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Chagas disease is responsible for more than 10,000 deaths per year and about 6

to 7 million infected people worldwide. In its chronic stage, patients can develop

mega-colon, mega-esophagus, and cardiomyopathy. Differences in clinical outcomes

may be determined, in part, by the genetic background of the parasite that

causes Chagas disease. Trypanosoma cruzi has a high genetic diversity, and each

group of strains may elicit specific pathological responses in the host. Conflicting

results have been reported in studies using various combinations of mammalian

host—T. cruzi strains. We previously profiled the transcriptomic signatures resulting

from infection of L6E9 rat myoblasts with four reference strains of T. cruzi (Brazil,

CL, Y, and Tulahuen). The four strains induced similar overall gene expression

alterations in the myoblasts, although only 21 genes were equally affected by all

strains. Cardiotrophin-like cytokine factor 1 (Clcf1) was one of the genes found to be

consistently upregulated by the infection with all four strains of T. cruzi. This cytokine

is a member of the interleukin-6 family that binds to glycoprotein 130 receptor and

activates the JAK/STAT signaling pathway, which may lead to muscle cell hypertrophy.

Another commonly upregulated gene was tyrosine 3-monooxygenase/tryptophan

5-monooxygenase activation protein theta (Ywhaq, 14-3-3 protein 2), present in the

Cell Cycle Pathway. In the present work, we reanalyzed our previous microarray

dataset, aiming at understanding in more details the transcriptomic impact that

each strain has on JAK/STAT signaling and Cell Cycle pathways. Using Pearson

correlation analysis between the expression levels of gene pairs in biological replicas

from each pathway, we determined the coordination between such pairs in each

experimental condition and the predicted protein interactions between the significantly

altered genes by each strain. We found that although these highlighted genes were

similarly affected by all four strains, the downstream genes or their interaction partners
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were not necessarily equally affected, thus reinforcing the idea of the role of parasite

background on host cell transcriptome. These new analyses provide further evidence to

the mechanistic understanding of how distinct T. cruzi strains lead to diverse remodeling

of host cell transcriptome.

Keywords: Chagas disease, myoblasts, cell cycle, JAK-STAT pathway, Clcf1, Ywhaq

INTRODUCTION

Chagas disease (CD) is caused by the protozoan Trypanosoma
cruzi and affects about 6 to 7 million people worldwide
(WHO, 2019). The cardiac form of CD (Mukherjee et al.,
2003; Goldenberg et al., 2009; Soares et al., 2010; Adesse
et al., 2011) is the main clinical manifestation, which can be
observed in more than 30% of chronically infected people,
whereas another 10% develop digestive, neurological, or mixed
alterations (Rassi et al., 2010, 2012; WHO, 2019). These
diverse presentations might in part be explained by genetic
differences between strains of T. cruzi, which have been
classified into six discrete typing units (DTUs) (Andrade and
Magalhaes, 1997; Zingales et al., 2009). This classification
is based on distinct ecological, epidemiological, natural, and
experimental infection features of the parasite, but clinical
manifestations are not strictly associated with the specific T.
cruzi DTUs (Zingales et al., 2012). In order to understand
the variations in CD severity and tissue specificity, there
is a need to identify key molecular biomarkers and to
correlate the gene expression profiles of T. cruzi strains with
CD pathogenicity.

We previously compared gene expression profiles in a rat
myoblast cell line (L6E9) infected with four different strains of
T. cruzi (Brazil, Y, CL, and Tulahuen) (Adesse et al., 2010a).
That study identified up regulation of cardiotrophin-like cytokine
factor 1 (Clcf1) by all four strains of T. cruzi. Clcf1 belongs
to the interleukin (IL)-6 family of cytokines that have the
glycoprotein gp130 as a common signal-transducing receptor
and is involved in cell differentiation, survival, apoptosis,
and proliferation through activation of Janus kinase (JAK).
JAKs in turn, activate signal transducer and activator of
transcription (STAT) factors (Gorshkova et al., 2016). CLCF1
has been reported to induce hypertrophy and survival of
cardiomyocytes in vitro (Sheng et al., 1996; Latchman, 1999)
through gp130 and STAT3 pathway activation (Kunisada et al.,
1998). Plasma levels of CLCF1 are correlated with severity
of hypertrophy in patients with hypertrophic cardiomyopathy
or hypertension (Monserrat et al., 2011; Song et al., 2014).
In acute experimental CD, rats infected with T. cruzi (Sylvio
X10/7 strain, TcI) revealed cardiac overexpression of CLCF1
and gp130 (Chandrasekar et al., 1998). These data could
explain in part why the predominant DTUs in our previous
study (TcI and TcII) are associated with cardiac manifestation
of CD.

STAT proteins include STAT1–4, –5a, –5b, and –6 and
have been shown to play an important role in cytokine
signaling. These proteins are tyrosine phosphorylated by

JAKs following the binding of cytokine to its receptor. Upon
tyrosine phosphorylation, STAT proteins form homodimers
or heterodimers and rapidly translocate to the nucleus and
induce gene expression. Recent evidence has demonstrated
the necessity of STAT3 in cell growth and transformation
(Zong et al., 2000; Ponce et al., 2013; Stahl et al., 2013).
The JAK/STAT pathway is involved in cell cycle regulation,
and it has been shown that myoblast proliferation involves
this pathway (Sorensen et al., 2018; Steyn et al., 2019).
JAK1 and STAT1 induce cell proliferation and reduce
myogenic differentiation (Sun et al., 2007). Additionally,
phosphorylation of JAK2–STAT5 has been shown to protect
skeletal muscle in acute aerobic exercise (Consitt et al.,
2008).

Regarding T. cruzi infection, STAT3 phosphorylation
induces cardiomyocyte protection against apoptosis through
increased expression of anti-apoptotic factor Bcl-2 (Ponce
et al., 2012). Cell cycle was modulated distinctly in cells
infected with the Dm28c (type I) and the Y and CL-Brener
T. cruzi stocks (type II), and there were different levels of
apoptosis induction by each strain. Moreover, T. cruzi infection
provoked variable apoptosis rates in distinct host cell types
(cardiomyocytes, fibroblasts, and macrophages) (de Souza et al.,
2003).

In this context, transcriptomic analyses may be expected
to elucidate associations between the DTUs and prediction of
the pathogenesis of T. cruzi strains. In the present study, we
focus on determination of the transcriptomic impact of each
strain on JAK/STAT signaling and cell cycle pathways. Novel
bioinformatics tools were used to reanalyze the data generated
by microarray analysis of L6E9 cells infected with four distinct
strains of T. cruzi (Brazil, CL, Y, and Tulahuen).

