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Abstract: All-trans retinoic acid (atRA) has a dramatic impact on the survival of patients with acute
promyelocytic leukemia, but its therapeutic value in other types of acute myeloid leukemia (AML) has
so far remained unclear. Given that AML is a stem cell-driven disease, recent studies have addressed
the effects of atRA on leukemic stem cells (LSCs). atRA promoted stemness of MLL-AF9-driven AML
in an Evi1-dependent manner but had the opposite effect in Flt3-ITD/Nup98-Hoxd13-driven AML.
Overexpression of the stem cell-associated transcription factor EVI1 predicts a poor prognosis in
AML, and is observed in different genetic subtypes, including cytogenetically normal AML. Here, we
therefore investigated the effects of Evi1 in a mouse model for cytogenetically normal AML, which
rests on the combined activity of Flt3-ITD and Npm1c mutations. Experimental expression of Evi1 on
this background strongly promoted disease aggressiveness. atRA inhibited leukemia cell viability and
stem cell-related properties, and these effects were counteracted by overexpression of Evi1. These data
further underscore the complexity of the responsiveness of AML LSCs to atRA and point out the
need for additional investigations which may lay a foundation for a precision medicine-based use of
retinoids in AML.
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1. Introduction

Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy whose incidence
increases with age [1,2]. Even though the number of genetic lesions per individual is low compared
to other cancers [3], its genetic causes are complex and heterogeneous [4–8]. A number of recurrent
chromosome rearrangements and point mutations have been described, among them the translocation
t(8;21) which gives rise to the acute myeloid leukemia 1—eight-twentyone (AML1-ETO) fusion gene,
11q23 rearrangements involving the mixed lineage leukemia (MLL) gene, nucleoporin 98 (NUP98) fusions,
nucleophosmin 1 (NPM1) mutations, and fms related receptor tyrosine kinase 3 internal tandem duplications
(FLT3-ITD) [4–6,9,10]. Further, aberrant expression of genes, including that encoding the transcription
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factor Ecotropic Viral Integration site 1 (EVI1), is a typical feature of AML [4,7,11–13]. Many molecular
and genetic aberrations have prognostic value and/or represent potential or actual targets for rationally
designed therapeutics [4–7,12–14]. Indeed, several targeted drugs were recently approved for use in
AML and will complement standard chemotherapy for selected groups of patients [14]. However, acute
promyelocytic leukemia (APL), characterized by rearrangements of the retinoic acid receptor alpha
(RARA) gene, has benefited more than any other AML subtype from targeted therapies: addition
of the RARA ligand all-trans retinoic acid (atRA) to its therapy has greatly improved APL patient
survival for the last few decades [15–17]. Despite the striking success of atRA in APL, and even
though atRA also causes blast differentiation and sensitization to chemotherapy in other types of AML
in vitro [18–27], clinical benefit of atRA in non-APL AML has not been consistently demonstrated so
far [20,27–31]. Further, attempts to identify genetically defined subgroups of patients that may respond
to atRA-containing therapy have yielded contradictory results [20,27,29–32].

Both normal and leukemic hematopoiesis are organized in a hierarchical manner, and emanate from
mostly quiescent stem cells (hematopoietic stem cells, HSCs, or leukemic stem cells, LSCs, respectively)
that reside in a specialized niche in the bone marrow (BM) [33–35]. These stem cells give rise to highly
proliferative progenitors, which in normal hematopoiesis differentiate into non-dividing functional
blood cells, but in malignant hematopoiesis form the bulk of the only partially differentiated leukemic
cell mass [33–35]. LSCs play key roles not only in leukemia emergence, but also in chemotherapy
resistance and relapse [33]. Therefore, determining the effect of a potential therapeutic on LSCs may be
pivotal to understanding its clinical effectiveness [33]. Some recent studies investigated the impact
of atRA on AML LSCs, with divergent results [27]. atRA inhibited stem cell abundance and activity
in a mouse model of AML driven by a Nup98-Hoxd13 fusion gene together with an FLT3-ITD [36].
By contrast, atRA promoted serial replating ability—considered as a readout of stem cell activity—in
AML1-ETO-expressing murine BM cells [21]. Similarly, in an MLL-AF9-driven mouse model of AML,
atRA augmented stem cell abundance, quiescence, and activity in a manner that was dependent on the
expression of Evi1 [37]. EVI1 and atRA also collaborated to promote stem cell-related properties in
human AML cell lines and primary samples [37].

