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Abstract: In low- and middle-income countries, children aged below 5 years frequently suffer from
disease co-occurrence. This study assessed whether the co-occurrence of acute respiratory infection
(ARI), diarrhoea and stunting observed at the child level could also be reflected ecologically. We
considered disease data on 69,579 children (0–59 months) from the 2008, 2013, and 2018 Nigeria
Demographic and Health Surveys using a hierarchical Bayesian spatial shared component model
to separate the state-specific risk of each disease into an underlying disease-overall spatial pattern,
common to the three diseases and a disease-specific spatial pattern. We found that ARI and stunting
were more concentrated in the north-eastern and southern parts of the country, while diarrhoea was
much higher in the northern parts. The disease-general spatial component was greater in the north-
eastern and southern parts of the country. Identifying and reducing common risk factors to the three
conditions could result in improved child health, particularly in the northeast and south of Nigeria.

Keywords: shared component; Bayesian analysis; acute respiratory infection; Nigeria; diarrhoea

1. Introduction

Children in sub-Saharan Africa suffer from the simultaneous occurrence of multiple
diseases. Disease co-occurrence is partly attributed to common risk factors such as poor
sanitation and water quality, air pollution, and poor access to breast milk and nutrient-
dense foods [1–4]. Several studies have shown that growth faltering is related to diarrheal
morbidity in children under 5 years of age in low-income settings [5–8]. While evidence
of associations between child growth retardation and acute respiratory infection is not
conclusive [5,7], several studies have found a significant association between diarrhoea
and the risk of ARI in children [3,9,10]. The association is more pronounced in malnour-
ished children as they are more susceptible to diarrhoea, and subsequent dehydration
and micronutrient loss [3,11]. The combined effect weakens the immune system, further
predisposing the child to more infections. Malnourishment in children leads to growth
faltering (Stewart et al., 2013). An ecological analysis of the spatial co-occurrence of ART,
diarrhoea, and stunting is important to public health policymakers, in that identifying and
reducing common risk factors to these three conditions could result in a very significant
improvement in child health.

Previous ecological studies on child illnesses in sub-Saharan Africa have mostly used
univariate spatial statistics methods, even if multiple diseases were analysed [1,12–15]. A
few studies have been conducted to model multiple diseases in children using joint spatial
models [16–19]. Joint spatial models are of both methodological and epidemiological im-
portance, in that they avoid the specific problems of multiple testing and the identifiability
issues in random effect parameter estimations [20–22]. A widely applied spatial joint model
is the shared-component model [21], which allows for separation of the area-specific risks
of each disease into the underlying spatial pattern, which is common to all diseases, and
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another, which is a disease-specific component to capture the difference of disease-spatial
pattern from the spatial shared component. This spatial joint model was used here to assess
the state-level co-occurrence of ARI, diarrhoea, and stunting among children aged under
5 years. A total of 61,579 children from the 2008, 2013, and 2018 Nigeria Demographic
and Health Surveys (DHSs) were used. We analysed each of the three survey datasets, as
well as the pooled data, using Bayesian inference employing the integrated nested Laplace
approximation approach (INLA) [23]. To the best of our knowledge, no other study has
examined the trends over time in spatial variations of some of the common diseases among
children under the ages of five years in sub-Saharan Africa.

2. Methods
2.1. Data Source

The study used data from the 2008, 2013, and 2018 Nigeria Demographic and Health
Surveys (NDHSs). The NDHSs are nationally representative household surveys utilizing a
multistage stratified cluster sampling methodology. They provide data for a wide range of
indicators in the areas of population, health, and nutrition. Usually, they involve a sample
of women aged 15 to 49 years in both urban and rural households drawn from all 36 states
and the Federal Capital Territory (FCT) of Nigeria. The 36 states and the FCT were used as
the spatial layer. Information on an episode of illnesses in the two weeks preceding the
survey implementation on all alive children aged 0–59 months was also collected. The
variabales that were considered in this study are described in Table 1.

Table 1. Variables used for this study.

Variables Definition

Place of residence Type of place of residence where the household resides, either urban or rural.

Mother’s level of education
Highest level of education the mother received. This is a standardized
variable providing level of education in the following categories: no

education, primary, secondary, or higher.