METHODS

Experimental Design
For microarrays analyses, rat skeletal myoblast L6E9 were
used as described in Adesse et al. (2010a). Before reaching
confluency, cells were dissociated with trypsin/EDTA in
phosphate-buffered saline (PBS) and plated for experiments.
Trypomastigotes of Trypanosoma cruzi were isolated from
supernatants of infected Vero cells and used at a multiplicity
of infection (MOI) of 10. Twenty-four hours after infection,
cultures were washed twice with Ringer’s saline solution
and fresh supplemented medium was added. Medium
was replaced daily and cultures were kept up to 72 h
post infection.
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Microarray
Microarray data were obtained from our previous publication
(Adesse et al., 2010a), and the experimental design and
procedures are described in brief as follows. Cell culture dishes
containing the L6E9 rat myoblast cell line were infected with
trypomastigote forms of T. cruzi (Y, CL Brener, Tulahuen,
and Brazil strains) (see Adesse et al., 2010a, for details). Total
RNA was harvested 72 h post infection using TRIzol reagent
(Invitrogen, Carlsbad, CA), following the protocol indicated
by the manufacturer. Microarray analysis was performed
using the protocol optimized in our laboratory according
to the standards of the Microarray Gene Expression Data
Society. Differently labeled RNA samples from biological
replicas of control (uninfected cells cultured for the same
duration) or infected with one strain at a time were co-
hybridized (“multiple yellow” strategy) with rat oligonucleotide
arrays printed by Duke University. The abundance of host
cell transcripts was considered as significantly altered after
infection if the absolute fold change was >1.5-fold and the
P-value of the heteroscedastic t-test (two-sample, unequal
variance) was >0.05. Experimental details and raw and
processed expression data have been deposited and are
publically available at https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE18175.

Expression Coordination Analysis
As previously described (Iacobas et al., 2008a), the gene networks
in uninfected control L6E9 myocytes and those infected with
each of the four strains (Brazil, CL, Tulahuen, or Y strain)
were established by calculating pairwise Pearson correlation
coefficients of the (log2) expression levels of each pair of pathway
genes in the biological replicas. Two genes were considered
as synergistically expressed if their expression levels increased
and decreased together (positive covariance) in a set of similar
samples or as antagonistically expressed (negative covariance)
when they manifest opposite tendencies and as independently
expressed when their expressions are not correlated (close to
zero covariance). In the case of four biological replicas, the (p
< 0.05) cut-off for synergism is a pairwise Pearson correlation
coefficient ρ > 0.90, for antagonism ρ < −0.90, and for
independence |ρ| < 0.05. To illustrate, Supplementary Figure 1

presents examples of synergistically (Antxr1), antagonistically
(Dus3l), and independently (Golim4) expressed genes with Clcf1
in control L6E9 rat myoblasts.

“See-Saw” Partners of Key Genes
For each gene of interest and each experimental condition,
we determined the coordination profile, defined as the set
of Pearson correlation coefficients between the expression
levels within biological replicas of that gene and each
other gene. We then identified the gene pairs with
very similar or opposite coordination profiles in each
condition, termed “see-saw” partners, both in recognition
of the appearance of the graphs and to denote the
strength of their synergistic and antagonistic relationships
(Iacobas et al., 2007a,b, 2008a,b; Spray and Iacobas, 2007).

Pathway Analysis
On the basis of our initial analyses of genes whose expression
was altered by infection with different T. cruzi strains, we
selected the following gene pathways for further analysis
using the Kyoto Encyclopedia of Genes and Genomes
(KEGG): a) JAK/STAT Signaling Pathway (http://www.kegg.

TABLE 1 | Top 30 upregulated genes by Brazil strain-infected L6E9 cells at 72 hpi.

Gene name Gene symbol Fold change

Erythroid spectrin beta LOC314251 35.5

Transmembrane protease, serine

11d

Tmprss11d 20.9

4-Hydroxyphenylpyruvic acid

dioxygenase

Hpd 11.9

IQ motif and Sec7 domain 3 Iqsec3 10.2

DNA-damage inducible transcript 3 Ddit3 9.3

One cut domain, family member 1 Onecut1 9.3

Olfactory receptor 1751 (predicted) Olr1751_predicted 9.3

Olfactory receptor 135 (predicted) Olr135_predicted 8.9

Cut-like 1 (Drosophila) Cutl1

Proprotein convertase

subtilisin/kexin type 7

Pcsk7 6.9

Olfactory receptor 3 (predicted) Olr3_predicted 5.9

Amiloride binding protein 1 (amine

oxidase, copper-containing)

Abp1 5.7

Arylacetamide deacetylase

(esterase)

Aadac 5.5

EGF-like domain 7 Egfl7 5.5

Similar to 60S ribosomal protein

L29 (P23) (predicted)

RGD1566397_predicted 5.5

Similar to RIKEN cDNA

0610012D17 (predicted)

RGD1564702_predicted 5.4

Similar to 60S ribosomal protein

L23a

LOC291686 5.2

Potassium channel, subfamily K,

member 2

Kcnk2 5.1

Cdc2-related kinase,

arginine/serine-rich

Crkrs 5.1

PITPNM family member 3

(predicted)

Pitpnm3_predicted 5.0

Ras association (RalGDS/AF-6)

domain family 3 (predicted)

Rassf3_predicted 5.0

Similar to DIP13 beta (predicted) RGD1563028_predicted 4.9

Similar to ribosomal protein L13

(predicted)

RGD1563194_predicted 4.6

Similar to BTB and CNC homology

1, basic leucine zipper transcription

factor 2 (predicted)

RGD1562865_predicted 4.5

Elastin Eln 4.4

RT1 class I, CE15 RT1-CE15 4.4

Adaptor-related protein complex 3,

mu 2 subunit

Ap3m2 4.4

Rhesus blood group-associated C

glycoprotein

Rhcg 4.3

FYVE and coiled-coil domain

containing 1 (predicted)

Fyco1_predicted 4.3
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jp/kegg-bin/show_pathway?org_name=rno&mapno=04630&
mapscale=1.0&show_description=hide) and b) Cell Cycle
Pathway (http://www.kegg.jp/kegg-bin/show_pathway?org_
name=rno&mapno=04110&mapscale=1.0&show_description=
hide).

TABLE 2 | Top 30 downregulated genes by Brazil strain-infected L6E9 cells at 72

hpi.