In the present study, we asked whether EVI1 would also interact with atRA to alter LSC-related
properties on the background of different genetic driver lesions. Since 21% of EVI1-overexpressing
AMLs are cytogenetically normal [13], we sought to employ a model for cytogenetically normal AML.
The most frequent mutations in cytogenetically normal AML affect the FLT3 and NPM1 genes (the latter
lead to a predominantly cytoplasmic localization of the chaperone protein NPM1, hence are referred to
as “NPM1c”) [4–6], and mice whose hematopoietic cells carry a Flt3-ITD and an Npm1c allele develop an
aggressive, AML-like disease [38]. The Flt3-ITD/Npm1c model was therefore used in the current study.
We found that atRA inhibited leukemia cell (LC) viability as well as LSC-related properties in Evi1low

Flt3-ITD/Npm1c-driven AML, but these effects were counteracted by experimental Evi1 expression.

2. Experimental Section

2.1. Ethics Approval

Animal experiments were approved by the Animal Ethics Committee of the Medical
University of Vienna and the Austrian Federal Ministry of Education, Science, and Research
(GZ66.009/0309-WF/V/3b/2015, 3 November 2015). Federation of European Laboratory Animal
Science Associations and Austrian guidelines to minimize animal distress and suffering were followed.

2.2. Ex Vivo Culture of Cells from Flt3-ITD/Npm1c-Driven Murine AML and Evi1 Overexpression

Spleen cells from C57BL/6 mice that had succumbed to AML following transplantation with
Flt3-ITD/Npm1c-transformed hematopoietic cells [38] were cultured in IMDM medium (Thermo
Fisher Scientific, Waltham, MA, USA) containing 10% fetal bovine serum (Thermo Fisher Scientific),
1% L-glutamine (Thermo Fisher Scientific), 50 ng/mL mSCF (Peprotech, Hamburg, Germany), 10



Biomedicines 2020, 8, 385 3 of 11

ng/mL mIL-3 (Peprotech), and 10 ng/mL mIL-6 (BioLegend, San Diego, CA, USA). To generate Evi1high

and Evi1low variants of Flt3-ITD/Npm1c-driven AML, these cells were transduced either with a vector
encoding an epitope-tagged version of murine Evi1 (pMYs_FLAG-Evi1_IRES_GFP, kindly provided
by Dr. Takuro Nakamura, Cancer Institute of JFCR, Tokyo, Japan) or with empty vector as a control.
In brief, vectors were transfected into Platinum-E cells, along with the ecotropic packaging plasmid psi2
(containing the gag, pol, and env genes) using a standard calcium chloride protocol. Virus-containing
supernatants were harvested after 48–96 h, filtered (0.45 µm pore size), and supplemented with
polybrene (4 µg/mL). Cells were spinoculated with retroviral supernatant for 60 min at 1300 rpm and
34 ◦C. The process was repeated with fresh retroviral supernatant after 24 and 48 h. Five days after the
last transduction, Flt3-ITD/Npm1c_Evi1 and Flt3-ITD/Npm1c_vec cells were sorted for GFP positivity
and expanded in the above-described medium. For transplantation, 6–8-week-old female C57BL/6
recipient mice were sub-lethally irradiated (5 Gy). On the next day, mice were anesthetized by i.p.
injection of 100 µL Ketasol/Rompun solution (18.5 mg/mL Ketasol (AniMedica, Senden, Germany),
1.5 mg/mL Rompun (Bayer, Leverkusen, Germany), and 0.9% sodium chloride (Braun, Kronberg,
Germany)) followed by retro-orbital injection of 400,000 Flt3-ITD/Npm1c_Evi1 or Flt3-ITD/Npm1c_vec
cells. Mice were monitored for signs of disease (immotility, hunched posture, scrubby fur, loss of
body weight), and sacrificed when terminally ill. Their BM and spleen cells were collected and
vitally frozen. The GFP-positive fractions of these cells were considered as LCs, and are referred to as
LCFlt3-ITD/Npm1c_Evi1 and LCFlt3-ITD/Npm1c_vec, respectively. For ex vivo experiments, cells were thawed
and maintained in the medium described at the beginning of this chapter.

