexible model relaxes the log-linearity assumption

(NLL):

h(t|z1 , … , zp) = h0 (t) exp (∑
i

ri (zi))

F IGURE 1 Testing of assumptions and finding best model. Arrows
represent likelihood ratio test. Comparingmodels by likelihood ratio
tests the assumptions of proportional hazards (PH) and log-linearity
(LL), and the best fittingmodel for the predictor is identified. This
figure is adapted fromMahboubi et al27

Last, the third flexible model relaxes both assumptions simultane-

ously (NPHNLL):

h(t|z1 , … , zp) = h0 (t) exp (∑
i

𝛽i (t) ri (zi))

The function ri is a spline function of zi modeling the non log-linear

effect of zi and 𝛽i(t) is a spline function of t modeling the time depen-

dent effect of zi . Estimations of these functions are based on the full

likelihood.

The flexible models use B-splines, which are piecewise polynomials,

where the pieces are joint by knots. Here, the splines are allowed to

have one or two knots. The knot selection has to follow one criterion:

there must be roughly the same number of events in the subintervals

defined by the selected knots. The decision if one or two knots are used

is basedon a goodness of fit test. For example,modelswith one and two

knots are computed and compared in terms of the Akaike information

criterion (AIC). The model that produces the smallest AIC is selected.

It can be tested if a variable obeys the assumptions by comparing the

models described before using likelihood ratio tests (see Figure 1)27

andby this decidingwhichof the fourmodels (CM,NPH,NLL,NPHNLL)

models the variable best.

2.5 Statistical analyses

A CM and a GCMwere fitted to data from SHARE to predict dementia

risk. Study time was used as time scale for all analyses. Study time was

calculated from study entry (Wave 2, 2007) until study exit—wave of

dementia diagnosis, wave in which participant died, wave in which par-

ticipant was lost to follow-up, or the end of the study (Wave 7, 2017),

whichever came first. In the survival time analyses, dementia diagnosis

was treated as the failure event.
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To compute the full GCM, first, we tested if each predictor variable

complied with the PH assumption and/or the LL assumption. To test

these assumptions each predictor variable was modeled in a CM, an

NPH model, an NLL model, and in an NPHNLL model. The computed

models were compared by likelihood ratio test, and the best fitting

model for each predictor variable was selected. All predictor variables

were entered into the full model, while modeling each predictor with

the best-identified knot and spline combination. Last, after fitting the

model with all identified splines and knots, spline coefficients were

eliminated systematically. We reduced spline coefficients if more than

one coefficient was non-significant for a predictor, while comparing

the smaller model with the previous one by likelihood ratio test—until

the best fitting model was found. For the full CM, all predictor vari-

ables were entered into the model. To determine which model fits the

data better, the model derived from Cox regression or generalized

Cox regression, likelihood ratio tests were performed and the com-

puted pseudo-R2 proposed by Nagelkerke and Cragg and Uhler were

compared.26 C-statistics adapted for survival analyseswere calculated

to assess predictive ability.26 The C-statistic is a discrimination mea-

sure for binary outcomes, and it ranges from below 0.5 (indicating very

poor model discrimination) to 1 (indicating perfect model discrimina-

tion). Bootstrapping with 1000 repetitions was performed to compute

95% confidence intervals (CI) for the C-statistics and the pseudo-R2.

SHARE was used as the development sample and ADAMS as the

external validation sample.

All analyses were performed in R Studio (Version 3.5.1)28 and the

packages flexrsurv,29 survival,30,31 Hmisc,32 and ggplot233 were used.

3 RESULTS

Among the 11,603 SHARE participants, 757 (6.5%) reported that they

had received a diagnosis of dementia during 10 years of follow-up.

The mean age of diagnosis was 75.4 (7.2 standard deviation [SD]).

Baseline characteristics for SHARE and ADAMS are presented in

Table 1.