Gene name Gene symbol Fold

change

Solute carrier family 39 (metal ion

transporter), member 6

Slc39a6 −2.8

Glycoprotein (transmembrane) nmb Gpnmb −2.5

Tropomyosin 4 Tpm4 −2.5

Parkinson disease (autosomal recessive,

early onset) 7

Park7 −2.4

ATP-binding cassette, sub-family E

(OABP), member 1

Abce1 −2.4

Keratin 25D Krt25d −2.4

Proteasome (prosome, macropain) 28

subunit, beta

Psme2 −2.3

Similar to hypothetical protein

MGC40499 (predicted)

RGD1307636_predicted −2.3

Milk fat globule-EGF factor 8 protein Mfge8 −2.3

Macoilin LOC313618 −2.3

NADPH oxidase 3 Nox3 −2.3

Similar to RIKEN cDNA 9630046K23 RGD1306248 −2.3

Xylulokinase homolog (Haemophilus

influenzae)

Xylb −2.2

Similar to A disintegrin-like and

metalloprotease (reprolysin type) with

thrombospondin type 1 motif, 2

(predicted)

RGD1565950_predicted −2.2

COP9 (constitutive photomorphogenic)

homolog, subunit 4 (Arabidopsis thaliana)

Cops4 −2.1

Ankyrin repeat domain 1 (cardiac muscle) Ankrd1 −2.1

Gasdermin domain containing 1

(predicted)

Gsdmdc1_predicted −2.1

Similar to mKIAA1011 protein LOC366669 −2.1

Similar to RIKEN cDNA 1500016L11

(predicted)

RGD1305050_predicted −2.1

Ribosomal protein L28 Rpl28 −2.1

Thymoma viral proto-oncogene 1 Akt1 −2.1

SEC24 related gene family, member A

(Saccharomyces cerevisiae) (predicted)

Sec24a_predicted −2.0

Adaptor protein complex AP-2, alpha 2

subunit

Ap2a2 −2.0

Guanosine diphosphate dissociation

inhibitor 1

Gdi1 −2.0

Similar to hypothetical protein

MGC25461 (predicted)

RGD1306717_predicted −2.0

Matrix metallopeptidase 14

(membrane-inserted)

Mmp14 −2.0

Rho GTPase activating protein 27 Arhgap27 −2.0

Voltage-dependent anion channel 2 Vdac2 −1.9

C1q and tumor necrosis factor-related

protein 1

C1qtnf1 −1.9

RESULTS

Differential Alterations in Predicted
Protein–Protein Interactions (PPI) in L6E9
Myoblasts Infected With Distinct
Trypanosoma cruzi Strains
In our previous paper (Adesse et al., 2010a), randomly selected
genes were presented among those that were significantly altered

TABLE 3 | Top 30 upregulated genes by CL strain-infected L6E9 cells at 72 hpi.

Gene name Gene symbol Fold

change

Similar to protein phosphatase 1, regulatory

(inhibitory) subunit 1C; thymocyte ARPP;

DNA segment, Chr 9, Brigham and Women’s

Genetics 1012 expressed

RGD1307215 43.5

Calcium/calmodulin-dependent protein

kinase I gamma

Camk1g 29.6

Chemokine (C-X-C motif) ligand 10 Cxcl10 20.8

5-Methyltetrahydrofolate-homocysteine

methyltransferase

Mtr 16.5

Olfactory receptor 813 (predicted) Olr813_predicted 9.9

Transmembrane protease, serine 11d Tmprss11d 9.6

ATP-binding cassette, sub-family G (WHITE),

member 3

Abcg3 7.7

Nuclear receptor subfamily 4, group A,

member 1

Nr4a1 6.2

Peptidyl arginine deiminase, type I Padi1 4.3

Pericentriolar material 1 Pcm1 4.3

ATPase, H+ transporting, lysosomal V0

subunit A isoform 4 (predicted)

Atp6v0a4_predicted 3.7

Claspin homolog (Xenopus laevis) (predicted) Clspn_predicted 3.6

Mitochondrial trans-2-enoyl-CoA reductase Mecr 3.5

Checkpoint kinase 1 homolog

(Schizosaccharomyces pombe)

Chek1 3.5

Similar to RIKEN cDNA 6530401L14 gene RGD1309107 3.4

Radial spokehead-like 2 (predicted) Rshl2_predicted 3.4

UDP-glucose ceramide

glucosyltransferase-like 1

Ugcgl1 3.4

Glutamate receptor, ionotropic, N-methyl

d-aspartate 2B

Grin2b 3.4

Similar to RIKEN cDNA 4921513E08

(predicted)

RGD1305153_predicted 3.2

Similar to RIKEN cDNA 2700097O09

(predicted)

RGD1304624_predicted 3.2

Similar to RIKEN cDNA A530088I07 gene LOC311984 3.1

Leucine rich repeat protein 3, neuronal Lrrn3 3.1

Erythroid spectrin beta LOC314251 3.1

DNA-damage inducible transcript 3 Ddit3 3.1

Peroxisomal biogenesis factor 11c (predicted)Pex11c_predicted 3.1

Potassium channel tetramerization domain

containing 1

Kctd1 3.1

Similar to hypothetical protein FLJ31846

(predicted)

RGD1306118_predicted 3.1

ATH1, acid trehalase-like 1 (yeast) (predicted) Athl1_predicted 3.0

Interleukin-21 receptor Il21r 3.0

Similar to pseudouridylate synthase-like 1 LOC362681 3.0
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by each strain of Trypanosoma cruzi. We now listed the 30
genes most downregulated and upregulated genes by each strain
(Tables 1–8). Whereas the fold changes of the most strongly
downregulated genes were similar (about −4- to −2-fold), fold

TABLE 4 | Top 30 downregulated genes by CL strain-infected L6E9 cells at 72

hpi.

Gene name Gene symbol Fold

change

V-maf musculoaponeurotic

fibrosarcoma oncogene homolog

(avian)

Maf −3.1

Glycoprotein (transmembrane) nmb Gpnmb −2.8

T-cell immunomodulatory protein Cda08 −2.6

Succinate-Coenzyme A ligase,

ADP-forming, beta subunit (predicted)

Sucla2_predicted −2.6

OMA1 homolog, zinc metallopeptidase

(Saccharomyces cerevisiae) (predicted)

Oma1_predicted −2.4

Similar to CG9996-PA LOC300173 −2.3

Regenerating islet-derived 1 Reg1 −2.3

Phosphotriesterase related Pter −2.2

Similar to myosin, light polypeptide 6,

alkali, smooth muscle and non-muscle

(predicted)

RGD1559821_predicted −2.1

Syndecan 1 Sdc1 −2.1

Pyruvate dehydrogenase kinase,

isoenzyme 2

Pdk2 −2.0

Aminoadipate-semialdehyde

dehydrogenase-phosphopantetheinyl

transferase (predicted)

Aasdhppt_predicted −2.0

Matrix metallopeptidase 14

(membrane-inserted)

Mmp14 −1.9

Solute carrier family 27 (fatty acid

transporter), member 1

Slc27a1 −1.8

Similar to

phosphatidylglycerophosphate

synthase (predicted)