2.3. Drug Treatment, Cell Viability (Metabolic Activity), and Apoptosis Assays

For cell viability and apoptosis assays, BM LCFlt3-ITD/Npm1c_vec and LCFlt3-ITD/Npm1c_Evi1 were
seeded at 200 cells/µL and incubated with various concentrations of atRA (Sigma-Aldrich, St. Louis,
MO, USA) or with solvent for 48 h. Metabolic activity as a proxy for cell viability was determined
in white-walled 96-well-plates (Greiner Bio-One, Kremsmuenster, Austria) using the CellTiter-Glo®

Luminescent Cell Viability Assay (Promega, Madison, WI, USA). Luminescence was measured using
the Varioskan LUX microplate reader with SkanIt Software for Microplate Readers RE, Version 5.0.0.42.
(Thermo Fisher Scientific).

Annexin V assays were performed to quantify the proportions of apoptotic cells after drug
treatment. Thus, cells were stained with 2 µL of Annexin V-APC (BD Biosciences, Franklin Lakes, NJ,
USA) in 100 µL Annexin V binding buffer (10 mM HEPES (Sigma-Aldrich), pH 7.4, 140 mM NaCl
(Carl Roth, Karlsruhe, Germany), and 2.5 mM CaCl2 (Sigma-Aldrich)) for 15 min at room temperature,
and analyzed by flow cytometry (LSR Fortessa, BD Biosciences). Annexin V− cells were classified as
viable and Annexin V+ as apoptotic.

2.4. Determination of Myeloid Differentiation by Flow Cytometry

To analyze myeloid differentiation, BM cells from leukemic mice were treated with 1 µM atRA
(Sigma-Aldrich) or the corresponding amount of solvent for 72 h. Afterwards, 500,000 cells per sample
were washed once with PBS and stained with 1 µL of CD11b (clone M1/70, BioLegend) and Gr-1
(clone RB6-8C5, BioLegend) antibodies in 100 µL 2% fetal bovine serum/PBS for 30 min. Cells were
washed again and analyzed by flow cytometry (LSR Fortessa, BD Biosciences). Analyses were restricted
to leukemic cells by gating on the GFP-positive population.

2.5. Serial Replating Assays

For serial replating assays, BM LCFlt3-ITD/Npm1c_vec and LCFlt3-ITD/Npm1c_Evi1 were treated with 1 µM
atRA or the corresponding amount of solvent for 72 h. Thereafter, 3000 cells were plated per well of a
six-well plate in MethoCult GF M3434 (Stemcell Technologies, Vancouver, Canada). Every seven days,
the numbers of colonies were quantified, and 3000 cells were used for replating.
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2.6. Quantitative RT-PCR

Total RNA was extracted using Trizol (Thermo Fisher Scientific) and reverse-transcribed
using random hexamer primers (Thermo Fisher Scientific) and M-MLV reverse transcriptase
(Thermo Fisher Scientific). Quantitative RT-PCR (qRT-PCR) was performed on a Step One
Plus Real Time PCR system (Thermo Fisher Scientific) using GoTaq qPCR Master Mix
(Promega) and the following primers: Evi1 (fwd: 5′-CTCGAAGCCTTCAGGAACAC-3′, rev:
5′-AGCTTCAAGCGGGTCAGTTA-3′), ß-2-microglobulin (fwd: 5′-CCTTCAGCAAGGACTGGTCT-3′,
rev: 5′-TGTCTCGATCCCAGTAGACG-3′). Assays were performed in triplicate, and Evi1 expression
was normalized to ß-2-microglobulin expression using the ∆∆CT method [39].