In SHARE none of the variables obeyed the PH assumption, when

modeled alone (crude model). Two (years of education and BMI) of

three continuous variables additionally did not obey the LL assump-

tion. Comparisons of the estimated log hazards of dementia risk for

age, years of education, and BMI in SHARE from the crude CMs (Fig-

ure 2 parts A, C, E) and GCMs(Figure 2 parts B, D, F) are presented in

Figure 2.

The following section discusses the full prediction model derived

from Cox regression and generalized Cox regression; both include the

samepredictor variables (age, years of education, BMI, depression, dia-

betes, high blood pressure, hearing, smoking status, and physical activ-

ity). In the full GCM, age, years of education, and BMI were modeled

non-proportional with time (NPH).When comparing the CM andGCM

in terms of the log-likelihood, the test results in a P-value of <.001.
The pseudo-R2 for the CM is 0.06 (95% CI: 0.048, 0.062) and for

the GCM 0.493 (95% CI: 0.460, 0.506). The C-statistic for the pre-

dicted 10-year dementia risk is 0.737 (95% CI: 0.699, 0.773; CM) and

TABLE 1 Baseline characteristics of SHARE and ADAMS

SHARE

N= 11,603

ADAMS

N= 410

Dementia (%) 757 (6.5) 102 (24.9)

Agemean (SD
a
) 69.7 (7.2) 79.1 (6.1)

Years of education (SD) 10.2 (4.4) 10.71 (4.3)

Bodymass index (SD) 26.7 (4.2) 26.9 (4.9)

Sex (%)

Female 6283 (54.1) 210 (51.2)

Male 5320 (45.9) 200 (48.8)

Depression (%) 1866 (16.1) 107 (26.1)

Diabetes (%) 1354 (11.7) 86 (20.98)

High blood pressure (%) 4647 (40.1) 257 (62.7)

Poor hearing (%) 2464 (21.2) 122 (29.8)

Ever smoker (%) 1532 (13.2) 117 (28.5)

No physical activity (%) 5424 (46.8) 257 (62.7)

aStandard deviation (SD).

Abbreviations: ADAMS, Aging, Demographics, and Memory Study; SHARE,

Survey of Health, Ageing and Retirement in Europe.

0.746 (95% CI: 0.710, 0.785; GCM). The C-statistic for the predicted

4-year dementia risk is 0.711 (95% CI: 0.678, 0.74; CM) and 0.709

(95% CI: 0.673, 0.74; GCM). Within ADAMS the two models gener-

ate a C-statistic for the predicted 6-year dementia risk of 0.743 (95%

CI: 0.58, 0.924; CM) and 0.764 (95% CI: 0.607, 0.952; GCM). All com-

puted C-statistics for the time points from themodels are presented in

Table 2.

The regression coefficients computed byCMandGCMfromSHARE

are presented in Appendix A in supporting information. The computed

overall C-statistics for theCMandGCMinSHAREandADAMSarepre-

sented in Appendix B in supporting information.

4 DISCUSSION

In this study, we compared dementia risk prediction models derived

from generalized Cox regression and Cox regression. Our results show

that the model derived from the generalized Cox regression fits the

data significantly better than the model derived from Cox regression.

The predictive ability of the CM and GCM range from moderate to

good.

4.1 Cox regression versus generalized Cox
regression

The GCM performs in the development sample and in the validation

samplebetter than theCM.BothGCMandCMreachmoderate to good

predictive ability,which is in linewithpreviousdementia risk prediction

models.7
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F IGURE 2 Estimated log-hazards from crude Coxmodels (CMs) and generalized Coxmodels. Graphs A, C, and E show estimated log-hazards
for age, bodymass index (BMI), and years of education from crude CMs; graphs B, D, and F show estimated log-hazards, for each follow-up time
point, for age from a crude non proportional hazards model (NPH), BMI, and years of education from crude non proportional hazards and non log
linear models (NPHNLL)
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TABLE 2 C-statistics for SHAREmodels