RGD1305052_predicted −1.8

UDP-Gal:betaGlcNAc beta

1,4-galactosyltransferase, polypeptide

5 (predicted)

B4galt5_predicted −1.8

Spondin 2, extracellular matrix protein Spon2 −1.8

Spastic paraplegia 21 homolog (human) Spg21 −1.8

C1q and tumor necrosis factor-related

protein 1

C1qtnf1 −1.8

Neuropathy target esterase like 1 Ntel1 −1.8

Similar to 60S ribosomal protein L35

(predicted)

RGD1562863_predicted −1.8

Carnitine palmitoyltransferase 1a, liver Cpt1a −1.8

Gametogenetin-binding protein 1 Ggnbp1 −1.8

F-box and leucine-rich repeat protein 3 Fbxl3 −1.7

Homer homolog 3 (Drosophila) Homer3 −1.7

Phospholipase C, gamma 1 Plcg1 −1.7

DEAH (Asp-Glu-Ala-His) box

polypeptide 16

Dhx16 −1.7

Similar to C530044N13Rik protein RGD1306568 −1.7

Similar to CG4768-PA (predicted) RGD1309748_predicted −1.7

UDP-N-acetylglucosamine

pyrophosphorylase 1-like 1 (predicted)

Uap1l1_predicted −1.7

changes of upregulated genes were as high as 13- to 54-fold in the
various T. cruzi strains. The Y strain was the least disruptive for
the transcriptome because fold changes of the 30 most strongly
upregulated genes were notably lower than for the other strains.

TABLE 5 | Top 30 upregulated genes by Tulahuen strain-infected L6E9 cells at 72

hpi.

Gene name Gene symbol Fold

change

Calcium/calmodulin-dependent

protein kinase I gamma

Camk1g 57.6

Chemokine (C-X-C motif) ligand 10 Cxcl10 35.9

Similar to Set alpha isoform LOC317165 20.2

Erythroid spectrin beta LOC314251 20.2

Similar to protein phosphatase 1,

regulatory (inhibitory) subunit 1C;

thymocyte ARPP; DNA segment,

Chr 9, Brigham and Women’s

Genetics 1012 expressed

RGD1307215 19.1

Vacuolar protein sorting 37C (yeast)

(predicted)

Vps37c_predicted 14.5

5-Methyltetrahydrofolate-

homocysteine

methyltransferase

Mtr 13.7

ATP-binding cassette, sub-family G

(WHITE), member 3

Abcg3 12.2

Similar to BCL6 co-repressor-like 1

(predicted)

RGD1566108_predicted 10.1

Transmembrane protease, serine

11d

Tmprss11d 9.7

Interleukin-21 (predicted) Il21_predicted 9.4

Matrix metallopeptidase 15

(predicted)

Mmp15_predicted 7.8

Activin A receptor type II-like 1 Acvrl1 7.6

Olfactory receptor 3 (predicted) Olr3_predicted 7.4

Oncomodulin Ocm 7.1

Olfactory receptor 889 (predicted) Olr889_predicted 6.9

Seminal vesicle secretion 1 Svs1 6.7

Olfactory receptor 859 (predicted) Olr859_predicted 6.7

Olfactory receptor 155 (predicted) Olr155_predicted 6.1

Arylacetamide deacetylase

(esterase)

Aadac 5.8

Homeo box, msh-like 3 Msx3 5.7

4-hydroxyphenylpyruvic acid

dioxygenase

Hpd 5.5

Beta-1,3-glucuronyltransferase 1

(glucuronosyltransferase P)

B3gat1 5.4

CD4 antigen Cd4 5.4

Cut-like 1 (Drosophila) Cutl1 5.4

BMP and activin membrane-bound

inhibitor, homolog (Xenopus laevis)

Bambi 5.3

Similar to hypothetical protein

FLJ31846 (predicted)

RGD1306118_predicted 5.2

Slit homolog 3 (Drosophila) Slit3 5.2

Eyes absent 2 homolog (Drosophila) Eya2 5.1

PDZ domain containing 6

(predicted)

Pdzk6_predicted 5.0
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TABLE 6 | Top 30 downregulated genes by Tulahuen strain-infected L6E9 cells at

72 hpi.

Gene name Gene symbol Fold

change

Procollagen, type XVI, alpha 1 Col16a1 −4.7

Solute carrier family 16

(monocarboxylic acid transporters),

member 1

Slc16a1 −3.8

Inositol 1,4,5-triphosphate receptor

3

Itpr3 −3.7

Matrix metallopeptidase 11 Mmp11 −3.5

Exocyst complex component 7 Exoc7 −3.4

V-abl Abelson murine leukemia viral

oncogene homolog 1

Abl1 −3.3

Dermatopontin (predicted) Dpt_predicted −3.2

Guanosine monophosphate

reductase 2

Gmpr2 −3.2

Discoidin domain receptor family,

member 1

Ddr1 −3.2

Tetraspanin 5 Tspan5 −3.2

Olfactory receptor 865 (predicted) Olr865_predicted −3.1

Similar to hypothetical protein

(predicted)

RGD1561605_predicted −3.1

Protein phosphatase 1 (formerly

2C)-like (predicted)

Ppm1l_predicted −3.0

Bcl2 modifying factor Bmf −2.9

IAP promoted placental gene

(predicted)

Ipp_predicted −2.9

AE binding protein 1 (predicted) Aebp1_predicted −2.9

Ectonucleoside triphosphate

diphosphohydrolase 1

Entpd1 −2.9

Troponin T2, cardiac Tnnt2 −2.9

Spondin 2, extracellular matrix

protein

Spon2 −2.9

Phospholipase D2 Pld2 −2.9

Signal recognition particle receptor

(“docking protein”)

Srpr −2.9

Similar to late endosomal/lysosomal

Mp1 interacting protein (p14)

(predicted)

RGD1562501_predicted −2.9

Tripeptidyl peptidase I Tpp1 −2.8

A disintegrin and metallopeptidase

domain 33 (predicted)

Adam33_predicted −2.8

Similar to RIKEN cDNA

2010012O05 (predicted)

RGD1311783_predicted −2.8

F-box protein 38 (predicted) Fbxo38_predicted −2.8

NADH dehydrogenase (ubiquinone)

1 beta subcomplex 3 (predicted)

Ndufb3_predicted −2.8

RNA binding motif protein 4

(predicted)

Rbm4_predicted −2.8

RAB8B, member RAS oncogene

family

Rab8b −2.8

Spastin (predicted) Spast_predicted −2.8

We used the STRING platform to predict protein–protein
interaction (PPI) networks and subsequently applied K-means
algorithm to determine clusters of genes with a similar
expression profile (Figure 1). The clusters that were generated

TABLE 7 | Top 30 upregulated genes by Y strain-infected L6E9 cells at 72 hpi.