2.7. Immunoblot Analysis

Preparation of protein lysates from spleen LCs, SDS-PAGE, transfer to PVDF membranes
(Hybond-P; Amersham, Amersham, United Kingdom), and antibody incubations were performed
using standard procedures. The following antibodies were used: anti-FLAG (clone M2; Sigma-Aldrich;
1:1000) and anti-GAPDH (clone 14C10; Cell Signaling Technologies, Danvers, MA, USA; 1:50,000).
Blots were developed using SuperSignal West Femto or Pico Chemiluminescent Substrate (both from
Thermo Fisher Scientific) and scanned using a ChemiDoc Touch Imaging System (Bio-Rad Laboratories,
Hercules, CA, USA).

2.8. Statistical Analyses of Experimental Data

Significance of differences between multiple groups was determined by 2-way ANOVA followed
by Bonferroni’s post hoc test. In serial replating assays, numbers of colonies were expressed relative to
LCFlt3-ITD/Npm1c_vec -atRA in each round of plating; significance was assessed using the one-sample
t-test for comparisons with the control and Student’s t-test for other comparisons. The log-rank test
was used to evaluate survival differences between groups of mice. Two-sided p-values < 0.05 were
considered statistically significant. Analyses were performed using GraphPad Prism 6 (San Diego, CA,
USA) software.

