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1  | INTRODUC TION

The major histocompatibility complex (MHC) plays a crucial role 
in the adaptive immune system (Klein, 1986). There are two major 
types of MHC gene families, class I and class II, which encode cell 
surface glycoproteins that regulate the immune response. MHC 
class II molecules are heterodimers formed by an α chain and a β 
chain, which both contribute to presenting peptides derived from 
extracellular proteins to the CD4+ T-helper cells (Castellino, Zhong, 
& Germain, 1997). The α1 domain and β1 domain are the regions 
containing the antigen-binding sites (ABSs) in α chain and β chain, 

respectively. MHC class I molecules are heterodimers consisting of 
an α chain and a non-MHC molecule, β2 microglobulin. The α chain 
contains a cytoplasmic tail, a transmembrane domain, and three ex-
tracellular domains designated α1, α2, and α3 (Bjorkman & Parham, 
1990) that are encoded by exons 2, 3, and 4. The α1 domain and α2 
domain are the regions containing ABSs in α chain of MHC class I 
molecule. MHC class I genes are further classified into classical and 
nonclassical MHC class I genes. The classical MHC class I molecules 
are encoded in all somatic cells and are responsible primarily for 
triggering adaptive immune response by presenting endogenously 
derived peptides to CD8+ cytotoxic T cells (Neefjes, Jongsma, Paul, 
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Abstract
The molecules encoded by major histocompatibility complex (MHC) genes play an 
essential role in the adaptive immune response among vertebrates. We investigated 
the molecular evolution of MHC class I genes in the sable Martes zibellina. We iso-
lated 26 MHC class I sequences, including 12 putatively functional sequences and 14 
pseudogene sequences, from 24 individuals from two geographic areas of northeast 
China. The number of putatively functional sequences found in a single individual 
ranged from one to five, which might be at least 1–3 loci. We found that both bal-
ancing selection and recombination contribute to evolution of MHC class I genes 
in M. zibellina. In addition, we identified a candidate nonclassical MHC class I line-
age in Carnivora, which may have preceded the divergence (about 52–57 Mya) of 
Caniformia and Feliformia. This may contribute to further understanding of the origin 
and evolution of nonclassical MHC class I genes. Our study provides important im-
mune information of MHC for M. zibellina, as well as other carnivores.
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& Bakke, 2011). In contrast to classical MHC class I genes, nonclas-
sical MHC genes have tissue-specific expression, low levels of poly-
morphism, and lower expression levels (Braud, Allan, & McMichael, 
1999; Rodgers & Cook, 2005; Stroynowski & Lindahl, 1994).

Major histocompatibility complex genes are considered to be the 
most polymorphic in the vertebrate nuclear genome (Horton et al., 
2004). And the localization of polymorphism is largely within the re-
gion encoding the ABSs of the MHC class I and class II molecules 
(Yeager & Hughes, 1999). The mechanisms that produce plentiful 
MHC variation primarily involve balancing selection, for instance, 
overdominance, and negative frequency-dependent selection. The 
overdominance hypothesis, which was proposed by Doherty and 
Zinkernagel (1975), suggests that heterozygosity at MHC loci could 
significantly enhance immune competence, as heterozygotes could 
recognize a wider range of antigens derived from multiple pathogens 
and therefore have a higher relative fitness than either homozygote 
(Piertney & Oliver, 2006). The negative frequency-dependent selec-
tion holds that rare alleles have a selective advantage over common 
host alleles because pathogens tend to adapt the common alleles 
(Schad, Ganzhorn, & Sommer, 2005).

The MHC region is also thought to evolve under birth-and-death 
evolution. In the process, novel genes are created by gene duplica-
tion and some duplicate genes remain in the genome for a long time, 
whereas others are completely lost from the genome or become non-
functional genes (pseudogenes) due to deleterious mutations (Nei, 
Gu, & Sitnikova, 1997). Compared to MHC class II genes, the rate of 
birth-and-death evolution in MHC class I genes appears faster, and 
as a consequence, it is difficult to establish orthologous relationships 
of MHC class I genes among mammalian orders (Abduriyim, Zou, & 
Zhao, 2019b; Kuduk, Babik, et al., 2012; Takahashi, Rooney, & Nei, 
2000). In addition, recombination has been considered as an import-
ant mechanism, which contributes to the high divergence of MHC 
class I genes between closely related species and the diversity of 
MHC genes (Gaigher et al., 2018; Nei & Rooney, 2005; Zhao et al., 
2013).

