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Abstract: Metal ions in high concentrations can pollute the marine environment. Human activities
and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of
an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this
method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in
the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer
modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging
from 3.91 nM to 256 µM. The proposed enzyme method-based microfluidic chip detects Cu2+ with
a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the
chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying
the ability of the chip in practical applications. Furthermore, the chip realizes the functions of
two AND gates in series and has potential practical implementations in biochemical detection and
biological computing.

Keywords: biological logic gate; Cu2+ detection; microfluidic chip

1. Introduction

Marine environmental pollution is an increasingly acute global problem [1,2]. Trace
metals are essential components of biogeochemistry; however, high concentrations of
metals can cause persistent harm to the marine environment [3,4]. Copper is a common
micronutrient. Copper ions found in seawater mainly exist in the form of Cu2+ in the
concentration of fM-pM [5]. Concentrations vary depending on the location, temperature,
acidity, salinity, and depth of the seawater [6]. The concentration of copper ions in the
ocean can rise to µM as a consequence of human activities and industrial pollution. High
concentrations of copper ions are toxic, particularly to the metabolisms of marine organ-
isms [7]; for example, high levels of copper ions can interfere with the fertilization of sea
urchins and negatively impact algae survival [8,9]. For humans, excess copper ions can lead
to diseases such as anemia and Alzheimer’s disease [10–12]. According to the China Sea
Water Quality Standard, the concentration of copper in seawater that comes into contact
with human beings should be lower than 0.16 µM. Therefore, the rapid detection of copper
ion concentration in seawater has practical significance for marine environment protection.

In recent years, researchers have developed numerous Cu2+ detection methods, in-
cluding fluorescence, colorimetry, and electrochemical sensors [13–18]. Tian et al. reported
the successful use of a fluorescence sensor for rapidly detecting Cu2+ [19]. The mechanism
of the sensor uses the photoinduced electron transfer effect on Cu2+ in ultrathin graphite
carbon nitride nanosheets, which leads to the fluorescence extinction of the sensor. Whilst
this method is extremely sensitive, it relies on large instruments, and the preparation of
nanosheets is complex. Colorimetry provides a convenient method for the detection of
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Cu2+. Ye et al. described the use of rhodamine B and 5-ferrocenyl-1,3,4-thia-diazole to
create a rhodamine probe [20]. Cu2+ causes the ring-opening of rhodamine spiro lactam,
turning the colorless solution pink. This method has a noticeable readout effect but low
sensitivity. Developing a detection method for Cu2+ in seawater offers the potential for
convenient readouts, high sensitivity, and a wide detection range, making this concept
worthy of research.

Microfluidic chips are capable of completely integrating biochemical reactions [21,22].
High throughput, small size, low cost, and support for personalized design are features of
microfluidic chips [23,24]. In recent years, due to the state-of-the-art attributes of microflu-
idic platforms, they have become mainstream in environmental detection. Microfluidic
chip platforms enable the reliable detection of markers using nanoparticles, fluorescent
probes, and color reactions [25,26]. Idros et al. created a multiplex detection technique for
heavy metals [27]. Their approach integrated a microfluidic chip to detect heavy metals
in water. We believe that it is feasible to develop a Cu2+ detection method based on a
microfluidic chip.

Herein, we explored the potential of an enzyme method-based microfluidic chip for
rapidly detecting Cu2+ in seawater. The microfluidic chip produces Cu+ by reducing
Cu2+ with sodium ascorbate, inhibiting horseradish peroxidase (HRP) activity. Tetram-
ethylbenzidine (TMB) acts as the start key and reacts with HRP to form a blue solution,
while HCl acts as the end key to stop the reaction and form a yellow solution. The signal
of 3.91–256,000 nM Cu2+ can be read out by both the naked eye and spectrophotometry.
The enzyme method-based microfluidic chip provides an expeditious detection of Cu2+ in
seawater and a potential direction for the development and future study of biological logic
gates and biological computers.