Wealth index

The Wealth Index is a composite measure of the cumulative living standard
of a household. It is calculated using data on a household’s ownership of a

selected set of assets, such as televisions, bicycles, and cars; dwelling
characteristics such as flooring material; type of drinking water source; and
toilet and sanitation facilities. The Wealth Index considers characteristics that
are related to wealth status, avoiding variables that do not represent an asset,

or outcome variables. They are combined using principal components
analysis (PCA) methods, and the first component is used as the household

Wealth Index [24].

Child’s gender Sex of the child.

Child’s age Child’s age in months.

Mother’s age Mother’s age in years.

Diarrheoa Whether the child had diarrhoea in the last 24 h or within the last two weeks
before the survey.

Stunting

The anthropometric index for height-for-age used to determine the
nutritional status of the child is based on Z-scores computed according to the

WHO [25] standard [26]. A child whose Z-score is below −2 standard
deviation (−2SD) of the reference population is said to be stunted.

Acute respiratory infection
Whether the child suffered from short, rapid breathing, which was

chest-related, and/or difficult breathing, which was chest-related in the last
weeks before the survey.

2.2. Statistical Method

Suppose Yijd is the status of disease d on child j in state i (i = 1, . . . , 37; j = 1, . . . , ni;
d = 1 (ARI), 2(diarrhoea), 3(stunting)) and we assign it a value of 1 if the child had the
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disease and 0 otherwise where ni is the number of children that were sampled in state i.
Furthermore, suppose Xijd is a vector of covariates associated with child ij for disease
d. The covariates Xij are used to explain variations in disease risk through the associated
disease-specific fixed-effects parameters βd. We also account for the unobserved and
underlying disease risk through a state random effect, Uid. The disease status outcome Yijd
is treated as a Bernoulli random variable with parameter πijd being the probability of child
ij having disease d. The effect of the observed covariates Xijd and unobserved effects in
Uid are modelled using a logit function as follows:

log

(
πijd

1− πijd

)
= αd + β′dXijd + Ujd (1)

where αd and βd are the disease-specific baseline and fixed effect risks associated with
the covariate vector Xijd, respectively. The state random effect Ujd may exhibit spatial
dependence and disregarding it in the modelling and estimation procedures could lead to
biased and inefficient inference. Thus the state random effect is spatially structured.

To investigate state-level co-morbidity among the three childhood illnesses, we use the
spatial shared component model proposed by Knorr-Held and Best [27]. The model allows
for the splitting of the state random effect on a disease d into an underlying disease-general
burden common to all the three diseases and a disease-specific component that could be
considered as the deviation from the common state pattern. To also assess pair-wise disease
co-occurrence at the state level, we added three state shared random effects, namely ARI
and diarrhoea, ARI and stunting, and diarrehoea and stunting. Thus, the final model for
the state-level co-occurrence of ARI and diarrhoea, ARI and stunting is as follows:

logit
(
πij1

)
= α1 + X>ij β1 + ϑυi(12) + θυi(13) + ∂1υi + si1 (2)

logit
(
πij2

)
= α2 + X>ij β2 +

(
1
ϑ

)
υi(12) + δυi(23) + ∂2υi + si2 (3)

logit
(
πij3

)
= α3 + X>ij β3 +

(
1
θ

)
υi(13) +

(
1
δ

)
υi(23)) + ∂3υi + si3 (4)

where now the state random effect Uid in (1) is decomposed into an underlying disease-
general state common pattern and disease-specific component. For example, in (2) which
is the model for ARI, there are three spatial shared components as foloows; ϑυi(12) (ARI
and diarrhoea), θυi(13) (ARI and stunting) and ∂1υi (ARI, diarrhoea and stunting) and an
ARI-specific state-level effect si1 Similarly for diarrhoea and stunting Equations (3) and (4),
respectively. Parameters ϑ, θ, δ and ∂ are gradient weights that allow each disease to have
a unique association with the underlying disease state pattern. The spatial shared compo-
nents are proxies for one or more common risk factors such as air pollution, poor sanitation
and hygiene, unclean and unsafe drinking water that contribute to child diarrhoeal diseases
and ill health.