Mustelidae is the largest and most diverse family of order 
Carnivora (Hosoda et al., 2000). Members of the Mustelidae show 
a tremendous range of ecomorphologic diversity, from species that 
are fossorial to those that are semi- or completely aquatic (Wei, 
Zhang, Wu, & Sha, 2019; Wozencraft, 1993). The sable Martes zi-
bellina (Linnaeus, 1758), genus Marten, is a medium-sized carnivore 
distributed in all taiga zoogeographical zones of Eurasia, primarily 
in Russia, China, Mongolia, North Korea, Kazakhstan, and Japan 
(Li et al., 2013; Monakhov, 2011). In China, it occurs in northeast 
China (Greater Khingan Mountains, Lesser Khingan Mountains, 
and Changbai Mountains) and Xinjiang Uygur Autonomous Region 
(Altai Mountains). Martes zibellina has historically been hunted for 
its prized fur. As a consequence of deforestation and commercial 
hunting, the distribution range and abundance of this species have 
decreased rapidly in northeast China since the 1950s (Zhang et al., 
2017). Large-scale regional extinctions of M. zibellina have aroused 
the attention of wildlife management department in China, and it 
was listed as class I national protected species in 1989.

Because of the important role of MHC genes, the study of MHC 
genes in wild populations could provide useful information re-
garding immunological adaptation and fitness (Manlik et al., 2019). 
Studies of MHC class II genes have been reported in many species 
of Mustelidae (Bowen, Aldridge, Miles, & Stott, 2006; Nishita et al., 
2015; Sin, Dugdale, Newman, Macdonald, & Burke, 2012b); however, 
the studies of MHC class I in Mustelidae are limited to genus Meles 
(Abduriyim, Nishita, et al., 2019; Sin, Dugdale, Newman, Macdonald, 
& Burke, 2012a). Moreover, MHC has been shown to be associated 
with mate choice in many species, which can be used to evaluate po-
tential mate (Baratti et al., 2012; Cutrera, Fanjul, & Zenuto, 2012; Sin 
et al., 2015). Studies of MHC genes may contribute to breeding and 
conservation of endangered species. In addition, the rapid turnover 
of genetic loci make the evolution of MHC genes an intriguing sub-
ject of study (Piontkivska & Nei, 2003). Previous studies have noted 
that some nonclassical MHC genes have existed in genome for a long 
time (Nei et al., 1997). For instance, in primate species, the nonclas-
sical F locus has existed for at least 46–66 Mya while the A, B, and 
C loci have appeared at least 14–19, 10–15, and 13–17 Mya, respec-
tively. Although some nonclassical MHC genes have been identified 
according to the tissue-specific expression patterns, abnormal exon, 
and limited polymorphism in some carnivores (Burnett, DeRose, 
Wagner, & Storb, 1997; Zhu et al., 2012), there is little research about 
the orthologous relationships. In this study we (1) isolated the exon 
2/α1 domain–exon 3/α2 domain (including intron 2) of MHC class I 
genes from 24 sables in two geographic areas in northeast China; (2) 
analyzed signals of natural selection and recombination in MHC class 
I genes of M. zibellina; and (3) performed phylogenetic analyses to as-
sess the evolutionary relationship of MHC class I genes in Carnivora. 
The results of this study may provide important immune information 
for M. zibellina and will contribute to conservation of this species as 
well as other carnivores.

2  | MATERIAL AND METHODS

2.1 | Sample information and DNA extraction

We used 24 tissue samples (Skeletal muscle) from sables, of which, 
12 were from the areas (Genhe and Tahe) near the Greater Khingan 
Mountains, others were from the areas (Shangzhi and Mudanjiang) 
between the Lesser Khingan Mountains and the Changbai Mountains 
(Figure 1). Total genomic DNA of M. zibellina was extracted from tis-
sue samples using the DNeasy Blood & Tissue DNA Extraction Kit 
(Qiagen) following the protocol of the manufacturer.