3. Results

3.1. Experimental Expression of Evi1 in Flt3-ITD/Npm1c-Driven Murine AML Decreases Disease Latency

Human patients with cytogenetically normal AML may overexpress EVI1 or not [12,13,40].
We therefore determined the expression of Evi1 in Flt3-ITD/Npm1c-driven murine AML [38] using
qRT-PCR. Evi1 mRNA levels in BM from Flt3-ITD/Npm1c mice were comparable to those in normal
mouse BM, and substantially lower than in BM from mice with MLL-AF9-driven AML (Figure 1a).
Therefore, LCs from Flt3-ITD/Npm1c mice were transduced with a vector encoding an epitope-tagged
version of murine Evi1 (pMYs_FLAG-Evi1_IRES_GFP) or with empty vector as a control, and sorted for
GFP positivity to yield Flt3-ITD/Npm1c_Evi1 and Flt3-ITD/Npm1c_vec cells, respectively. These were
transplanted into sub-lethally irradiated C57BL/6 recipient mice (400,000 cells/mouse; Figure 1b
and Figure S1). In agreement with earlier observations [41,42], Evi1 up-regulation dramatically
decreased time to disease onset (Figure 1c; median survival, 84 and 44 days for recipients of
Flt3-ITD/NPM1c_vec and Flt3-ITD/NPM1c_Evi1 cells, respectively, p < 0.01). The presence of the EVI1
protein in LCFlt3-ITD/Npm1c_Evi1, but not LCFlt3-ITD/Npm1c_vec, obtained from terminally ill recipient mice
was confirmed by immunoblot analysis using a FLAG antibody (Figure 1d).
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AML. (a) Relative Evi1 mRNA levels in normal murine bone marrow cells (nBM) and in leukemic 
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(LCFlt3-ITD/Npm1c and LCMLL-AF9, respectively; n = 3). (b) Schematic of experimental design. Spleen cells 
from mice terminally ill with Flt3-ITD/Npm1c-driven AML (AMLFlt3-ITD/Npm1c) were transduced with 
pMSCV_FLAG-Evi1_IRES_GFP or with empty vector as a control. GFP-positive cells were sorted 
and transplanted into sub-lethally irradiated recipient mice. FC, flow cytometry; BM, bone marrow. 
(c) Kaplan–Meier plot of mice transplanted with Flt3-ITD/Npm1c_vec and Flt3-ITD/Npm1c_Evi1 cells 
(400,000 cells/mouse). n = 4 (AMLFlt3-ITD/Npm1c_vec group), n = 5 (AMLFlt3-ITD/Npm1c_Evi1 group). (d) 
Immunoblot analysis of FLAG-EVI1 expression in spleen LCFlt3-ITD/Npm1c_Evi1 and LCFlt3-ITD/Npm1c_vec from 
terminally ill recipient mice. GAPDH was used as a loading control. 
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To determine the effects of atRA, and its interactions with the expression of Evi1, on viability, 
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LCFlt3-ITD/Npm1c_vec in a dose-dependent manner, while experimental expression of Evi1 reduced the 
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than LCFlt3-ITD/Npm1c_vec, and had a strongly and significantly diminished response to the cell 
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Figure 1. Experimental expression of Evi1 decreases the latency of Flt3-ITD/Npm1c-driven murine AML.
(a) Relative Evi1 mRNA levels in normal murine bone marrow cells (nBM) and in leukemic cells from bone
marrow (BM) of mice with Flt3-ITD/Npm1c- and MLL-AF9-driven AML (LCFlt3-ITD/Npm1c and LCMLL-AF9,
respectively; n = 3). (b) Schematic of experimental design. Spleen cells from mice terminally ill with
Flt3-ITD/Npm1c-driven AML (AMLFlt3-ITD/Npm1c) were transduced with pMSCV_FLAG-Evi1_IRES_GFP
or with empty vector as a control. GFP-positive cells were sorted and transplanted into sub-lethally
irradiated recipient mice. FC, flow cytometry; BM, bone marrow. (c) Kaplan–Meier plot of mice
transplanted with Flt3-ITD/Npm1c_vec and Flt3-ITD/Npm1c_Evi1 cells (400,000 cells/mouse). n = 4
(AMLFlt3-ITD/Npm1c_vec group), n = 5 (AMLFlt3-ITD/Npm1c_Evi1 group). (d) Immunoblot analysis of
FLAG-EVI1 expression in spleen LCFlt3-ITD/Npm1c_Evi1 and LCFlt3-ITD/Npm1c_vec from terminally ill
recipient mice. GAPDH was used as a loading control.

3.2. atRA Reduces Viability and Stem Cell Related Properties in LCs from Flt3-ITD/Npm1c-Driven AML,
but Experimental Expression of Evi1 Counteracts These Effects

To determine the effects of atRA, and its interactions with the expression of Evi1, on viability,
apoptosis, differentiation, and stem cell-related properties of LCs from Flt3-ITD/Npm1c-driven AML,
BM LCFlt3-ITD/Npm1c_vec and LCFlt3-ITD/Npm1c_Evi1 were treated with atRA or solvent and subjected
to appropriate assays. A three-day ex vivo incubation with atRA decreased the viability of
LCFlt3-ITD/Npm1c_vec in a dose-dependent manner, while experimental expression of Evi1 reduced
the sensitivity towards atRA in this assay (IC50, 1.12 µM for LCFlt3-ITD/Npm1c_vec and 2.95 µM for
LCFlt3-ITD/Npm1c_Evi1; Figure 2a). LCFlt3-ITD/Npm1c_Evi1 also exhibited a slightly lower rate of basal
apoptosis than LCFlt3-ITD/Npm1c_vec, and had a strongly and significantly diminished response to
the cell death-promoting effect of atRA (Figure 2b and Figure S2a). Further underscoring the
increased aggressiveness of AML with Evi1 overexpression, LCFlt3-ITD/Npm1c_Evi1 contained a much
higher proportion of immature (Gr-1−) cells within the myeloid (CD11b+) compartment than
LCFlt3-ITD/Npm1c_vec (Figure 2c and Figure S2b). atRA slightly increased the proportion of immature
myeloid cells among LCFlt3-ITD/Npm1c_Evi1 but had no significant effect on LCFlt3-ITD/Npm1c_vec (Figure 2c
and Figure S2b). Finally, Evi1 overexpression increased the serial replating efficiency, an indicator of LSC
activity, of Flt3-ITD/Npm1c-driven AML cells (Figure 2d and Figure S2c). Importantly, atRA reduced
the replating ability of LCFlt3-ITD/Npm1c_vec, but had no significant effect on that of LCFlt3-ITD/Npm1c_Evi1