Number of

cases

Cox

regressionC-statistic

(95%CI)

Generalized Cox

regressionC-statistic

(95%CI)

In SHARE

10 years 177 0.737 (0.699, 0.773) 0.746 (0.710, 0.785)

8 years 173 0.658 (0.616, 0.699) 0.659 (0.616, 0.698)

6 years 150 0.735 (0.693, 0.773) 0.736 (0.695, 0.775)

4 years 257 0.711 (0.678, 0.74) 0.709 (0.673, 0.74)

In ADAMS

≥6 years 13 0.747 (0.601, 0.917) 0.805 (0.695, 0.942)

6 years 10 0.743 (0.58, 0.924) 0.764 (0.607, 0.952)

5 years 23 0.51 (0.367, 0.652) 0.517 (0.368, 0.659)

4 years 23 0.592 (0.436, 0.768) 0.589 (0.430, 0.775)

3 years 4 1.0 1.0

2 years 16 0.708 (0.558, 0.869) 0.708 (0.555, 0.865)

1 years 23 0.602 (0.45, 0.765) 0.62 (0.468, 0.795)

Abbreviations:ADAMS,Aging,Demographics, andMemoryStudy;CI, confi-

dence interval; SHARE, Survey of Health, Ageing and Retirement in Europe.

The overall estimated C statistic for SHARE and ADAMS from

the GCM shows an interesting problem: the C-statistic is lower than

0.5, which would mean the model performs worse than chance (see

Appendix B). However, this is not the case when looking at the esti-

mated C-statistics for the follow-up time points. The C-statistic is a

rank correlation test; a high C-statistic translates to a model which is

able to estimate higher risks for individuals experiencing the outcome

than individuals who did not during follow-up.26 In this case—in which

we relaxed the PH assumption for all three continuous predictors—the

C-statistic test is not able to rank the estimated risks correctly, because

the GCM estimates time dependent risks. The overall risk of individu-

als who had a follow-up of 10 years is higher than for example of indi-

viduals who had a follow-up of 4 years, regardless of dementia risk

(Appendix C in supporting information). Hence, the test ranks all indi-

viduals who had a follow-up of 10 years over individuals with a follow-

up of 4 years, which results in an incorrect low C-statistic. It might be

useful to evaluate inwhich time frameadementia risk predictionmodel

derived from aGCMperforms best.

Additionally, it needs to be mentioned that the C-statistic or area

under the receiver operating characteristic curve (AUROC) is not rec-

ommended to compare models, as it is a low power procedure.34 They

should only be used to describe the predictive ability of a model.

Instead, a high-power test should be carried out to asses which model

fits the data better, for example, a likelihood ratio test and/or compar-

ing R2. In this study the likelihood ratio test suggests the GCM fits the

data significantly better than the CM. The pseudo R2 suggests that the

GCM improves greater upon the null model than the CM and hence is

better able to predict the outcome than the CM. When looking at the

results from the likelihood ratio test and the pseudo R2 we can con-

clude that theGCMperformsbetter than theCM inmodelingdementia

risk in SHARE.

4.2 Improvements by generalization

As summarized by Goerdten et al.,9 most published dementia risk

prediction studies overlook the fulfilment of the assumptions of the

analytical technique used for the estimation of risk. Consistent testing

of these assumptions is crucial, as their violation can lead to biased

results.35 This is especially important for continuous variables (eg,

age) as shown in our work. This problem might lead researchers

to categorize continuous variables, a practice that in turn leads to

information loss and residual confounding.36 Instead, Moons et al.37

recommend the incorporation of splines, if there are any uncertainties

about whether a variable complies with the linearity assumption, as

the incorporation of splines makes the categorization of continuous

variables unnecessary.