Gene name Gene symbol Fold change

Oncomodulin Ocm 13.5

Syntaxin binding protein 5

(tomosyn)

Stxbp5 11.8

Similar to hypothetical protein

FLJ31846 (predicted)

RGD1306118_predicted 8.9

ATP-binding cassette, sub-family G

(WHITE), member 3

Abcg3 8.4

Ankyrin repeat and SOCS

box-containing protein 3 (predicted)

Asb3_predicted 6.3

Slit homolog 3 (Drosophila) Slit3 5.5

Elastin Eln 5.1

Zinc finger protein 13 (predicted) Zfp13_predicted 4.6

BMP and activin membrane-bound

inhibitor, homolog (Xenopus laevis)

Bambi 4.5

FYVE and coiled-coil domain

containing 1 (predicted)

Fyco1_predicted 4.4

Interleukin-21 (predicted) Il21_predicted 4.4

Galactose mutarotase Galm 4.3

Presenilin 2 Psen2 3.8

Pericentriolar material 1 Pcm1 3.7

Guanylate cyclase activator 2a

(guanylin)

Guca2a 3.5

PDZ domain containing 6

(predicted)

Pdzk6_predicted 3.3

5-Methyltetrahydrofolate-

homocysteine

methyltransferase

Mtr 3.2

Similar to transcription factor (p38

interacting protein)

RGD1307812 3.1

UDP-glucose ceramide

glucosyltransferase-like 1

Ugcgl1 3.1

Similar to protein phosphatase 1,

regulatory (inhibitory) subunit 1C;

thymocyte ARPP; DNA segment,

Chr 9, Brigham and Women’s

Genetics 1012 expressed

RGD1307215 3.0

Eyes absent 2 homolog (Drosophila) Eya2 3.0

Pregnancy-specific beta

1-glycoprotein

LOC292668 2.9

Ets variant gene 4 (E1A enhancer

binding protein, E1AF) (predicted)

Etv4_predicted 2.9

Transferrin receptor Tfrc 2.9

Similar to RIKEN cDNA

2700097O09 (predicted)

RGD1304624_predicted 2.9

Jumonji domain containing 3

(predicted)

Jmjd3_predicted 2.9

Similar to hypothetical protein

FLJ10342 (predicted)

RGD1307791_predicted 2.8

RNA pseudouridylate synthase

domain containing 2 (predicted)

Rpusd2_predicted 2.8

Transmembrane protein 12 Tmem12 2.8

Oxidoreductase NAD-binding

domain containing 1 (predicted)

Oxnad1_predicted 2.7

were then analyzed by Pathvisio software (Kutmon et al.,
2015), in order to determine their molecular function; these
clusters and their associated functions are shown in Figure 1.
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TABLE 8 | Top 30 downregulated genes by Y strain-infected L6E9 cells at 72 hpi.

Gene name Gene symbol Fold

change

Actin, alpha 1, skeletal muscle Acta1 −4.8

Similar to cDNA sequence

BC019755 (predicted)

RGD1306601_predicted −3.3

Cytochrome P450, family 2,

subfamily d, polypeptide 22

Cyp2d22 −2.9

Cadherin 15 Cdh15 −2.9

Cytochrome P450, family 26,

subfamily b, polypeptide 1

Cyp26b1 −2.8

Olfactory receptor 865 (predicted) Olr865_predicted −2.7

Ankyrin repeat domain 1 (cardiac

muscle)

Ankrd1 −2.7

Similar to nuclease sensitive

element binding protein 1

LOC367118 −2.7

Acyl-CoA synthetase long-chain

family member 3

Acsl3 −2.6

Dispatched homolog 1 (Drosophila)

(predicted)

Disp1_predicted −2.6

Carbonic anhydrase 3 Ca3 −2.6

Inhibitor of growth family, member 3 Ing3 −2.6

C-fos-induced growth factor Figf −2.6

Naked cuticle 2 homolog

(Drosophila) (predicted)

Nkd2_predicted −2.5

Inhibitor of DNA binding 4 Id4 −2.4

Cytidine 5
′

-triphosphate synthase

(predicted)

Ctps_predicted −2.4

Similar to Eso3 protein (predicted) RGD1562476_predicted −2.3

Cysteine and glycine-rich protein 2 Csrp2 −2.3

RAC/CDC42 exchange factor Geft −2,26947

Similar to DNA segment, Chr 8,

ERATO Doi 82, expressed

(predicted)

RGD1311793_predicted −2.3

Stanniocalcin 2 Stc2 −2.2

Family with sequence similarity 3,

member C

Fam3c −2.2

Cohen syndrome homolog 1

(predicted)

Cohh1_predicted −2.2

Guanosine monophosphate

reductase

Gmpr −2.2

Similar to RIKEN cDNA

9630046K23

RGD1306248 −2.2

Unc-51-like kinase 1 Ulk1 −2.2

DnaJ (Hsp40) homolog, subfamily

A, member 4

Dnaja4 −2.2

Ephrin B1 Efnb1 −2.1

Dermatopontin (predicted) Dpt_predicted −2.1

Testis expressed gene 264

homolog (mouse)

Tex264 −2.1

Among 111 downregulated genes, the Brazil strain affected
the “RNA processing,” “binding,” “transport,” and “cell cycle
and cellular metabolic process” pathways, and 377 upregulated
genes involved “RNA splicing,” “signal transduction and cellular
response to stimulus,” “regulation of metabolic process,” and
“protein binding.” The CL strain downregulated the expression

of 53 genes, but only nine interactions were found among 14
regulated genes, belonging to the “cellular process,” “cellular
metabolic process,” “catabolic process,” and “metabolic process”
categories. Regarding the 764 genes of the L6E9 cells that were
upregulated by the CL, we found a total of 884 interactions that
could be grouped into three main biological processes: “ribosome
biogenesis,” “RNA processing,” and “cell cycle and DNA repair.”
By contrast, analysis of the Tulahuen-infected samples revealed
that most of the 1,144 differentially expressed genes (DEGs)
were downregulated (761 genes), which formed 494 interactions.
Such interactions were grouped into four main clusters:
“cellular component organization,” “RNA splicing,” “protein
phosphorylation,” and “cellular protein metabolic process,” each
with 22, 15, 22, and 18 genes, respectively. The remaining
383 DEGs by the Tulahuen strain were all upregulated and
generated 146 interactions with four main biological processes:
“cellular component biogenesis,” “biological regulation and signal
transduction,” “signal transduction and cellular response to
stimulus,” and “cell cycle and metabolic process” (Figure 1).
Finally, we analyzed the DEGs from the Y strain-infected
samples. We found a total of 68 and 44 predicted interactions
when looking at 150 downregulated and 276 upregulated genes,
respectively. Among the biological processes found among the
downregulated network, we found “signal transduction and
cellular response to stimulus,” “structural molecule activity,”
“regulation of cell migration,” and “macromolecule metabolic
process”; and in the upregulated genes, the “cell cycle,” “response
to stimulus,” “cellular protein process,” and “cellular metabolic
process” were found (Figure 1).