2.2 | PCR amplification

We amplified part of MHC class I gene (exon 2/α1 domain–exon 3/α2 
domain, including intron 2) from the samples by PCR using two pairs 
of primers. The first pair of primers were from Meme-MHCIex2F 
and Meme-MHCIex3R (Sin et al., 2012a). The second pair of primers 
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(Mazi-MHCIex2F: 5′-GCTCCCACTCCCTGAGGTATTWC-3′; Mazi-
MHCIex3R: 5′-GCGCAGCAGCGWCTCCTT-3′), which recognize 
highly conserved region of the MHC class I genes, were designed 
based on alignments consisting of the sequences from the NCBI 
and the sequences obtained from the first pair of primers (Figure 
S1). PCR amplifications were performed in 25 μl reaction volumes 
containing 10× PCR Buffer (Mg2+ plus; Takara), 200 µM of dNTP 
Mixture (Takara), Bovine Serum Albumin (Takara), 50–200 ng of total 
DNA, 0.5 µM of each primer, and 1 U of Takara Taq. Cycling condi-
tion in Applied Biosystems (ABI) 9700 Thermal Cycler was 5 min at 
94°C; 35 cycles of 30 s at 94°C, 30 s at 60°C, 60 s at 72°C, and a final 
hold at 4°C. The PCR products were electrophoresed on 1% aga-
rose gel and visualized using ultraviolet light. Target bands (around 
750 bp) were excised from the gel and purified using QIAquick Gel 
Extraction Kit (Qiagen).

2.3 | Cloning and sequencing

Purified PCR products were ligated into pMD 18-T Vector (Takara). 
Recombinant DNA was transformed into E. coli DH5α Competent 
Cells (Takara), which were then plated onto LB plates and grown 
overnight at 37°C. Blue-white selection was used to select positive 
clones. PCRs were performed on positive clones using M13 forward 
and reverse primers. The positive clones were sequenced by Sangon 
Biotech (Shanghai) using ABI3730XL DNA Analyzer. Between 35 
and 40 clones were sequenced for each individual. Each clone was 
sequenced once. The nucleotide sequences were manually trimmed 

and aligned in MEGA 7.0 (Kumar, Stecher, & Tamura, 2016). The se-
quences obtained by the two pairs of primers were trimmed to the 
same length. We recognized a positive clone sequence as a MHC 
class I sequence if the sequence was found in two independent PCR 
reactions from a single individual or appeared in at least two indi-
viduals (Liu et al., 2017; Sin et al., 2012a). All selected sequences 
were further compared with the identified MHC class I genes using 
the program of BLAST on NCBI. The sequences of M. zibellina which 
showed any signs of insertion, deletion, or premature stop codons in 
α1 domain or α2 domain were identified as presumed pseudogene 
sequence, and others were considered as the presumably func-
tional sequence (Abduriyim, Nishita, et al., 2019). The MHC class I 
sequences identified in this study were named according to the no-
menclature conventions (Klein et al., 1990).

2.4 | Data analysis

The average pairwise Poisson-corrected amino acid distances and the 
nucleotide distances (Kimura 2-parameter model—K2P) were com-
puted in MEGA7.0 (Kumar et al., 2016). Standard errors were obtained 
through 1,000 bootstrap replicates. The nucleotide diversity (π) was 
calculated using DnaSP. Nonsynonymous (dN) and synonymous (dS) 
substitution rates were computed with MEGA 7.0 according to the 
Nei–Gojobori method (Nei & Gojobori, 1986) with the Jukes–Cantor 
correction. Standard error estimates were obtained through 1,000 
bootstrap replicates. These calculations were performed separately 
for the ABSs and non-ABSs which were determined by Bjorkman et al. 

F I G U R E  1   Map of the sampling locations in China. The individuals, which from the areas (Genhe and Tahe) near the Greater Khingan 
Mountains, were indicated with the circles. The individuals, which from the areas (Shangzhi and Mudanjiang) between the Lesser Khingan 
Mountains and the Changbai Mountains, were indicated with the squares

Mongolia

China

Russia

Japan
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(1987). Z tests were performed in MEGA 7.0. The program CODEML 
in PAML 4.9 was used to detect positively selected sites (PSS) in α1 
domain and α2 domain, which are indicated where the ratio ω (dN/dS) 
is larger than 1 (Yang, 2007). Two different models, M7 (beta) and 
M8 (beta and ω), were tested. The likelihood ratio tests (LRT), which 
compare twice the difference of the log-likelihood ratios (2ΔlnL) to a 
chi-square distribution, were used to determine whether the alterna-
tive model (M8) provided a significantly better fit than the null model 
(M7). Bayes empirical Bayes posterior probabilities (>0.95) were used 
to identify the PSSs in the M8.