(Figure 2d and Figure S2c).
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Figure 2. Experimental expression of Evi1 counteracts the anti-leukemic and stem cell inhibitory
effects of atRA in Flt3-ITD/Npm1c-driven murine AML. (a,b) Bone marrow LCFlt3-ITD/Npm1c_vec and
LCFlt3-ITD/Npm1c_Evi1 were treated with the indicated concentrations of atRA or with solvent for 48 h.
(a) Cell viability was determined using metabolic activity as a proxy (Cell-Titer Glo® assay). n = 4.
(b) Apoptosis was determined through Annexin V staining followed by flow cytometry. n = 2–4.
(c) Myeloid differentiation. Bone marrow cells from leukemic mice were treated with 1 µM atRA or the
corresponding amount of solvent for 72 h, stained with CD11b and Gr-1 antibodies, and subjected to
flow cytometry. Analyses were restricted to leukemia cells (LCs) by gating on GFP-positive cells. n = 3.
(d) Serial replating activity. Bone marrow LCFlt3-ITD/Npm1c_vec and LCFlt3-ITD/Npm1c_Evi1 were treated
with 1 µM atRA or the corresponding amount of solvent for 72 h. A total of 3000 cells were plated
per well of a six-well plate in MethoCult GF M3434. Every seven days, the numbers of colonies were
quantified, and 3000 cells were re-plated. Numbers of colonies are expressed relative to those obtained
with solvent-treated LCFlt3-ITD/Npm1c_vec in each round of plating. n = 3. (a–d) *, p < 0.05; **, p < 0.01;
***, p < 0.001; ns, not significant.

In summary, our results demonstrate anti-leukemic effects of atRA towards LCs and LSCs from
Flt3-ITD/Npm1c-driven AML. These effects were counteracted by experimental expression of Evi1.
These data confirm the earlier noted genetic and molecular complexity of the responsiveness of AML
LSCs to atRA [27,37].

4. Discussion

atRA in combination with chemotherapy and, more recently, arsenic trioxide has greatly improved
the outcome of APL [15–17]. In contrast, the success of atRA in non-APL AML has been limited so far [31].
Further, the sensitivity of certain molecularly or genetically defined AML subgroups (defined by MN1
expression or NPM1 mutations, respectively) was not confirmed in subsequent studies [20,27,29–32].
Nevertheless, atRA and other retinoids remain attractive options for the treatment of AML because
of their low toxicity and abundant preclinical data suggesting their possible effectiveness in this
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disease [18–27,36]. The ongoing clinical interest in the use of atRA in AML is indicated by recent
publications [43,44] and the fact that several trials are currently recruiting (www.clinicaltrials.gov).