Model estimation was done with the Bayesian paradigm under the intrinsic conditional
autoregressive (ICAR) normal model for the state-level random effects. The parameters of
the spatial shared-component model in (2) were estimated using integrated nested Laplace
approximation [23]. We fitted the models using R-INLA in R statistical software [27]. Prior
specifications followed the ideas in the previous applications of the model as in [16–22].
The model assessment was based on deviance information criterion (DIC) [28].

3. Results

Table 2 shows the distribution of the characteristics of the children studied. A total of
61,579 children under 5 years of age were included, of which 23,851, 27,524, and 10, 204 were
from 2008, 2013, and 2018, respectively. Out of the 61,579 children considered, 2923 had
ARI, 6675 had diarrhoea, and 8940 were stunted. A total of 1013 had ARI and diarrhoea,
468 had ARI and stunting, 1054 had diarrhoea and were stunted, while 173 suffered from
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all of the illnesses. A larger percentage (68%) of children was from a rural settlement, while
46% of their mothers had no education.

Table 2. Characteristics of the study population.

Response Variables
Year

2008 2013 2018

Total Number of Children 23,851 27,524 10,204
Disease
ARI 1134 1114 675
Diarrhoea 2495 2868 1312
Stunting 4055 3453 1432
ARI and diarrhoea 371 448 194
ARI and stunting 459 393 202
Diarrhoea and stunting 205 166 97
All illnesses 80 64 29
Residence
Rural 17,298 18,206 6633
Urban 6553 9318 3571
Mother’s education
No education 11,714 12,661 4234
Primary 5471 5594 1771
Secondary or tertiary 6666 9269 4199
Wealth Index
Poorest 6193 6020 2283
Poor 10,252 11,813 4570
Rich 7406 9691 3351
Child gender
Male 12,040 13,854 5123
Female 11,811 13,670 5081
Child’s age (months)
Less than 1 6357 8762 2533
12 to 23 4629 6916 2054
24 to 59 12,865 15,085 5617

Table 3 presents the tetrachoric correlation coefficients for each pair of the three health
indicators computed. The tetrachoric correlation measures were in agreement with the
binary outcomes. A strong correlation exists between ARI and diarrhoea. In the case of
ARI and stunting, and diarrhoea and stunting, the correlation at the national level was
weak, but when estimated for each state (estimates not presented), the results showed
significant relationships in some of the states. Thus, correlation estimates at the national
level concealed information on possible local variations. Figure 1 shows, for each pair of
the diseases, the empirical correlation for the proportion of children who suffered from the
diseases in the different states of Nigeria.

Table 3. Tetrachoric correlation among acute respiratory infection, diarrhoea, and stunting.

Correlation Standard Error p-Value

Diarrhoea/ARI 0.371 0.012 0.0000
Diarrhoea/Stunting −0.024 0.011 0.0274

ARI/Stuntin −0.023 0.014 0.0973

Tables 4–6 present the odds ratios for the fixed effects for each of the diseases from the
surveys carried out in 2008, 2013, and 2018, respectively. Children from urban settlements
in 2013 were less likely to be stunted. In 2018, children from urban settlements were more
likely to have diarrhoea. Children whose mothers attained at least a primary level of
education were less likely to have any of the diseases in all the survey years. This was
also true for children from rich households and female children. Estimates also show
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that children between the age of 12 to 23 months were more likely to have diarrhoea
in all the survey years, and as the mothers’ age increased, the likelihood of any of the
diseases decreased.

Figure 1. Pairwise scatter plots between the proportions of respiratory infection (ARI), diarrhoea,
and stunting based on the 37 locations.
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Table 4. The odds ratio estimates of the covariate effects and their 95% credible interval for 2008.