2. Materials and Methods
2.1. Materials and Instruments

HRP was purchased from Solarbio Science & Technology Co., Ltd. (Beijing, China).
TMB solution was obtained from Makewonderbio Co., Ltd. (Beijing, China). Phosphate
Buffered Saline (PBS) tablets were purchased from Amresco (Pittsburgh, PA, USA) to
prepare 0.01 mol/L PBS solution (pH 7.4). PBS solution was used to dilute HRP. Other
chemicals were analytical grade and diluted in distilled water with a salinity of 3.5% to sim-
ulate a seawater environment. The microfluidic chip was made from Polydimethylsiloxane
(PDMS) and a curing agent (Sylgard 184) purchased from Dow Corning Inc. (Rochester,
NY, USA). Molds of the microfluidic chip were made from Lasty-R resin from SHINING
3D Technology Co., Ltd. (Hangzhou, China).

A Lite 600HD 3D printer from SHINING 3D Technology Co., Ltd. (Yangzhou, China)
was used to manufacture the molds. LICHEN-BX Co., Ltd. (Shanghai, China) provided a
DZF-6020A vacuum drying oven and a 202-00T electric thermostatic drying. A PT-10s Plasma
Cleaner was purchased from SANHOPTT Co., Ltd. (Shenzhen, China). INESA Analytical
Instrument Co., Ltd. (Shanghai, China) produced the L5S UV/VIS Spectrophotometer.

2.2. Design and Fabrication of the Microfluidic Chip

The microfluidic chip comprises double PDMS layers and measures 58 mm in length,
24 mm in width, and 8 mm in thickness in total. The function layer stores reagents and
implements the operation of the enzyme method-based microfluidic chip. It contains
three input reservoirs and two control reservoirs. Microchannels both 400 µm wide and
deep connect all reservoirs. We reduced the thickness above the reaction reservoir to
prevent excessive PDMS from affecting the color signal readout when performed by the
naked eye. Drilling holes in each reservoir facilitates the injection of reagents and equalizes
pressure when positive pressure increases. The readout layer consists of a reaction reservoir.
The reaction takes place in the reaction reservoir, from which readouts can be observed.

As an emerging manufacturing technology, 3D printing has the characteristics of
individuation and high precision. It has been widely used in miniaturized mechanical and



Micromachines 2021, 12, 1380 3 of 10

electromechanical elements to efficiently manufacture microdevices in recent years [28,29].
We used a high-precision desktop 3D printer to make the molds of the microfluidic chip
(Figure 1a). After cleaning, curing, and polishing the molds, gloss oil was sprayed on
the molds to facilitate curing and stripping, and to improve the surface roughness of the
double PDMS layers. We then mixed the PDMS and curing agents with a mass ratio of
9.5:1 and removed the bubbles in a vacuum drying oven, before pouring them into molds.
We stored the molds at 85 ◦C for 60 min to cure the PDMS and then demolded the double
PDMS layers (Figure 1b). The plasma cleaner modified the surface of the double PDMS
layers and made them bond tightly after pressing (Figure 1c).
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2.3. Optimization of Reaction Conditions

Sodium ascorbate is a commonly used reducing agent in the sensing stage of biochem-
ical detection. It does not inhibit HRP activity. In addition, Cu2+ and Cu+ generated by a
reduction reaction may affect HRP activity. In order to explore the factors of the inhibition
of HRP activity, we reacted different concentrations of Cu2+ and Cu+ with 12.5 ng/mL HRP,
respectively (Figure 2a). The results showed that Cu2+ had a slight inhibitory effect on
HRP activity, while Cu+ had a more substantial effect. Therefore, we needed to completely
reduce Cu2+ to Cu+ in the chip to attain a more obvious signal.
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The reaction temperature was an essential factor, as it could affect results and therefore
the practical application of the chip. To investigate the optimal application temperature
of the chip, we conducted experiments at 4 ◦C, 25 ◦C, and 37 ◦C, respectively (Figure 2b).
Although we obtained a good signal intensity strength at 25 ◦C, the strongest signal
intensity was at 37 ◦C, which is consistent with the optimal reaction temperature of HRP.
The concentration of Cu2+ in normal seawater is extremely low, so we needed to obtain a
higher sensitivity to meet the detection requirements. In the end, we chose 37 ◦C as the
reaction temperature. Using a miniature thermostat did not cause inconvenience in the
actual detection.

