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Abstract
Cationic cell-penetrating peptides have been widely used to enhance the intracellular deliv-

ery of various types of cargoes, such as drugs and proteins. These reagents are chemically

similar to the multi-basic peptides that are known to be potent proprotein convertase inhibi-

tors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromo-

lar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell

migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic

polyarginine peptides containing hydrophobic moieties which have been previously used as

transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracel-

lular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on

cellular convertase activity should be taken into account when biological effects are

assessed.

Introduction
Cationic peptides present within envelope proteins are used by many viruses to gain entry into
host cells. These peptides, which efficiently pass through the plasma membrane and either
remain in the cytoplasm or reach the nucleus, are frequently used as protein transduction
reagents (reviewed in [1,2]). The use of cell-penetrating peptides (CPPs) has even been pro-
posed as a drug delivery tool for therapeutic molecules in various diseases, for example cancer
[3]. One of the most studied CPPs over the past decade has been the human immunodeficiency
virus type 1 (HIV-1) transcriptional activator, the TAT protein, a virally-encoded regulatory
factor essential for viral replication [4]. Many different studies have now confirmed that the
highly basic region located between residues 47–57 is necessary and sufficient for intracellular
import and delivery of a variety of proteins and nucleic acids [3,5,6]. In addition to the TAT
peptide, numerous natural and synthetic CPPs have been described in the literature (i.e. pene-
tratrin [7], Pep-1/Chariot [8], and polyarginine-containing peptides [9,10,11]) and are now
commercially available. Variants on this theme include certain cyclic polyarginine peptides
with high cell permeability and stability which have been recently used for the delivery of a
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wide range of cargoes, including anticancer and antiviral drugs; and phosphopeptides
[12,13,14].

The proprotein convertase (PC) furin is a ubiquitous calcium-dependent endoprotease that
is involved in the cleavage of a variety of precursor proteins at strings of basic amino acids
within the constitutive secretory pathway. Polyarginines are known to constitute potent inhibi-
tors of furin and other members of the family of the proprotein convertases. For example,
hexa-D-arginine amide (D6R) and nona-D-arginine amide (D9R) exhibit inhibition constants
against furin and other convertases in the nanomolar range [15,16]. In agrement, polyarginine-
based peptides have been shown to block furin-mediated activation of various bacterial toxins,
both in vivo and in vitro [17,18,19,20,21]. Molecular modeling studies support the idea that
polyarginine binding is likely mediated by the acidic substrate binding cleft within the furin
catalytic domain [15].

In order to assess the possibility that CPPs used for the intracellular delivery of proteins and
drugs might exert side effects on cellular proprotein convertases, in the study reported below
we have investigated their inhibitory effects on convertase activity, both in vitro and within
cells.

Materials and Methods

Materials
Soluble human furin was purified from the conditioned medium of stably-transfected, metho-
trexate-amplified CHO DG44 cells, as previously described [15]. Nona-D-arginine amide
(D9R) was synthesized by Pepceuticals (New Orleans, LA) and purified by reverse-phase
HPLC to greater than 99% purity. The HIV-1 TAT47-57 peptide was purchased from Creative
Peptides (Shirley, NY). The Chariot reagent was purchased from Active Motif (Carlsbad, CA).
The Chariot and HIV Tat peptides were not terminally blocked. All cyclic polyarginine pep-
tides used in this work ([W5R4C], [WR]5, C12-[R5], and W4-[R5]) were synthesized using a
Fmoc/tBu solid-phase peptide synthesis strategy according to a previously described procedure
[13,22]. The first two peptides ([W5R4C]; [WRWRWRWRWC]) and ([WR]5; [WRWRWRW
RWR]) are cyclic and thus have no N- and C- terminal modifications. The third peptide
(C12-[R5]; dodecanoyl-[KRRRRR]) is also cyclic and does not contain N or C-terminal modifi-
cations. The fourth peptide (W4-[R5]; N-acetyl-WWWW-[KRRRRR]) is N-terminally
acetylated.