Recombination analyses were implemented for the nucleotide align-
ment spanning α1 domain, intron 2, and α2 domain in Recombination 
Detection Program version 4 (RDP4). Several methods, including RDP 
(Martin & Rybicki, 2000), GENECONV (Padidam, Sawyer, & Fauquet, 
1999), Chimaera (Posada & Crandall, 2001), MaxChi (Smith, 1992), 
BootScan (Martin, Posada, Crandall, & Williamson, 2005), SiScan 
(Gibbs, Armstrong, & Gibbs, 2000), and 3Seq (Boni, Posada, & Feldman, 
2007), were used to detect recombination events. In addition, the on-
line GARD tool, provided by the Datamonkey web server (http://www.
datam onkey.org/), was used to assess the presence of recombination 
signals (Kosakovsky Pond, Posada, Gravenor, Woelk, & Frost, 2006). 
Although gene conversion and recombination are mechanistically dif-
ferent processes, the effects on polymorphism are similar in sequences 
of limited length (Burri, Hirzel, Salamin, Roulin, & Fumagalli, 2008). We 
therefore do not distinguish between them and refer to them as re-
combination in the broad sense (Sin et al., 2012a).

Phylogenetic networks have an important role to play in the 
reconstruction of evolutionary history (Huson & Bryant, 2006). 
Compared with phylogenetic trees, phylogenetic networks can 
effectively evaluate evolutionary relationships involving gene du-
plication and recombination which are known to affect MHC gene 
evolution (Abduriyim, Zou, et al., 2019; Miller & Lambert, 2004; 
Zhao et al., 2013). Phylogenetic analyses were separately carried out 
on the nucleotide alignment of α1 domain and α2 domain against ho-
mologous sequences from other carnivore species available in NCBI. 
Most of these sequences are from previous studies of MHC class I, 
including domestic cat (Felis catus) (Yuhki, Mullikin, Beck, Stephens, 
& O'Brien, 2008), wolf (Canis lupus) (Liu et al., 2017), domestic dog 
(Canis lupus familiaris), giant panda (Ailuropoda melanoleuca) (Zhu 
et al., 2012; Zhu, Wan, Yu, Ge, & Fang, 2013), harbor seal (Phoca 
vitulina vitulina) (Hammond, Guethlein, Norman, & Parham, 2012), 
gray seal (Halichoerus grypus), tiger (Panthera tigris tigris) (Pokorny, 
Sharma, Goyal, Mishra, & Tiedemann, 2010), ocelot (Leopardus 
pardalis) (Yuhki & O'Brien, 1994), cheetah (Acinonyx jubatus), and 
Eurasian bargers (Meles meles, M. canescens, M. leeucurus, and M. ca-
nescens) (Abduriyim, Nishita, et al., 2019; Sin et al., 2012a). Other se-
quences are from the Genome Data. The species covered are mainly 
from Felidae, Ursidae, Otariidae, Odobenidae, Phocidae, Mustelidae, 
Hyaenidae, and Canidae. Neighbor-Net method in SplitsTree 4.14.8 
was used to analyze the phylogenetic relationships. Neighbor-Net 
networks were constructed according to uncorrected P-distances. 
1,000 bootstrap replicates were conducted to estimate the nodal 
support, and the nodal support values (>75%) were displayed in the 

phylogenetic networks. To further identify the nonclassical MHC 
class I lineage in Carnivora, we constructed maximum likelihood 
(ML) phylogenetic trees using IQ-TREE (Nguyen, Schmidt, Haeseler, 
& Minh, 2015). The best models for α1 domain and α2 domain were 
determined using ModelFinder (Kalyaanamoorthy, Minh, Wong, 
Haeseler, & Jermiin, 2017). We conducted 1,000 bootstrap repli-
cates to estimate the support. Values greater than 75% were indi-
cated in the ML phylogenetic trees.

3  | RESULTS

3.1 | Identification of MHC class I

A total of 900 clones were sequenced from 24 individuals of M. zi-
bellina. The number of clones sequenced per individual ranged from 
35 to 40, with an average of 37.5 clones. There were 311 clones 
which were found in two independent PCR reactions from a single 
individual or appeared in at least two individuals (Table S1). The final 
aligned MHC class I dataset included α1 domain (246 bp), intron 2 
(variable; 192–221 bp), and α2 domain (255 bp). We identified 26 
distinct MHC class I alleles (Table S2), including 12 presumably func-
tional sequences (Figure S2) and 14 pseudogene sequences (acces-
sion numbers: MN274976–MN275001). All the sequences showed a 
high similarity to the MHC class I genes in GenBank. The numbers of 
presumably functional sequences found in a single individual ranged 
from one to five, indicating that at least one to three loci exist in 
M. zibellina.