Incubation time was the most time-consuming part of the chip’s operation. To obtain
a clear signal in a short time, we explored the influence of different incubation times on
signal intensity (Figure 2c). HRP activity was not completely inhibited when the incubation
time was too short, but even a low concentration of Cu2+ could significantly inhibit HRP
activity when incubation time was too long. Choosing 30 min as the incubation time
ensured evident signal intensity at different concentrations of Cu2+.

HRP and TMB react quickly, so readout time has a significant effect on signal inten-
sity. We investigated the signal intensity obtained at different readout times (Figure 2d).
The short readout time did not produce a clear signal, while the long readout time caused
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the color to darken continuously. For a microfluidic chip, 90 s is the best readout time.
Since microfluidic chips can be automatically controlled using portable instruments, it is
not difficult to accurately control the readout time.

3. Results and Discussion
3.1. Principle

The HRP-TMB color reaction is a well-known technique in biochemical detection.
TMB participates as a hydrogen donor in the HRP-catalyzed H2O2 reduction process. TMB
is oxidized during the process, resulting in the formation of diimine, which turns the
solution blue. This color change produces absorption peaks at 371 nm and 652 nm [30].
The addition of acid can stop the reaction and turn the solution yellow. It has an absorption
peak at 450 nm. Both Cu2+ and Cu+ inhibit HRP activity in the form of Cu+. When only
Cu2+ reacts with HRP, the potential reducibility of protein may cause Cu2+ to be reduced.
The porphyrin ligand is generally considered the active site of HRP. However, inhibition of
HRP activity by Cu+ may occur on amino acid residues [31]. The specific sites of inhibition
need further study.

3.2. Detecting Process

We added 5 µL of the test samples with different concentrations of 5 µL 100 µM
sodium ascorbate, and 90 µL 12.5 ng/mL HRP into input reservoirs a, b, and c, respectively.
Then, 100 µL TMB solution and 50 µL 2 M HCl were stored in control reservoirs a and b.
For driving the reagents, a positive pressure was applied. First, we pumped all the reagents
from the input reservoirs into the reaction reservoir, then incubated at 37 ◦C for 30 min.
After that, the TMB solution was pumped into the reaction reservoir to react with the HRP.
In order to stop the reaction after 90 s (Figure 3), stored HCl from the control reservoir was
pumped into the reaction reservoir. Finally, the enzyme method-based microfluidic chip
provided two methods for the reading out of signals. Firstly, they could be read with the
naked eye. The solution of Cu2+ pollution with a standard concentration was prepared into
a colorimetric standard in the chip. By comparison with the colorimetric standard, a rough
estimate of the pollution of Cu2+ could be achieved. Secondly, the solution could be taken
from the reaction reservoir and put into a spectrophotometer to detect the absorbance of
the solution at 450 nm. The absorbance could then be used to accurately calculate the
concentration of Cu2+.

3.3. Detecting Performance

We used linear range, limit of detection (LOD), selectivity, repeatability, and storage
stability to evaluate the chip’s detection performance. The detection of 0.24 nM–4096 µM
Cu2+ demonstrated an excellent linear relationship between Cu2+ levels and the absorbance
value at the concentration of 3.91 nM–256 µM (Y =− 0.34374 · X + 1.97302, R2= 0.998).
The linear range shows that the chip can detect the concentration of Cu2+ in seawater with
different pollution levels (Figure 4a–d). LOD was calculated by dividing the standard
deviation of the blank sample by the slope of the linear curve. The LOD of Cu2+ for the
chip is 0.87 nM. Since seawater contains other metal ions, it was essential to determine
whether the presence of other metal ions would affect the detection of Cu2+. We used the
enzyme method-based microfluidic chip to detect Na+, Hg2+, Cr3+, Pb2+, Cd2+, and Co2+