Enzyme assays and determination of Ki values
The furin assay was performed in 96-well polypropylene microtiter plates in a final volume of
50 μl, containing 100 mMHEPES, pH 7.0, 5 mM CaCl2, 0.1% Brij 35, 0.1% NaN3, and 0.1 mg/
ml BSA. The substrate p-Glu-Arg-Thr-Lys-Arg-4-methylcoumaryl-7-amide (pERTKR-mca;
Peptide Institute, Lexington, KY) was used at a final concentration of 100 μM. Furin was used
at a final concentration of 20 nM. Reaction mixtures were incubated at 37°C and fluorescence
measurements (380 nm excitation, 460 nm emission) were taken under kinetic conditions
every minute for 60 min in a SpectraMax M2 microplate reader. For Ki assays, serial dilutions
of compounds were performed to give final concentrations between 10 nM and 10 μM in 50 μl.
After a 30-min preincubation at room temperature, 100 μM of pERTKR-methylaminocou-
marin (mca) was added, and residual enzyme activities were monitored by measuring mca
fluorescence intensity. Data were analyzed using Prism 5 as described previously [23]. Due to
cost considerations, Ki determinations were not performed for the HIV TAT peptide or for the
Chariot reagent.
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Cell migration assays
HT1080 fibrosarcoma cells (ATCC# CCL-121) were cultured to 80% confluence in growth
medium (MEM (Earle’s salts + L-glutamine) 10% FBS, 1:100 non-essential amino acids
(NEAA), 1 mM sodium pyruvate, 500 U/ml penicillin-streptomycin, and 1% gentamycin; Life
Technologies). Cells were plated in an Oris Cell Migration Assay (Platypus Technologies)
96-well plate at 105 cells per well, following the manufacturer’s protocol. The next day, the
growth medium was removed, the wells rinsed with PBS, and the cells were incubated in assay
mediumMEM (Earle’s salts + L-glutamine) containing 10% heat-inactivated FBS, 1:100
NEAA, 1 mM sodium pyruvate, 500U/ml penicillin-streptomycin, and 1% gentamycin in the
presence or absence of inhibitors for 24 h at 37°C and 5% CO2. After incubation cells were
rinsed with PBS (calcium and 20 mMHEPES, pH 7.4, as per the manufacturer’s protocol), and
incubated with the Live / Dead Cell Stain Kit containing 2 μM calcein AM and 4 μM ethidium
homodimer (EthD-1) for 30 min at 37°C and 5% CO2. Fluorescence was then measured at 485/
528 nm excitation/emission for calcein AM, and 530/645 nm for EthD-1. The experiments
were independently repeated three times.

Cytotoxicity assay
In order to assess the potential cytotoxic effects of each compound, cytotoxicity assays were
performed in CHO DG44 cells (obtained from Lawrence Chasin, Columbia University and
grown in Ham’s F12 medium with 10% bovine serum) using the mitochondrial dye WST-1
(Roche). Cells were seeded into 96-well plates to achieve 50% confluence the next day, and
then incubated with each compound or with vehicle for 24 h. After incubation with inhibitors,
cells were further incubated for 4 h with 10 μl of WST-1 reagent per well, and the absorbance
was measured at 450 and 600 nm. The experiments were repeated independently 2–3 times
using triplicate wells.

SEAP activity assays
CHO-GRAPfurin cells expressing the hybrid reporter protein GRAPfurin, consisting of the
secreted alkaline phosphatase (SEAP) protein fused to a Golgi retention signal and a specific
furin recognition/cleavage site [24,25], were plated in 96-well plates and incubated with Opti-
Mem containing 100 μM of either drug or vehicle for 16–20 h. The medium was collected, cen-
trifuged, and heated for 30 min at 65°C to inactivate non-relevant phosphatases. To test SEAP
activity, 2.5 μl of heated medium was mixed with 100 μl of assay buffer (100 mM Tris-HCl, pH
10, 100 mMNaCl, 5 mMMgCl2) and 100 μl of 36 μM 4-methylumbelliferyl phosphate (MUP),
a phosphatase substrate, made in 50 mM Tris-HCl, pH 10. Fluorescence was measured every
20 seconds after excitation at 365 nm and recording emission at 460 nm at 37°C for 1 h. Since
SEAP released from the tethered furin reporter is secreted, SEAP levels in the medium are pro-
portional to the activity of Golgi furin [24,25]. The experiments were independently repeated
three times using triplicate wells per condition.

Results

The HIV-1 TAT47-57 and Chariot peptides inhibit furin activity in vitro
To determine the effect of the polybasic carrier peptide HIV-1 TAT47-57 and the Chariot trans-
fection reagent (Table 1) on furin activity, we performed in vitro enzyme assays. The peptides
were preincubated with soluble human furin in assay buffer and then further incubated with
the fluorogenic substrate pERTKR-mca, as described in “Materials and Methods”. Fig 1A
shows that the HIV-1 TAT47-57 peptide produced substantial furin inhibition at micromolar
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concentrations (~60% at 10 μM). The inhibition of furin activity was nearly complete at the
higher concentration of 100 μM (Fig 1A). The Chariot reagent also inhibited furin at micromo-
lar concentrations (~20% at 10 μM; ~60% at 100 μM), although much less potently than the
HIV-1 TAT47-57 peptide (Fig 1B). This difference may be attributable to the greater number of
arginine residues present in the HIV-1 TAT47-57 peptide sequence (Table 1). It should be noted
that the amounts of Chariot reagent used in these assays are within the range of the manufac-
turer’s suggestions for use as a protein transfection adjuvant (10 μM to 100 μM).