Variables
ARI Diarrhea Stunting

OR 95% CI OR 95% CI OR 95% CI

Residence
Urban 1.032 0.878, 1.214 1.039 0.921, 1.174 1.028 0.931, 1.135
Mother’s Education
No education 1 1 1 1 1 1
Primary 0.803 0.676, 0.951 0.820 0.726, 0.925 0.888 0.805, 0.979
Secondary or
tertiary 0.594 0.486, 0.723 0.621 0.535, 0.721 0.593 0.528, 0.666

Wealth Index
Poorest 1 1 1 1 1 1
Poorer or middle 0.782 0.681, 0.899 0.740 0.673, 0.815 0.822 0.758, 0.892
Richer or richest 0.692 0.559, 0.855 0.590 0.504, 0.692 0.635 0.559, 0.720
Female child 0.785 0.699, 0.881 0.708 0.652, 0.770 0.896 0.837, 0.959
Child’s age (months)
less than 12 1 1 1 1 1 1
12 to 23 0.964 0.827, 1.121 1.294 1.161, 1.440 0.925 0.839, 1.020
24 to 59 0.534 0.469, 0.607 0.545 0.496, 0.599 0.841 0.780, 0.908
Mother’s age 0.915 0.911, 0.921 0.944 0.940, 0.948 0.959 0.955, 0.962

Table 5. The odds ratio estimates of covariate effects and their 95% Credible Interval for 2013.

Variables
ARI Diarrhea Stunting

OR 95% CI OR 95% CI OR 95% CI

Residence
Urban 1.061 0.889, 1.265 1.097 0.975, 1.233 0.889 0.797, 0.990
Mother’s Education
No education 1 1 1 1 1 1
Primary 0.941 0.789, 1.121 0.854 0.759, 0.96 0.964 0.866, 1.072
Secondary or
tertiary 0.744 0.615, 0.9 0.617 0.542, 0.703 0.692 0.614, 0.781

Wealth Index
Poorest 1 1 1 1 1 1
Poorer or middle 0.652 0.563, 0.755 0.741 0.673, 0.816 0.825 0.755, 0.902
Richer or richest 0.448 0.356, 0.562 0.694 0.595, 0.809 0.647 0.561, 0.744
Female child 0.746 0.664, 0.838 0.845 0.782, 0.913 0.912 0.85, 0.979
Child’s Age (months)
Less than 12 1 1 1 1 1 1
12 to 23 0.940 0.808, 1.092 1.278 1.155, 1.414 0.877 0.791, 0.971
24 to 59 0.482 0.422, 0.55 0.517 0.473, 0.566 0.773 0.713, 0.838
Mother’s Age 0.914 0.909, 0.92 0.944 0.94, 0.947 0.948 0.944, 0.951

Table 7 presents the odds ratio for the fixed linear effects for each of the diseases
considered, including the 95% credible intervals using the combined dataset. The findings
show that children who were between 12 to 23 months were less likely to suffer from ARI
and stunting, but more likely to suffer from diarrhoea, while children who were 24 months
or older had a significantly lower likelihood of suffering from any of the diseases. Children
whose mothers attained at least a primary level of education were less likely to have
suffered from the diseases, although the estimate was not significant for ARI. Surprisingly,
children from an urban settlement were more likely to have diarrhoea when compared
with children from a rural settlement. Estimates for ARI and stunting based on settlement
(urban or rural) were not significant. However, children from poorer households and
above were less like to have any of the diseases, and the estimates were significant. Female
children had a lower likelihood of having any of the diseases. As mothers’ age increased,
the children were less likely to contract any of the illnesses. In addition, the results show
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that compared with 2008, the odds for any of the diseases were significantly lower in 2013,
but for 2018, the estimates were only lower for ARI and diarrhoea.

Table 6. The odds ratio estimates of covariate effects and their 95% Credible Interval for 2018.

Variables
ARI Diarrhea Stunting

OR 95% CI OR 95% CI OR 95% CI

Residence
Urban 1.050 0.84, 1.309 1.234 1.045, 1.455 0.826 0.709, 0.960
Mother’s Education
No education 1 1 1 1 1 1
Primary 0.956 0.750, 1.216 0.785 0.652, 0.943 0.649 0.544, 0.773
Secondary or
tertiary 0.685 0.536, 0.873 0.648 0.540, 0.778 0.522 0.439, 0.619