at 1 µM (Figure 4e). The results show that other metal ions do not inhibit HRP activity and
do not affect the detection of Cu2+. Repeatability and storage stability are preconditions for
the practical application of the enzyme method-based microfluidic chip, which is similar to
a biological logic gate. Ten chips were used to detect the solution with a Cu2+ concentration
of 1 µM. Their coefficient of variation (CV) was 3.45% (Figure S1). The CV of the chips
was 4.53% after they were stored at 4 ◦C for 1–5 days (Figure S2) for detecting 1 µM
Cu2+ solution. In order to verify the detection ability of the chip, we compared it with
colorimetric, fluorescence, and photoelectrochemical methods (Table S1). The results show
that the chip has the advantages of low cost, easy operation, wide linear range, and high
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sensitivity. The detection performance of the chip met the detection demand of Cu2+

in seawater.
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3.4. Detection of Actual Samples

To verify the performance of the enzyme method-based microfluidic chip in detecting
actual seawater samples, we collected three seawater samples with different levels of
pollution (Lianyungang, China). The standard color sample was obtained by detecting the
standard solution of 0.16 µM Cu2+, which the China Sea Water Quality Standard requires.
We performed real-time detection at the sampling site and read out the microfluidic chip’s
signal intensity with the naked eye (Figure 5). The color of the solution in the reaction
reservoir was compared to the color of the standard sample to determine the pollution level.
A sample solution from the chip was tested in a lab setting using a spectrophotometer to
acquire precise data. Results of the two readout methods of the chip were compared with
those of ICP-OES as a reference (Table 1). The results showed that the naked eye readout
could judge pollution and that using the spectrophotometer results could accurately detect
Cu2+ concentration.
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Table 1. Comparison of actual sample results by different methods.

Naked Eyes Spectrophotometer ICP-OES

Sample 1 polluted 218.74 µM 217.31 µM
Sample 2 polluted 21.29 µM 19.78 µM
Sample 3 unpolluted 14.57 nM 14.31 nM
Location Sampling site Lab Lab

3.5. Operation of Microfluidic Chip

Based on an enzyme method, the microfluidic chip constructs two AND gate structures
in series (Figure 6a). Cu2+ and sodium ascorbate are inputs of the first AND gate. Cu+

produced by reduction reaction is the output of the first AND gate and one of the inputs
of the second AND gate. The other input of the second AND gate is HRP. Inhibition of
HRP activity is the output of the second AND gate. The reagent is ‘1’ in the presence
and ‘0’ in the absence. TMB outputs HRP activity by color as the start key of the enzyme
method-based microfluidic chip aspired biological logic gate. HCl acts as the end key of
the biological logic gate to terminate the reaction in the reaction reservoir and make the
solution present its final color. The output of the whole biological logic gate is ‘0’ for a
yellow solution and ‘1’ for a colorless solution. It can be seen from the truth table of the
biological logic gate that the final output will be ‘1’ only when the three inputs of Cu2+,
ascorbic acid, and HRP are ‘1’ at the same time (Figure 6b). The result satisfies the reality
of the double AND gate series. Since Cu2+ and sodium ascorbate are inexpensive reagents,
and unlabeled HRP is common, the cost of biological gates is low. It means that visual
biological logic gates have potential applications in biological computers.
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(b) Truth table for biological logic gates.

4. Conclusions

In this work, we developed a biological gate based on a microfluidic chip platform to
detect Cu2+ in seawater. In the biological logic gate, Cu2+ and sodium ascorbate produce
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Cu+. Cu+ reacted with HRP amino acid residues to inhibit HRP activity. A color change
occurred when the TMB solution was added. Both the naked eye and a spectrophotometer
can be used to read out the signal intensity. Biological logic gates had an excellent detection
performance, including in the detection of actual seawater samples. The enzyme method-
based microfluidic chip provides a convenient and low-cost platform, laying a foundation
for promoting biological logic gates. The biological logic gate realizes the function of
two AND gates in series and can read the result visually. Biological gates provide a new
method for detecting Cu2+ in seawater and have a potential for development in the field of
biological computers.
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