The Mazi-MHCI*PS01–PS04 showed a premature stop codon at 
amino acid position 75 encoded from α1 domain. The nucleotide de-
letions caused frameshift and premature stop codons were detected 
in the Mazi-MHCI*PS06–PS12. The Nucleotide deletions, which 
caused loss of 4 amino acids, were detected in Mazi-MHCI*PS13 and 
*PS14. Both nucleotide insertions and deletions were detected in 
the α2 domain of Mazi-MHCI*PS05. We excluded these presumed 
pseudogene sequences in analyses of selection and recombination. 
Among 26 MHC class I alleles from M. zibellina, there were 13 unique 
intron 2 sequences, with length variants of 192, 193, 194, 198, 204, 
208, 209, and 221 bp (Figure S3). The number of variable sites of α2 
domain was higher than that of α1 domain, but the α1 domain had 
fewer synonymous substitutions (Table 1). The average pairwise nu-
cleotide and amino acid distances were similar between α1 domain 
and α2 domain (Table 2). However, the average pairwise nucleotide 
and amino acid distances at ABSs of α1 domain were higher than 
ABSs of α2 domain. In α1 domain and α2 domain, the average nu-
cleotide diversities of ABSs were higher than the average nucleotide 
diversities of non-ABSs.

3.2 | Selection and recombination

Considering that the evolutionary history of each domain might have 
been different, we tested each domain separately for evidence of 

http://www.datamonkey.org/
http://www.datamonkey.org/
info:ddbj-embl-genbank/MN274976
info:ddbj-embl-genbank/MN275001
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positive selection. The nonsynonymous substitution rate (dN) was 
significantly higher than the synonymous substitution rate (dS) in the 
ABSs of the α1 domain (Table 2). Although the M8 model detected 
PSSs in the α1 domain, the positive selection model M8 did not pro-
vide a better fit than the neutral evolution model M7 (Table 3). In the 
α2 domain, M8 model showed a better fit than M7 model. Two sites 
were recognized as being under positive selection, and both of them 
were within the ABSs.

Two significant recombination events were detected in the MHC 
class I sequences of M. zibellina in RDP4 program (Table S3). Four re-
combination breakpoints were detected, one of which was located in 
α1 domain, two of which were situated in intron 2, and one of which 

was in α3 domain. In addition, GARD identified a recombination sig-
nal in M. zibellina MHC class I sequences. A recombination breakpoint 
(148, <0.01) was detected in α1 domain. The recombination break-
points identified by RDP4 are not consistent with the recombina-
tion breakpoint identified by GARD. The recombination breakpoints 
identified by these two programs are often inconsistent, probably 
due to the fact that they use different computational methods.

3.3 | Phylogenetic analyses

The phylogenetic networks of α1 domain and α2 domain showed 
that most sequences of M. zibellina formed a clade with other mus-
teline sequences (Figures 2 and 3). The phylogenetic network of α1 
domain was not fully consistent with the phylogenetic tree of α2 
domain. For instance, the Mazi-MHCI*01–04 formed a monophyletic 
clade in the phylogenetic network of α1 domain. In the phylogenetic 
networks of α1 domain and α2 domain, the Mazi-MHCI*PS14 and 
Mazi-MHCI*PS14 formed a separate clade. The Mazi-MHCI*PS01–04 
formed a clade with the nonclassical MHC class I genes (Aime-1906, 
DLA-79) identified in some carnivores (Figures 2 and 3). The ML trees 
of α1 domain and α2 domain showed that these sequences group 
into a clade with high bootstrap values (95% for α1 domain; 94% for 
α2 domain) (Figures S4 and S5).