Trypanosoma cruzi Strains Differentially
Alter the Expression of JAK/STAT Signaling
Pathway Members
As previously described, all four strains of T. cruzi induced
upregulation of the Clcf1 transcript in infected rat myoblasts by
2.2-, 2.3-, 1.8-, and 2.3-fold by the Brazil, CL, Tulahuen, and Y
strains, respectively. Because this cytokine is one of the known
activators of the JAK/STAT signaling pathway, we investigated
whether other genes in such pathway might be altered by all
four strains, which would validate JAK/STAT activation as a
hallmark of T. cruzi infection. Using KEGG pathway database,
we highlighted which genes were significantly upregulated or
downregulated by each parasite strain (Figure 2). We found
that the CL strain, an isolate from the southern part of Brazil
(TcVI), had the highest impact on JAK/STAT signaling pathway,
inducing alteration in 37% of the 30 genes detected by the
arrays. The Tulahuen strain, a Chilean isolate (also TcVI),
altered 30% of the genes, whereas the Brazil and Y strains
showed fewer pathway elements altered (3/30:10% and 5/30:
17%, respectively). In initial steps of this signaling cascade, the
Brazil and CL strains upregulated only Clcf1 expression, whereas
the Tulahuen strain also induced overexpression of IL-11 (1.7-
fold), IL-21 (9.4-fold), and colony stimulating factor 3 receptor
(2.3-fold). The Y strain also led to increased expression of IL-
21 transcript (4.4-fold). Concerning the membrane receptors
that trigger JAK/STAT signaling, we found that the Brazil and
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FIGURE 1 | Protein–protein interaction (PPI) networks revealed by upregulated and downregulated genes after infection with each Trypanosoma cruzi strain. Among

the downregulated (left panels) and upregulated genes (right panels), we obtained/assembled PPIs using STRING software, with a confidence cut-off that ranged

from 0.4 to 0.7. Nodes labeled with the encoding gene symbol indicate proteins, and the lines represent the corresponding interactions. The confidence score of each

interaction is mapped to the line thickness (the thicker the line, the more evidence to support the interaction). The network was then enriched according to a gene

ontology database. Subsequent analysis with K-means algorithm predicted nodes of interacting proteins (highlighted with the dashed lines), and such nodes were

determined with Pathvisio assigning their molecular functions.

Tulahuen strains both induced upregulation of prolactin receptor
(Prlr, 3.5- and 3.9-fold, respectively). Cells infected with the CL
strain showed increased expression of IL-3 (1.9-fold) and IL-21

(3.0-fold) receptors, as well as IFN-α receptor 1 (IfnaR1, 1.8-fold).
The Y strain also increased the expression of IL-21 receptor (2.5-
fold). Other constituents of this pathway were altered by the Y
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and CL strains: PIAS4 was upregulated by 1. 6- and 2.0-fold,
respectively. Conversely, the Tulahuen strain downregulated
expression of protein inhibitor of STAT1 and STAT3 (PIAS1 and
PIAS3) by 1.7- and 2.5-fold, respectively (Figure 2).

Distinct Modulation in Cell Cycle Pathway
by Trypanosoma cruzi Strains
JAK/STAT pathway activation may lead to changes in
cell cycle components, and one of these (Tyrosine 3-
Monooxygenase/Tryptophan 5-Monooxygenase Activation
Protein Theta: Ywhaq) was one of the few genes found to be
upregulated by all four strains studied (Adesse et al., 2010a).
In addition, three out of the four strains used in this work
led to increased expression of Cyclin D1 (Ccnd1), a major
player in the cell cycle pathway, as has also been previously
reported (Bouzahzah et al., 2008). Thus, we investigated how T.
cruzi altered the cell cycle pathway by using KEGG templates
(Figure 3), and the findings are described below.

The cell cycle pathway was most altered by the CL and
Tulahuen strains showing 22% (12 of 55 analyzed spots) and
27% (15/55 spots) altered genes, respectively. The Brazil strain
(TcI) and Y strain (isolated from São Paulo state, Brazil, TcII)
had an impact on these two pathways, although to a lesser extent,
affecting eight and five of the 55 measured genes, respectively.
Specific Cell Cycle Pathway genes whose expression was altered
following infection are described below.

In the Brazil strain, upregulated genes included cyclin-
dependent kinase inhibitor 1B (Cdkn1b, 2.3-fold); ATM
serine/threonine kinase (ATM, 2.9-fold); checkpoint kinase 1
homolog (Chek1, 2.3-fold), and MAD2 (mitotic arrest deficient,
homolog)-like 1 (Mad2l1, 1.8-fold). Downregulated genes
includes SMAD family member 2 (SMAD2, −1.5-fold) and cell
division cycle 7 (Cdc7,−1.8-fold). Whereas the theta polypeptide
of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein (Ywhaq) was upregulated (2.9-fold), the
zeta polypeptide (Ywhaz) was downregulated (−1.9-fold)
(Figure 3A).

In the CL strain, upregulated genes included Cyclin D1
(CycD, 2.0-fold), histone deacetylase 1 (HDAC1, 1.6-fold),
cyclin dependent kinase 2 (Cdk2, 2.0-fold), proliferating cell
nuclear antigen (PCNA, 1.8-fold), growth arrest and DNA-
damage-inducible beta (Gadd45b, 2.1-fold), Checkpoint kinase 1
homolog (Chek1, 3.5-fold), protein kinase, membrane associated
tyrosine/threonine 1 (Pkmyt1, 1.8-fold), MAD2 (mitotic arrest
deficient, homolog)-like 1 (yeast) (Mad2l1, 1.9-fold), anaphase
promoting complex subunit 2 (Anapc2, 1.8-fold), and cell division
cycle 20 (Cdc20, 2.9-fold). Regarding the members of the 14-3-3
complex, CL infection upregulated the theta polypeptide (Ywhaq,
2.9-fold) (Figure 3B).