In this studywe incorporated splines to test and relax the two strong

assumptions used by Cox regression: (1) assumption of LL, that is,

a linear relationship between the independent variable and the log-

hazard of dementia and (2) assumption of PH, that is, the effect of

a variable is constant over time. There are other (simpler) options

to assess the PH assumption of Cox regression: an interaction term

with time can be added to the model or stratification by time can

be performed. But using simpler testing methods implies assuming

the LL assumption while testing the PH assumption and assuming the

PH assumption while testing the LL assumption. The GCM allows us

to test both assumptions of Cox regression independently from each

other.

None of the predictor variables included in our analyses fulfilled the

PH assumption. Furthermore, two of the continuous variables did not

fulfil the LL assumption either. Comparing the estimated log-hazards

for the three continuous variables (age, BMI, and years of educa-

tion) from crude CMs and GCMs, the difference between the models

becomes evident. While the CM computes linear declining or increas-

ing log-hazards for the continuous variables, GCM computes a great

variety of curves (seeFigure2). For age thePHassumptionwas relaxed,

hence the effect of this variable on dementia risk is not constant with

time and the different lines for 4 to 10 years can be seen. For BMI and

years of education additionally the LL assumption was relaxed, hence

the effects of the variables are not constant with time and there are

non-linear relationships between the variables and the log-hazard of

dementia, and the different lines with curves for 4 to 10 years can be

seen.

Comparing the presentedmethodologywith for example theCAIDE

score38—a well-known dementia risk prediction score, computed by

logistic regression, that ignores the dependence on time of the event

being modeled—the applied approach could in theory model more

accurately dementia risk. The CAIDE score translates to risk percent-

ages ranging from1% (low risk) to 16.4% (high risk). The difference to a

riskmodel derived fromGCMwouldbe that thepredictionmodel could

inform if this risk changes over time, as the effects of someor all predic-

tors ondementia risk changewith time. ThegeneralizedCox regression

is more flexible and able to pick up changes in the effect of a predictor

variable on dementia risk over time.
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4.3 Strengths and limitations

This study has several limitations. First, due to the design of the used

datasets, interval censoring is present. This means that the exact date

of diagnosis is not known and occurred at some point during the inter-

val between thewaves. Thismight have resulted in biased results, likely

an overestimation of the predictor coefficients.39 Second, censoring

due to death, which is a competing event, was not taken into account.

There are existing methods to incorporate competing risks in survival

analyses40 as well as generalizations of these models.41 However, the

information on death in SHARE are recorded by proxy questionnaire

and the use of these informationmight have hampered the results even

further.21 Third, the quality of the data about dementia diagnosis in

SHARE is not optimal, as it is only recorded by self-report and no fur-

ther testing of the diagnosis is made. A similar limitation of the data is

that the predictor variables were also self-reported. However, for the

purpose of this paper, these limitations are not critical given the aims

of our work.

This study has several strengths. SHARE offers a large sample size,

which covers a wide range of European countries and Israel, making it

representative of the European population.12 In ADAMS the diagnosis

of dementia was made by professionals. Every predictor variable was

tested for the assumptions used by Cox regression. Importantly, fol-

lowing recommended practice, the developed models were validated

internally and externally.

5 CONCLUSION

With the generalized Cox regression, the assumptions of Cox regres-

sion can be tested thoroughly and independently, and relaxed if

needed. However, while the generalized Cox regression offers advan-

tages, such as avoiding categorization, the disadvantages need to be

mentioned too: the flexiblemodels can require long computation times

and a bigger sample is needed than for a Cox regression. Addition-

ally, the interpretation of the coefficients computed by GCMs are not

straightforward and it is only possible to examine the effect of a vari-

able visually. Taking all this into account the generalizedCox regression

is an interesting option to extend a Cox regression. The possibility to

add splines and herewith relax the assumptions is especially appeal-

ing when including continuous variables. We would like to encour-

age researchers to adapt the use of splines in dementia research, to

increase the understanding of the relationship between potential pre-

dictors and dementia risk.
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