TA B L E  1   Sequence polymorphism of MHC class I genes of 
Martes zibellina

Domain α1 domain α2 domain

Variable sites 53 63

Parsim informative sites 47 48

Mutations 61 70

Synonymous 8 22

Nonsynonymous 33 35

Number of amino acids 82 85

Polymorphic amino acid residues 29 30

TA B L E  2   The average rates of nonsynonymous (dN) and synonymous (dS) substitutions and the result of Z test, the average nucleotide 
diversity (π), the average nucleotide distances (dnt), and amino acid distances (daa) for ABSs, non-ABSs, and all sites in MHC class I α1 domain 
and α2 domain for Martes zibellina

Domain Sites dN dS Z p ω π dnt daa

α1 All sites 0.105 (0.021) 0.078 (0.025) 1.040 .150 1.356 0.091 0.051 (0.010) 0.191 (0.035)

ABSs 0.298 (0.076) 0.127 (0.076) 1.848 .034 2.345 0.204 0.141 (0.045) 0.572 (0.162)

Non-ABSs 0.070 (0.018) 0.068 (0.028) 0.061 .476 1.026 0.065 0.034 (0.009) 0.126 (0.029)

α2 All sites 0.090 (0.018) 0.165 (0.039) −1.792 1.000 0.546 0.099 0.052 (0.010) 0.170 (0.031)

ABSs 0.219 (0.088) 0.184 (0.131) 0.300 .383 1.187 0.176 0.057 (0.030) 0.366 (0.131)

Non-ABSs 0.065 (0.013) 0.163 (0.042) −2.265 1.000 0.395 0.082 0.051 (0.011) 0.134 (0.029)

Note: The standard errors, obtained through 1,000 bootstrap replicates, are in parentheses.
Abbreviation: ABS, antigen-binding site.
Significant results are highlighted in bold.

TA B L E  3   Inference of positively selected sites (PSSs) for sable MHC class I sequences

Domain Model ln L value Parameter estimates PSSs LRT TS value p-Value

α1 M7 −665.75 P = 0.01, q = 0.02 Not allowed M7 vs. M8 3.86 >.05

M8 −663.82 P0 = 0.91, P = 0.01, q = 0.01, 
P1 = 0.09, ω = 3.33

40D, 45D, 66I, 67C, 
79Q, 81A

α2 M7 −733.53 P = 0.19, q = 0.44 Not allowed M7 vs. M8 6.10 <.05

M8 −730.49 P0 = 0.97, P = 0.31, q = 0.81, 
P1 = 0.03, ω = 7.84

155R, 156L

Note: The log-likelihood (ln L) values and estimated parameters were computed using CODEML in PAML 4.9. PSSs were inferred in model M8 by 
Bayes empirical Bayes (BEB) with posterior probabilities (PP) > 95%, and codons with PP > 99% are shown in bold. Codons located at antigen-binding 
sites are highlighted with underline. TS value indicates test statistics, TS value = twice the difference of the log-likelihood ratios (2ΔIn L). Degree of 
freedom is two for all LRTs. p-values were determined by comparison of TS to a chi-square distribution.



3444  |     ZHAO et Al.

4  | DISCUSSION

This is the first study to characterize MHC class I genes in M. zi-
bellina. We identified 12 presumably functional sequences and 14 
presumed MHC class I pseudogene sequences. The major structural 
features that distinguish classical MHC class I proteins are present 
in these presumably functional sequences, such as highly conserved 
amino acid residues in α1 domain and α2 domain that bind the N- and 
C-termini of the presented peptide, a threonine (T134) residue for 
interaction with the TAP (transporter associated with antigen pro-
cessing) complex (Peace-Brewer et al., 1996), an N-linked glycosyla-
tion site (N86) in α1 domain, and cysteine (C) residues that form the 
disulfide bond (Figure S2) (Kaufman, Salomonsen, & Flajnik, 1994; 
Sin et al., 2012a). These features, together with the extensive poly-
morphisms we detected in presumably functional sequences (Tables 
1 and 2), indicate that most of the sequences from M. zibellina are 
classical MHC class I genes. Mammals usually possess limited num-
ber of classical loci (Hammer et al., 2020; Hughes & Nei, 1989). For 
instance, the human has three (HLA-A, HLA-B, and HLA-C) classical 
MHC class I genes; Tasmanian devil (Sarcophilus harrisii) has three 
(Saha-UA, Saha-UB, and Saha-UC) classical I genes (Cheng et al., 
2012); domestic dog has one (DLA-88) classical MHC class I gene; 
giant panda has four (Aime-C, Aime-F, Aime-I, and Aime-L) classical 

MHC class I gene (Pan, Wan, & Fang, 2008; Zhu et al., 2012). In 
the current study, the number of presumably functional sequences 
found in a single individual ranged from one to five, which might be 
at least 1–3 loci. This is consistent with other mammalian studies. 
In addition, we detected a large number of presumed pseudogene 
sequences in M. zibellina. This is in line with the expectation of birth-
and-death evolution (Nei & Rooney, 2005). One thing to note is that 
we cannot rule out the possibility that the Mazi-MHCI*PS13 and 
*PS14 are nonclassical MHC class I genes.