The Tulahuen strain was very disruptive for cell cycle
genes, with 27% significantly altered. Upregulated genes
included S-phase kinase-associated protein 1 (Skp1a, 2-fold),

FIGURE 2 | Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the JAK/STAT Pathway in Trypanosoma cruzi-infected myoblasts. The JAK/STAT

Pathway obtained from the KEGG platform was used as template to highlight the effect of Brazil (A), CL (B), Tulahuen (C), and Y (D) strain in L6E9 rat myoblasts. Blue

boxes indicate significant upregulation (>1.5-fold), and red boxes indicate significant downregulation (<-1.5-fold). Yellow boxes indicate genes that showed no

significant alteration in infected vs. control cultures, whereas white boxes indicate genes that were absent in the analysis (i.e., those that for any reason did not match

the exclusion criteria; e.g., a positive signal in all four biological replicas of each group). Extracellular ligands such as IL-6 family of cytokines bind to membrane

receptors, including IL-3R and IL-21R, which in turn activate members of the JAK/STAT pathway or, alternatively, of the MAPK signaling pathway. STATs translocate to

cell nucleus and activate transcription of genes that can activate cell cycle, apoptosis, or cell differentiation.
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FIGURE 3 | Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the Cell Cycle Pathway in Trypanosoma cruzi-infected myoblasts. The Cell Cycle

Pathway obtained from the KEGG platform was used as template to highlight the effect of Brazil (A), CL (B), Tulahuen (C), and Y (D) strain in L6E9 rat myoblasts. Blue

boxes indicate genes that were significantly upregulated (>1.5-fold), and red boxes indicate those that were significantly downregulated (<-1.5-fold). Yellow boxes

indicate genes that showed no significant alteration in infected vs. control cultures, and white boxes indicate genes that were absent in the analysis (i.e., those that for

any reason did not match the exclusion criteria; e.g., a positive signal in all four biological replicas of each group). Distinct stimuli can regulate the expression of cyclins

and cyclin-dependent kinases (CDKs) and transcription factors (E2F5, and E2F1, 2, and 3) that coordinate cell cycle progression, DNA biosynthesis, and S-phase

protein synthesis.

CyclinD1 (Ccnd1, 2-fold), cyclin-dependent kinase inhibitor 1B
(Cdkn1b, 1.7-fold), minichromosome maintenance deficient 2
mitotin (MCM2, 1.5-fold), fizzy/cell division cycle 20 related
1 (Fzr1, 2.3-fold), cell division cycle 20 homolog (Cdc20,
1.8-fold), proliferating cell nuclear antigen (PCNA, 1.6-fold).
Downregulated genes includedMAD homolog 2 (SMAD2,−1.9-
fold), MAD homolog 4 (SMAD4, −1.7-fold), V-abl Abelson
murine leukemia viral oncogene homolog 1 (Abl1, −3.3-fold),
protein kinase, DNA activated, catalytic polypeptide (Prkdc,−1.8-
fold), and tumor protein p53 (tp53, −1.9-fold). Three members
of the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein were affected by the Tulahuen strain
infection: downregulated the eta (Ywhah, −1.8-fold) and zeta
(Ywhaz, −1.8-fold), and upregulated the theta (Ywhaq, 1.8-fold)
(Figure 3C).

The Y strain was the least disruptive for the cell cycle pathway,
leading to upregulation of glycogen synthase kinase 3 beta (Gsk3b
1.5-fold), cyclin-dependent kinase inhibitor 2B (Cdkn2b, 1.7-fold),
Ywhaq (2.6-fold), and downregulation of anaphase promoting
complex subunit 4 (Anapc4,−1.6-fold) (Figure 3D).

Expression Coordination
The pathway expression analysis shown in Figures 2, 3 provides
information on whether genes within a pathway are individually
affected by a treatment or condition but does not indicate
whether expression of genes within a pathway is coordinately
expressed. To examine this issue, we used pairwise Pearson
coefficients to determine whether expression differences in
individual samples were correlated with one another, possibly
indicating that the encoded proteins may be functionally
interlinked (Spray and Iacobas, 2007, Figure 4).

From these measurements, we determined the number
of gene pairs with significant pairwise Pearson correlation
coefficients, with synergistic correlations shown in blue and
antagonistic in red in Figures 4A,B. Graphical representation of
the coordination interactions (synergistic and antagonistic) of
genes in the JAK/STAT and Cell Cycle pathways are shown in
Figures 4C,D, respectively.

In the non-infected control group, the JAK/STAT signaling
pathway had 16 synergistic and six antagonistic coordination.
Samples obtained for each of the four strains exhibited higher
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FIGURE 4 | Trypanosoma cruzi infection affects the coordination of genes belonging to JAK/STAT and cell cycle pathways. The number of synergisms (blue bars) and

antagonisms (red bars) for the JAK/STAT (A) and Cell Cycle (B) pathways are shown, as determined by Pearson correlation analysis. The circles in (C,D) depict the

synergistic (blue lines) and antagonistic (red lines) correlations between genes of each pathway, in uninfected and T. cruzi-infected datasets.

numbers of synergisms (27, 29, 23, and 21 for Brazil, CL,
Tulahuen, and Y, respectively); antagonistic correlations for the
Brazil, Talahuen, and Y strains were similar to those of control
(six antagonisms each) (Figure 4A). The CL strain induced a
much higher number of antagonisms (24) (Figures 4A,C).

In the Cell Cycle Pathway, the control group showed 113
synergisms and 65 antagonisms. In contrast to what was observed
in gene coordination in the JAK/STAT signaling pathway, T. cruzi
infection by all strains resulted in fewer synergisms (ranging from
74 to 81, Figures 4B–D).

Additionally, we determined whether infection by each of
the T. cruzi strains altered the number of correlations of the
JAK/STAT (Figure 5A) and Cell Cycle genes (Figure 5B) with
all other genes quantified on the arrays. Overall, the number
of neutral correlations was fairly constant for genes in both
pathways, and negative correlations were similar except for a
larger number in the CL genes in the JAK/STAT pathway. By

contrast, the number of positive associations was higher in all
infected than uninfected groups for JAK/STAT and lower in
all infected groups for the Cell Cycle Pathway. To illustrate
the effect that T. cruzi infection had on coordination between
members of the JAK/STAT pathway, we show in Figure 5C

the coordination profile between STAT3 and caveolin-1. In the
control condition (shown in black), these two genes had a
neutral profile (corresponding to a broad ellipse covering all
quadrants of the graph), which was altered to a variably narrow
but significantly positive profile in each of the infected conditions
(shown in red). An example of conversion of a coordination
of Cell Cycle genes from a positive coordination under control
conditions to a neutral profile in infected cells is shown in
Figure 5D. Uninfected cultures displayed a positive profile (black
dots) for the Ywaq and Ywhaz pair of genes. In infected samples
from each strain (shown in red), the coordination changed to a
neutral profile.
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FIGURE 5 | Differential effects of infection on global gene correlation. Plots of correlation coefficients between the expression levels of the indicated genes with each

other genes differentially expressed in each experimental condition. The number of neutral (black bars), positive (blue bars), and negative correlations (yellow bars) was

quantified among genes belonging to the JAK/STAT (A) and Cell Cycle (B) pathways. T. cruzi infection increased the number of positive correlations of the JAK/STAT

pathway, whereas an opposite effect was observed for Cell Cycle genes. In (C,D) are depicted representative correlation profiles of each pathway: cav-1 and stat3 of

the JAK/STAT pathway (C) and YWHAZ and YWHAQ of the Cell Cycle Pathway (D). Profiles of the uninfected controls are represented by the black dots and T.

cruzi-infected by red dots.