Wealth Index
Poorest 1 1 1 1 1 1
Poorer or middle 0.536 0.439, 0.653 0.732 0.633, 0.846 0.977 0.848, 1.125
Richer or richest 0.528 0.397, 0.702 0.555 0.445, 0.692 0.621 0.505, 0.762
Female child 0.794 0.679, 0.927 0.883 0.785, 0.993 0.922 0.825, 1.029
Child’s Age (months)
Less than 12 1 1 1 1 1 1
12 to 23 0.887 0.719, 1.092 1.220 1.044, 1.425 0.856 0.729, 1.005
24 to 59 0.538 0.451, 0.642 0.523 0.456, 0.599 0.797 0.703, 0.904
Mother’s Age 0.934 0.926, 0.941 0.951 0.946, 0.957 0.960 0.955, 0.965

Table 7. The odds ratio estimates of the covariate effects and their 95% credible interval for
combined data.

Variables
ARI Diarrhoea Stunting

OR 95% CI OR 95% CI OR 95% CI

Residence
Urban 1.037 0.937, 1.148 1.109 1.0304, 1.193 0.94 0.880, 1.003
Mother’s education
No Education 1 1 1 1 1 1
Primary 0.899 0.807, 1.000 0.83 0.769, 0.896 0.891 0.834, 0.952
Secondary or
Tertiary 0.702 0.624, 0.789 0.656 0.602, 0.714 0.646 0.599, 0.696

Wealth Index
Poorest 1 1 1 1 1 1
Poorer or Middle 0.727 0.665, 0.793 0.764 0.719, 0.811 0.883 0.835, 0.933
Richer or Richest 0.576 0.504, 0.659 0.635 0.576, 0.670 0.667 0.612, 0.726
Female child 0.791 0.736, 0.850 0.807 0.767, 0.849 0.921 0.881, 0.963
Child’s age (months)
less than 12 1 1 1 1 1 1
12 to 23 0.958 0.871, 1.053 1.28 1.198, 1.367 0.922 0.864, 0.984
24 to 59 0.527 0.485, 0.571 0.538 0.507, 0.570 0.832 0.791, 0.876
Mother’s age 0.923 0.920, 0.926 0.947 0.945, 0.949 0.959 0.957, 0.9615

The findings from the spatial effects for the specific diseases as estimated from the
shared component model are presented in Figure 2. The maps reveal that whereas diarrhoea
has higher odds of occurring among children living in the northern states, ARI is more
widespread in the southern fringe. Specifically, children residing in Benue, Enugu, Anam-
bra, Ebonyi, Imo, Abia, Cross River, Akwa Ibom, Rivers, Bayelsa, Delta, Edo, and two states
from the northern fringe (Borno and Adamawa) were more likely to have suffered more
from ARI, but were less likely in the states belonging to north and southwestern regions
of the country. In the case of diarrhoea (Figure 2b), the odds were higher among children
living in Yobe, Gombe, and Ekiti, but less likely for those in Edo, Delta, and Bayelsa, while
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for stunting (Figure 2c), the odds were higher in some neighbouring northern states—Kano,
Plateau, Jigawa, Bauchi, Nasarawa, and two southern states (Akwa Ibom and Edo).

Figure 2. Maps showing posterior estimates of disease-specific spatial effects: (a) ARI; (b) diarrhoea;
(c) stunting.

Figure 3a–d show the estimated spatial shared components across the states in Nigeria.
The findings show that the shared effects of ARI and diarrhoea (Figure 3a) were higher in
neighbouring north-eastern states of Yobe, Bauchi, Borno, Gombe, Adamawa, Taraba, and a
few neighbouring southern states (Enugu, Ebonyi, and Anambra) but lower among children
residing in states belonging to the northwest and south-west regions of the country. The
shared effects for ARI and stunting (Figure 3b) showed higher odds among children living
in Adamawa, Bauchi, Plateau, Nasarawa, Benue, Cross-River, Enugu, Ebony, Abia, Imo,
Rivers, Edo, Delta, and Bayelsa, but were lower among those residing in the north-western
and south-western regions of the country. As for diarrhoea and stunting (Figure 3c), the
shared effects revealed higher odds among children living in Bauchi, Kano, and some of the
neighbouring states, while they were less likely in Borno, Kogi, Enugu, Abia, Anambra, Imo,
Edo, Delta, and Bayelsa. The shared effects for the three diseases presented in Figure 3d
revealed higher odds of suffering from the three diseases among children living in Bauchi,
Kano, Taraba, Nasarawa, Adamawa, and some south southern states (Enugu, Ebonyi, Imo,
Rivers, Abia, and Akwa Ibom). Year-specific disease estimates of disease-specific and
shared state components are shown in Appendix A, and similar patterns are observed.
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Figure 3. Maps showing posterior estimates of spatial shared effects: (a) ARI and diarrhoea; (b) ARI
and stunting; (c) diarrhoea and stunting; (d) all three illnesses.