Previous studies have concluded that balancing selection ap-
pears to be the main mechanism that generates and maintains 
MHC polymorphism in vertebrates (Aguilar et al., 2004; Parham 
& Ohta, 1996). Positive selection is an important evidence of bal-
ancing selection. Positive selection mediated by pathogens would 
cause ABSs to accumulate more nonsynonymous substitutions 
than synonymous substitutions. Signals of positive selection were 
identified in M. zibellina. For α1 domain, positive selection acted 
on ABSs, which showed the nonsynonymous substitutions were 
significantly higher than synonymous substitutions (dN/dS = 2.345, 
p = .034). Although the nonsynonymous substitutions at ABSs of 
α2 domain were higher than synonymous substitutions, it is not 
significant (dN/dS = 1.187, p = .383). Selection pressure in α1 do-
main and α2 domain might often be different. Zeng et al. (2016) 

F I G U R E  2   Neighbor-Net network for MHC class I exon 2/α1 domain sequences from Martes zibellina in this study and including other 
sequences of carnivores obtained from NCBI
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reported that positive selection might be more advantageous 
in the α1 domains of golden pheasants (Chrysolophus pictus). 
Abduriyim, Nishita, et al. (2019) reported that the nonsynonymous 
substitutions were significantly higher than synonymous substi-
tutions in ABSs of α1 domain, but not in α2 domain of Eurasian 
badgers. However, in PAML analysis, two PSSs were identified in 
α2 domain. Both of the PSSs identified in α2 domain fell within 
ABSs. Our results suggested that both of the α1 domain and α2 
domain are under positive selection pressure. We cannot deny 
the possibility that we misidentified a few ABSs in M. zibellina as 
they are inferred according to the study of human MHC class I 
(Bjorkman et al., 1987). This possibility may make the result to be 
more conservative as the rates of dN/dS for non-ABSs are usually 
lower than the rates of dN/dS for ABSs. Positive selection at ABSs 
can permit a population or a species to present a wider repertoire 
of antigens, thereby enhancing the ability to  fight against patho-
genic and parasitic infections. Compared with the study of the 
MHC class II DRB genes of M. zibellina, the ABSs of MHC class I 
genes were under stronger positive selection (Nishita, Abramov, 
Murakami, & Masuda, 2018), which might be explained by stronger 
selection pressure from intracellular pathogens than extracellular 
pathogens (Minias et al., 2016).

Recombination has been considered as an important fac-
tor driving evolution of MHC genes (Minias et al., 2016; Schaschl, 
Suchentrunk, Hammer, & Goodman, 2005). In the present study, 
we found that the recombination may play a role in the evolution of 
MHC class I genes of M. zibellina. The recombination signals were de-
tected in both GARD tool and RDP4 program. The degenerate 13-bp 
sequence motif CCNCCNTNNCCNC, which is essential in cross-
over events at human recombination hotspots (Myers, Freeman, 
Auton, Donnelly, & McVean, 2008), was detected at nearly half of 
the position of intron 2 sequences (Figure S2). We found that half 
of recombination breakpoints identified by RDP4 were located near 
the sequence motif or in the sequence motif. The intron 2 may play 
an important role in recombination of MHC class I genes. Although 
there may be some sequence structural differences between intron 
2 in mammals and intron 2 in some bony fishes and anurans (Bos & 
Waldman, 2006; Michalova, Murray, Sultmann, & Klein, 2000; Shum 
et al., 2001; Zhao et al., 2013), intron 2 caused the common concern 
as many recombination breakpoints were found in these regions. 
Recombination may create new forms of ABSs. Previous studies in 
some species showed that the recombinant alleles observed in pop-
ulations had been selectively favored (Hughes, Hughes, & Watkins, 
1993). Further study of recombinant function in the future will 