Surprisingly, even though AML is well established as a stem cell-driven disease [33], to date very
few studies have addressed the effect of atRA on AML LSCs. In AML1-ETO-expressing murine BM
cells, atRA increased serial replating ability and led to the formation of larger and more immature
colonies [21], suggesting that atRA promoted LSC activity on this genetic background. Similarly, atRA
promoted leukemic stemness in an MLL-AF9-driven mouse model of AML in a manner dependent on
the expression of Evi1 [37]. MLL rearrangements are frequently associated with EVI1 overexpression in
human AML [45,46], and this is reflected in the corresponding mouse model [37,47]. In BM cells from
MLL-AF9 leukemic mice, atRA promoted the abundance and quiescence of an immunophenotypically
defined LSC-enriched cell population and enhanced the activity of LSCs as determined by serial
replating and in vivo limiting dilution assays. These effects of atRA were abolished by knock-down of
Evi1 [37]. Correspondingly, an RAR antagonist decreased LSC-related properties in an Evi1-dependent
manner in vitro and in vivo, and prolonged survival of both of primary treated and secondary recipient
mice with Evi1high, MLL-AF9-driven AML. Confirmatory results were obtained with both human AML
cell lines and with primary AML samples [37].

In sharp contrast to the observations with the AML1-ETO and MLL-AF9 models, atRA inhibited
LSC activity in an AML mouse model driven by an Flt3-ITD in combination with a Nup98-Hoxd13
fusion gene [36]. Treatment of primary mice with atRA alone or in combination with the tyrosine
kinase inhibitor sorafenib prolonged time to disease onset in secondary recipients. Moreover,
an in vivo limiting dilution assay with cells from the treated mice revealed ~9-fold, ~500-fold,
and >12,000-fold reductions in LSC frequencies upon treatment with atRA, sorafenib, and atRA +

sorafenib, respectively [36]. The present study corroborates the notion that the Flt3-ITD—which in this
case was combined with an Npm1 mutation in order to reveal its leukemogenic potential—renders
AML LSCs sensitive to the inhibitory effects of atRA. Furthermore, we show that overexpression of
Evi1 abolishes the inhibitory effect of atRA on Flt3-ITD/Npm1c-bearing LSCs. Together, these data
suggest that complex genetic and molecular interactions determine the response of AML LSCs to
atRA. Further underscoring this, and in sharp contrast to its role in AML, on the background of the
APL-typical PML-RARA fusion, the Flt3-ITD mutation reduced the inhibitory effect of atRA on the
ability to initiate leukemia in secondary recipients [48].

The molecular and genetic complexity determining the atRA responsiveness of AML LSCs may
explain, to some extent, why it has been difficult to identify patient groups benefitting from atRA
in non-APL AML. Other aspects that warrant consideration are the identity of the drugs used in
conjunction with atRA, as well as the timing and duration of treatment. Different trials assessing the
efficacy of atRA in AML were based on different chemotherapeutics. atRA was initiated at different
time points relative to the start of chemotherapy, and was included in the maintenance therapy in some
studies but not others [31]. Prolonged administration of atRA may be of particular importance in cases
where atRA inhibits LSCs. On the other hand, in AML with aberrations rendering their LSCs positively
responsive to atRA, there might even be a therapeutic role for RAR antagonists, even though the
effects of atRA on normal HSCs [49–52] need to be carefully considered in this context. Other aspects
concerning the identity of the retinoids themselves also warrant attention. Certain synthetic retinoids
are resistant to degradation by CYP26 [53], which may increase their clinical effectiveness. Moreover,
atRA mediates its effects through different nuclear receptor isoforms that can be targeted by specific
agonists and antagonists. Among these isoforms, RARA and RARG were reported to promote myeloid
differentiation [21,51,53] and HSC activity [51], respectively. The identity of the isoforms mediating
the activity of atRA towards LSCs has been queried only in the context of AML1-ETO, with complex
results: only the combination of a RARA and a RARG agonist reproduced the LSC-promoting effects
of atRA [21].

Further research is needed to carefully dissect which patient subgroups may benefit from which
type of retinoid, and how retinoids can be combined with other drugs to maximize anti-leukemic
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effects. An enhanced understanding of the effects of retinoids on LSCs may ultimately facilitate the
development of precision medicine-based retinoid therapy for certain subgroups of AML.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2227-9059/8/10/385/s1.
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