4. Discussion

This study simultaneously examined the common and disease-specific spatial compo-
nents of ARI, diarrhoea, and stunting in children under the age of 5 years old in Nigeria. We
employed the shared spatial component model, which allowed us to split the geographical
risk of child illnesses into common and uncommon spatial patterns. Childhood illness data
obtained from 2008, 2013, and 2018 Nigerian Demographic and Health Surveys were used
in the analyses. Our analysis could be considered an extension to the univariate spatial
statistical application on childhood illnesses in Nigeria [19,29–31], most of which have
relied on using univariate spatial models [12,34].

Our study found that the state-level co-morbidity of ARI and diarrhoea; ARI and
stunting; diarrhoea and stunting; and ARI, diarrhoea, and stunting were predominant in
the northeast and southern parts of the country. Our findings are consistent with previous
works that found a higher prevalence of stunting and diarrhoeas among children living in
the northern part of the country [33,35,36]. Our findings of higher ARI-related co-morbidity
in the southern parts of the country could be linked to oil spillage, leading to adverse air
pollution and sand, which could adversely impact child health [32–39]. Regarding the
effect of covariates, our findings are consistent with previous studies [40–43].

This study has some limitations, including that the child illnesses analysed were based
on self-reporting from mothers and caregivers. Inaccuracies due to errors in reporting and
recall could have been introduced into the data [44]. A longer recall period of infections
may underestimate their prevalence rates, as well as missing disease data [45], which could
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adversely affect the estimate of the health indicators. We did not undertake any quality
assessment of the data not accounting for the missing data. However, as the NDHS dataset
analyses here ascertained acute respiratory infection and diarrhoea outcomes using mothers
or caregiver-reported symptoms for a 2-week recall period, we believe the observed spatial
patterns would not be affected.

5. Conclusions

Understanding the geographical pattern of the co-occurrences of childhood illnesses
at the sub-national level could support local governments in formulating policies and
interventions for child health. Using the spatial shared component modelling approach,
this study jointly analysed acute respiratory infection, diarrhoea, and stunting in Nigeria.
The state-specific risks of each disease was decopmposed into an underlying disease-
common state component, which is common to all the three diseases and a disease-specific
component, which captures the disease-specific spatial pattern that deviates from the
shared spatial pattern. In this way, our findings could support local-level policymakers in
devising interventions according to the patterns of child illnesses, whether by integrated
approaches or specialized single disease initiatives.
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Appendix A

Figure A1. Maps showing posterior estimates of ARI-specific spatial effect by year of NDHS imple-
mentation; (A) 2008, (B) 2013, (C) 2018.

Figure A2. Maps showing posterior estimates of diarrhoea-specific spatial effect by year of NDHS
implementation; (A) 2008, (B) 2013, (C) 2018.
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Figure A3. Maps showing posterior estimates of stunting-specific spatial effect by year of NDHS
implementation; (A) 2008, (B) 2013, (C) 2018.

Figure A4. Maps showing posterior estimates of the ARI and diarrhoea spatial shared effect by year
of NDHS implementation; (A) 2008, (B) 2013, (C) 2018.
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Figure A5. Maps showing posterior estimates of the ARI and stunting spatial shared effect by year of
NDHS implementation; (A) 2008, (B) 2013, (C) 2018.

Figure A6. Maps showing posterior estimates of the diarrhoea and stunting spatial shared effect by
year of NDHS implementation; (A) 2008, (B) 2013, (C) 2018.
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Figure A7. Maps showing posterior estimates of the ARI and diarrhoea and stunting spatial shared
effect year of NDHS implementation; (A) 2008, (B) 2013, (C) 2018.
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