F I G U R E  3   Neighbor-Net network for MHC class I exon 3/α2 domain sequences from Martes zibellina in this study and including other 
sequences of carnivores obtained from NCBI
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contribute to a deeper understanding of the role of recombinant in 
the evolution of MHC gene. The contrasting evolutionary history be-
tween MHC class I and class II has been an interesting research topic 
(Kuduk, Johanet, Allaine, Cohas, & Radwan, 2012b; Minias et al., 
2016). In the comparative analysis of some studies, only one of the 
two domains of the MHC class I gene was used for the analysis with 
the antigen-binding domain of MHC class II gene. However, among 
MHC class I alleles, recombination is believed to tend to occur be-
tween the α1 domain and α2 domain, whereas in class II, the loop 
between the β-pleated sheet and the α-helix is suggested to be a 
recombination hotspot (Go et al., 2002; Jakobsen, Wilson, & Easteal, 
1998). Moreover, selection pressure in α1 domain and α2 domain 
of MHC class I might often be different. We suggest that both α1 
domain and α2 domain of MHC class I should be used for analysis of 
contrasting evolutionary history between MHC class I and class II.

The phylogenetic networks of α1 domain and α2 domain showed 
that most sequences of M. zibellina formed a clade with other mus-
teline sequences (Figures 2 and 3). The clustering of the sequences 
among species could be due to orthology or trans-species polymor-
phism. The trans-species polymorphism is the occurrence of similar 
alleles in related species (Klein, Sato, Nagl, & O'HUigín, C., 1998). 
Without the availability of information about loci identified, it was 
difficult to distinguish between the trans-species polymorphism and 
orthology. In addition, we found that the Mazi-MHCI*PS01–04 clus-
tered with the nonclassical MHC class I genes (FLA-S, Aime-1906 and 
DLA-79). Further study found that many carnivores all had a gene 
that can cluster into the clade. These genes might from a common 
ancestral source. We speculated that this might be a candidate non-
classical MHC class I lineage in Carnivora as the sequences of pre-
viously studied species all show the characteristics of nonclassical 
gene, for instance, tissue-specific expression, abnormal exon, and 
limited polymorphism (Burnett et al., 1997; Hammond et al., 2012; 
Kuduk, Babik, et al., 2012; Zhu et al., 2012). The lineage was iden-
tified in most families of Carnivora, for instance, Felidae, Ursidae, 
Otariidae, Odobenidae, Phocidae, Mustelidae, Hyaenidae, and 
Canidae. Genome data or MHC class I studies in other families have 
not been reported, and we are unable to determine whether the gene 
is present in these families. The lineage may have preceded the di-
vergence (about 52–57 Mya) of Caniformia and Feliformia (Arnason, 
Gullberg, Janke, & Kullberg, 2007). Though we do not know the ori-
gin of this lineage, we can know how the lineage goes through death 
and evolution in Carnivora. In Felidae, all the sequences are prema-
turely terminated in the same position in α1 domain. In Hyaenidae, 
the sequence of Hyaena hyaena became a pseudogene due to de-
letion within α2 domain. In Mustelidae, all the sequences are pre-
maturely terminated in the same position. All the stop codons are 
located in α1 domain, but the positions of stop codons are different 
in Felidae and Mustelidae. We speculate that the gene had become 
a pseudogene before speciation. The gene was not identified in 
Eurasian badgers and American badger (Taxidea taxus), possibly due 
to recombination or lost. In most families of Caniformia, signals of 
loss of gene function were not detected. The lineage may retain its 
function in those families. In giant panda, Aime-1906 has been shown 

to be expressed in the liver and brain, which suggests it may be func-
tional (Zhu et al., 2012). The strong association between DLA-79 and 
multiple immune-mediated diseases has been demonstrated in dogs 
(Friedenberg et al., 2016). Though the lineage of α1 domain and α2 
domain was deduced in this study, recombination might occur in 
other domains or introns in some species (Hammond et al., 2012). 
The research into the lineage could provide valuable information 
about the immune response mechanisms and adaptive evolution in 
Carnivora. Moreover, there are a large number of pseudogenes and 
gene fragments of MHC in the genome, which may retain important 
information about the evolution of MHC.

In summary, our results suggest that both balanced selection and 
recombination contribute to the evolution of MHC class I genes in 
M. zibellina. In addition, we identified a candidate nonclassical MHC 
class I lineage in Carnivora, which may contribute to further un-
derstanding of the origin and evolution of nonclassical MHC class 
I genes. Our study provides important immune information of MHC 
for M. zibellina, as well as other species.
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