HIV-1 TAT peptide inhibits cancer cell migration
Because of its inhibitory potency in vitro against furin, as well as its known cell permeability,
we then analyzed the inhibitory capacity of the HIV-1 TAT47-57 peptide against cancer cell
migration, a process dependent on the activity of cellular convertases. We incubated HT1080
fibrosarcoma cells together with a non-toxic quantity of the HIV-1 TAT47-57 peptide (10 μM).
Fig 2 shows that incubation of cells with HIV-1 TAT47-57 resulted in significant inhibition of
cell migration, similar to that obtained with the multi-Leu convertase inhibitor peptide [26,27].

Cyclic polyarginine peptides are potent furin inhibitors in vitro
Stable and cell-permeable cyclic polyarginine peptides, such as the C12-[R5] compound, have
been reported to exhibit little cytotoxicity [13,14]. Given the known inhibition of furin activity
by polyarginines [28] we examined the inhibitory capacity of these cyclic compounds on furin

Table 1. Cationic cell-penetrating peptides tested as furin inhibitors.

Name Origin Sequence

TAT47-57 HIV-1 protein YGRKKRRQRRR

Chariot Synthetic KETWWETWWTEWSQPKKKRKV

doi:10.1371/journal.pone.0130417.t001

Fig 1. Inhibition of furin by the cationic peptides HIV-1 TAT47-57 and Chariot. Soluble human furin, pre-incubated for 20 min at room temperature in the
presence of (a) HIV-1 TAT (47–57) or (b) Chariot peptide, was tested at the specified concentrations. Furin activity was assessed by measuring the release of
the fluorescent mca product from the fluorogenic substrate, pERTKR-mca. Results represent the mean ± S.D., N = 3. *P<0.01; **P<0.05.

doi:10.1371/journal.pone.0130417.g001
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activity in vitro. The structures of the cyclic polyarginine peptides tested in this work are
shown in Fig 3. These compounds exhibited high inhibitory potency in vitro, with Ki values
between 1 μM and 0.1 μM (Table 2).

Cyclic polyarginine peptides inhibit intracellular convertases
In agreement with a previous study [13], we found no cytoxicity after a 24-h incubation of CHO
cells with cyclic polyarginine compounds at 1 μM (Fig 4A). Interestingly, all compounds exhib-
ited significant inhibition of intracellular convertase activity in the TGN at this concentration, as
demonstrated using an assay based on the release of SEAP from a Grap-furin Golgi reporter
tethered to membranes via a furin consensus cleavage site [24] (Fig 4B). While this assay is not
specific for furin—as opposed to other constitutively-expressed convertases such as PACE4—
these SEAP assay results correlate well with inhibition results obtained in vitro, as the most effec-
tive compound in cells (W4-[R]5) was also the most potent furin inhibitor in vitro (Table 2).

Discussion
Cationic cell-penetrating peptides (CPPs) have been broadly used for the delivery of various
types of molecular cargoes such as small molecule drugs, siRNAs, and phosphopeptides

Fig 2. Effect of HIV-1 TAT47-57 peptide on cell migration of fibrosarcoma HT1080 cells.Cells were
incubated with either 10 μM of peptide or vehicle (water) for 24 h at 37°C and cell migration was measured as
described in “Materials and Methods”. Results represent the mean ± S.D., N = 3. **P<0.05.

doi:10.1371/journal.pone.0130417.g002
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(reviewed in [1,2,29]). Most of these compounds contain a polybasic domain responsible for
transport into the intracellular space. The initial, and still the best characterized CPP, is the
trans-acting activator of transcription (TAT) peptide derived from the human immunodefi-
ciency virus [30,31]. Exhaustive analyses have demonstrated that the sequence responsible for
its cellular uptake consists of the arginine-rich region YGRKKRRQRRR located between resi-
dues 47 and 57 [3,29]. The relevance of the arginine residues to uptake was clearly demon-
strated by the assay of truncated analogs of HIV-1 TAT47-57 [10]. The practical applications of

Fig 3. Chemical structures of cyclic polyarginine peptides tested as furin inhibitors.

doi:10.1371/journal.pone.0130417.g003
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the use of this peptide in vivo have been previously established [32]. In this latter study,
Schwarze and colleagues injected a fusion protein composed of HIV-1 TAT47-57 and β-galacto-
sidase intraperitoneally into mice, and subsequently detected significant local β-galactosidase
activities in most of the tissues analyzed. Aside from HIV-1 TAT47-57, a variety of other polyar-
ginine-containing peptides have been proposed for the intracellular delivery of nucleic acids,
proteins, and drugs [33,34]. Indeed, several groups have proposed the use of cationic transfec-
tion peptides as a means of delivering therapeutic species in the treatment of human diseases
such as cancer [3,35].