DISCUSSION

Trypanosoma cruzi infection results in CD that has different
clinical forms that include asymptomatic, cardiac, digestive, and
neurological features (WHO, 2019). These diverse outcomes
may be related to the environment, host, and parasite genetic
variability (Lewis et al., 2016) and by a combination of all these
variables. T. cruzi genetic isolates are currently divided into
six DTUs according to genetic, biochemical, and/or biological
markers (Zingales et al., 2009); and strains from TcII, TcV,
or TcVI were associated with chronic infection (Zingales,
2018). Here, we reanalyzed data from a previously published
transcriptomic profiling of the infection of rat myoblasts by
four T. cruzi strains, in order to further understand the
impact that infection has on JAK/STAT signaling and cell

cycle pathways and to understand the different outcomes
of infection.

One of the few genes showing increased expression increased
by all four strains of T. cruzi was Clcf1 (Adesse et al., 2010a).
CLCF1 belongs to the IL-6 cytokine family that includes IL-6,
IL-11, ciliary neurotrophic factor (CNTF), leukemia inhibitory
factor (LIF), oncostatin M (OSM), cardiotrophin 1 (CT-1),
and IL-27.

Cytokines and growth factors commonlymediate their actions
through the JAK/STAT pathway, which is associated with such
cellular functions as inflammation, apoptosis, and cell-cycle
control (Barry et al., 2007). IL-6 and IL-10 induce STAT3
activity (Barry et al., 2007). In Tulahuen strain infection, IL-
6/pSTAT3 protects cardiomyocytes through upregulation of anti-
apoptotic factor Bcl-2 (Ponce et al., 2012), thus maintaining
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the survival of the host cell that is beneficial for parasite
persistence. IL-10/STAT3 signaling induces the SOCS-3 gene
reducing tissue damage inducers such as pro-inflammatory
factors nitric oxide synthase (NOS2) and tumor necrosis factor
(TNF)-α in T. cruzi RA strain-infected cardiomyocytes culture
(Hovsepian et al., 2013).

IFNs activate predominantly STAT1 and STAT2 (Barry et al.,
2007). IFNγ/STAT1 signaling protected fibroblasts against CL
Brener and Y infection by inhibition of amastigote growth
(Stahl et al., 2014) that could explain the higher T. cruzi (Brazil
strain) replication and dissemination in STAT1 knockout mice
(Kulkarni et al., 2015). Interestingly, infection of STAT6- but
not STAT4-knockout mice with this same (Brazil) strain resulted
in decreased parasitemia, inflammation, and mortality when
compared with wild-type mice (Tarleton et al., 2000). Therefore,
different ways of modulating this pathway may induce different
clinical aspects of the infection.

Our results showed that three out of four isolates of T. cruzi
that were tested had nodules of predicted PPI of Cell Cycle
process within their upregulated genes and that one (Brazil) had
such interactions among the downregulated genes. Regarding the
pairwise coordination profiling of genes belonging to the cell
cycle pathway, we verified an overall reduction of synergistic
interactions induced by all four strains. Accordingly, infection of
L6E9myoblasts by the Brazil strain led to no significant alteration
of cyclin D1 promotor activity or cyclin D1 protein stability in
infected cultures (Bouzahzah et al., 2008).

It is well-documented that T. cruzi affects host cell
proliferation (Bouzahzah et al., 2006; Droguett et al., 2017;
Duran-Rehbein et al., 2017). Curiously, one work that utilized
the Y strain of T. cruzi showed that late mitotic genes were
downregulated in infected cultures of vascular smooth muscle
cells and fibroblasts (Costales et al., 2009), indicating defects
in cytokinesis. This finding reinforces the fact that host cell
or even host animal background plays a complimentary role
on the course of infection. This seems to be the case of
vascular smooth cells that were shown to have increased
proliferation when infected by the Tulahuen strain of this parasite
(Hassan et al., 2006).

Interestingly, our study showed that infected cultures had a
decrease in the number of neutral correlations in JAK/STAT-
related genes and an increase in the number of positive
profiles.We exemplified this phenomenon with the correlation of
caveolin-1 and STAT3. Caveolins are implicated in transcytosis of
macromolecules, cholesterol transport, and signal transduction
(Li et al., 2005). Knockout mice for caveolin-1, caveolin-2, and
caveolin-3 develop hypertrophic cardiomyopathy with increase
in fibrosis (Park et al., 2002; Cohen et al., 2003; Augustus et al.,
2008). Experimental CD in mice also affects caveolins (Adesse
et al., 2010b), with subsequent activation of MAPK signaling
pathways (Huang et al., 2003), thus leading to remodeling of
heart tissue.

The tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation proteins are a family of molecular
chaperones commonly referred to as 14-3-3 proteins. The family
consists of seven transcripts in mammals: 14-3-3β (YWHAB),

14-3-3γ (YWHAG), 14-3-3ε (YWHAE), 14-3-3ζ (YWHAZ),
14-3-3η (YWHAH), 14-3-3θ (YWHAQ), and 14-3-3σ also
known as stratifin (SFN) (MacKay et al., 2011). YWHAH for
instance has a well-established cardioprotective role in cases
of cardiac overload. Mice with a dominant mutation in 14-3-3
proteins display reduced survival, left ventricular fraction, and
fraction shortening (Thandavarayan et al., 2011; Sreedhar et al.,
2016). The fact that 14-3-3 transcripts are altered in myoblasts
infected with T. cruzi reinforces the idea that 14-3-3 proteins
may contribute to cardiomyocyte apoptosis, inflammation,
fibrosis, and hypertrophy observed in cardiac forms of Chagas
chronic disease.

In summary, the bioinformatic tools used in this work
allowed the further description of the differential impact of
T. cruzi genetic background on host cell transcriptome, as a
good predictor of biological outcomes. Although Clcf-1 and
Ywhaq were equally altered in the infected L6E9 cells, their
network ensemble was in fact composed of different transcripts,
which may lead to variations in the degrees of activations in
these molecular pathways. These observations are important
to deepen the understanding of how CD can present multiple
pathologies, according to parasite background, combined with
host diversity and environmental aspects. Such variability should
be taken in consideration when proposing chemotherapeutic or
immunomodulatory approaches to control of this disease.
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