Simple arginine-rich peptides themselves have been also proposed for use as transfection
reagents since they enter cells efficiently [9,10,36,37,38]. However, polyarginine-containing
peptides are known to potently inhibit several members of the proprotein convertase (PC) fam-
ily, such as furin, PC5/6, PACE4 and PC7 [16,28,39,40,41]. The results shown here strongly
support the idea that the HIV-1 TAT47-57 peptide and Chariot transfection reagent do possess
the off-target effect of inhibiting furin (and likely other proprotein convertases). Interestingly,
we show here that the TAT47-57 CPP also inhibits cancer cell migration. These results can be
potentially be linked to effects on cellular convertase activity, since numerous studies have

Table 2. Ki values of the synthetic cyclic peptides tested as furin inhibitors.

Name Peptide sequence Ki (μM)

[W5R4C] WRWRWRWRWC 0.34 ± 0.02

[WR]5 WRWRWRWRWR 0.98 ± 0.14

C12-[R5] Dodecanoyl-[KRRRRR] 1.02 ± 0.40

W4-[R5] N-acetyl-WWWW-[KRRRRR] 0.10 ± 0.14

Hexa-D-arginine rrrrrr-amide 0.106 ± 0.010

Nona-D-arginine rrrrrrrrr-amide 0.0013 ±0.002

The data for hexa-D-arginine (D6R) and nona-D-arginine (D9R) are taken from [28] and [15] respectively.

doi:10.1371/journal.pone.0130417.t002

Fig 4. Cyclic polyarginine peptides inhibit cellular convertase activity. (a) CHO cells were incubated with each compound at 1 μM for 24 h at 37°C, and
cell viability was monitored by incubation for 4 h with WST-1. (b) CHO-GRAPfurin cells, expressing secreted alkaline phosphatase tethered to Golgi
membranes by a transmembrane domain interrupted by a furin cleavage site, was incubated with 1 μM of each cyclic peptide for 20–24 h at 37 °C. Secreted
alkaline phosphatase activity was measured in the medium. Results represent the mean ± S.D., N = 3.

doi:10.1371/journal.pone.0130417.g004

CPPs Are Furin Inhibitors

PLOS ONE | DOI:10.1371/journal.pone.0130417 June 25, 2015 7 / 11



described furin-mediated activating cleavage of certain metalloproteinases, i.e. stromelysin-3
and proMT1-MMP, whose activation then results in extracellular matrix degradation
[25,42,43,44]. The convertase-inhibiting property of the HIV-1 TAT47-57 peptide might in fact
assist the therapeutic efficacy of any delivered anticancer cargo via the inhibition of the elevated
intracellular convertase activity known to be associated with tumor development and metasta-
sis (reviewed in [45]).

In addition to the linear CPPs, a number of synthetic cyclic polyarginines with efficient cell
permeability have also been recently proposed as CPPs to assist the intracellular delivery of
proteins, drugs and nucleic acids [12,14,46,47,48,49,50]. Our results show that these cyclic
polyarginines also represent potent inhibitors of furin activity in vitro. Similar to previous stud-
ies [13,14], the treatment of cells with cyclic polyarginines for 24 h was not cytotoxic. In agree-
ment with their efficient uptake and likely low rates of intracellular degradation, these cyclic
compounds all inhibited intracellular convertases, as assessed by blockade of the release of a
furin cleavage reporter molecule. Cyclic polyarginines may thus be of use in applications where
intracellular furin inhibition is advantageous, such as the prevention of tumor cell proliferation
and migration mentioned above.

Off-target effects of cationic CPPs (i.e. on biological activities other than transport) have
been previously cataloged in a recent review [2] and include a variety of biological effects, such
as oxidative stress effects, responsiveness to heparan sulfate, lipid remodeling, and actin rear-
rangement. Interestingly, the only prior study that has addressed the interaction of CPPs with
proprotein convertases concluded that furin may act to inactivate the TAT7-57 peptide,
although furin-mediated inactivation was not directly demonstrated in this work [51]. Our
data support a contradictory conclusion: that TAT47-57 acts to inhibit intracellular furin and/or
other convertases.

In conclusion, the data presented here demonstrate that a variety of cell-penetrating pep-
tides (HIV-1 TAT47-57, Chariot, and cyclic polyarginine peptides) which are widely used as
protein transduction agents can significantly inhibit cellular convertase activity. While not nec-
essarily deleterious (for example in anti-cancer applications; [45]), this off-target effect must be
taken into account in in vivo therapeutic applications of polyarginine-containing CPP
compounds.
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