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Abstract: Light is an essential environmental factor for Sparassis latifolia primordia formation, but the
molecular mechanism is still unclear. In this study, differential expression profiling of light-induced
primordia formation (LIPF) was established by integrating the assay for transposase accessible
chromatin by sequencing (ATAC-seq) and RNA-seq technology. The integrated results from the
ATAC-seq and RNA-seq showed 13 down-regulated genes and 17 up-regulated genes in both the
L vs. D and P vs. D groups, for both methods. According to the gene ontology (GO) annotation
of these differentially expressed genes (DEGs), the top three biological process categories were
cysteine biosynthetic process via cystathionine, vitamin B6 catabolic, and glycine metabolic; the top
three molecular function categories were 5-methyltetrahydropteroyltriglutamate-homocysteine
S-methyltransferase activity, glycine binding, and pyridoxal phosphate binding; cellular component
categories were significantly enriched in the glycine cleavage complex. The KEGG (Kyoto
Encyclopedia of Genes and Genomes) enrichment analysis revealed that these genes were associated
with vitamin B6 metabolism; selenocompound metabolism; cysteine and methionine metabolism;
glycine, serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism pathways.
The expression of most of the DEGs was validated by qRT-PCR. To the best of our knowledge,
this study is the first integrative analysis of ATAC-seq and RNA-seq for macro-fungi. These results
provided a new perspective on the understanding of key pathways and hub genes in LIPF in
S. latifolia. It will be helpful in understanding the primary environmental response, and provides new
information to the existing models of primordia formation in edible and medicinal fungi.
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1. Introduction

The transition from mycelium to primordia form, which requires more energy than simple
vegetative growth [1], is the most complex and critical developmental event in fruiting body
development in various basidiomycete fungi. Understanding the mechanisms of primordia formation
has been a goal of research on edible fungi [2]. Recently, the mechanisms of this process have
been extensively studied. For instance, the studies on Pleurotus tuoliensis [3], Priurotus eryngii [4],
Lentinula edodes [5], Schizophyllum commune [6], Flammulina velutipes [7], Ganoderma lucidum [8],
Cordyceps militaris [9], Hypsizygus marmoreus [10,11], Termitomyces heimii [12], Coprinopsis cinerea [2,13],
and Pleurotus ostreatus [14], found some key genes that regulated mushroom development, and
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demonstrated the underlying molecular mechanisms in this process. However, studies on the
mechanisms of fruiting body development in Sparassis latifolia are still at a primary stage.

S. latifolia was collected from Asian Sparassis [15], which has exhibited various biological and
pharmacologic activities [16–18]. Based on the genome sequence of S. latifolia strains SP-C [19],
researchers have identified hundreds of differentially expressed proteins during development [20].
Light has previously been shown to be an essential environmental factor for primordia formation
in S. latifolia [21]. The light response mechanism has also been studied using RNA-Seq [22], and it
was found that 157 genes were up-regulated and 171 genes were down-regulated when induced by
light. The sequence and expression of several light receptors has also been analyzed [23–25], and
the Drosophila, Arabidopsis, Synechocystis, and Homo species (DASH) type cryptochrome homologous
photoreceptor gene Slcry1 was found to be increased under 300 lx white LED irradiation, with the
progress in the developmental stages (mycelia < primordia < fruiting bodies), but Opsin-1 and Opsin-2
were down-regulated during the development. However, the molecular mechanism of light-induced
primordia formation in S. latifolia has not been studied.

In this study, the assay for transposase-accessible chromatin by sequencing (ATAC-seq) [26,27]
was used to detect open chromatin regions in light-induced primordia formation (LIPF) in S. latifolia.
We further identified the key cis-regulatory elements responsible for LIPF in S. latifolia signature genes
by comparing ATAC-seq results with RNA-seq data. This resulted in the identification of some novel
primordia formation inductive genes.

2. Results

2.1. Results of ATAC-Seq

ATAC-seq was used to detect the landscape of genomic chromatin accessibility during LIPF [27].
After raw data had been obtained from ATAC-seq, the fragment sizes for read pairs, each given
a BAM file from paired-end sequencing, were calculated. The expected distribution of fragment
lengths was obtained in all ATAC-seq libraries, which possessed both a nucleosome-free fragment
and a single-nucleosome fragment, indicating good data quality (Figure 1A). The highest peak on the
left of Figure 1A is the nucleosome-free fragment which corresponds to the open chromatin region.
Meanwhile, the mononucleosome peak, a cleavage fragment including a nucleosome greater than
147 and less than 147 × 2, was also required to appear in the length distribution map. The results
of mapped read distributions across the gene bodies and peaks also showed the good quality of the
ATAC-seq (Figure 1B,C). As shown in Table S1, the mappability was found to be above 50%. In total, at
least 7723, 10,829, and 8352 high-confidence peaks were identified across all mycelium samples under
dark, light, and all primordia samples, respectively.

To further confirm the quality of ATAC-seq, Principal Components Analysis (PCA) and Pearson
correlation analysis were performed based on the signals of merged peaks from all samples. The PCA
plot sorted the principal components according to the amount of data variability and showed that the
samples were clustered by group (Figure 1F). Meanwhile, pair-wise Spearman correlation between any
pair of ATAC-seq samples was calculated based on the read counts/signals on merged ATAC-seq peaks
from all samples. As shown in Figure 1D,E, the results for the two samples in each group were very
close to each other.
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Figure 1. Results of the assay for transposase accessible chromatin by sequencing (ATAC-seq). (A) 
Fragment length distribution map. (B,C) Mapped reads distributions (from bigwig) across gene 
bodies and peaks. The X-axis represents the normalized gene or peak length, and the Y-axis represents 
the read enrichment. The larger the value, the more enriched. TSS stands for the gene start site, and 
TES stands for the gene stop site. −3.0 represents 3 kb upstream of TSS, and 3.0 kb represents 3 kb 
downstream of TES. ATAC-seq read distributions are presented as an average plot (up) and heatmap 
(down). The Deeptools tool was used for this analysis. (D) The Pearson correlation results shown by 
heatmap scatterplot. (E) The Pearson correlation results shown by heatmap. (F) Principal Components 
Analysis (PCA) plot. 

 

Figure 2. Genomic distribution of differential peaks. (A) Circos map of differential peaks. (B) The 
genome-wide distribution of the peaks. The genome-wide functional regions were divided into 
promoter, downstream TTS, coding exon, intron, and distal intergenic regions. 

Figure 1. Results of the assay for transposase accessible chromatin by sequencing (ATAC-seq).
(A) Fragment length distribution map. (B,C) Mapped reads distributions (from bigwig) across gene
bodies and peaks. The X-axis represents the normalized gene or peak length, and the Y-axis represents
the read enrichment. The larger the value, the more enriched. TSS stands for the gene start site, and
TES stands for the gene stop site. −3.0 represents 3 kb upstream of TSS, and 3.0 kb represents 3 kb
downstream of TES. ATAC-seq read distributions are presented as an average plot (up) and heatmap
(down). The Deeptools tool was used for this analysis. (D) The Pearson correlation results shown by
heatmap scatterplot. (E) The Pearson correlation results shown by heatmap. (F) Principal Components
Analysis (PCA) plot.

2.2. Differential Chromatin Accessibility in LIPF

The differential accessible peaks are shown in Figure 2A and Table S2. There were 1912
down-regulated and 1768 up-regulated peaks in the P vs. D group, while there were only 237
down-regulated and 234 up-regulated peaks in the L vs. D group. The genome-wide functional regions
were divided into promoter, downstream gene start site (TTS), coding exon, intron, and distal intergenic
regions. The binding sites were annotated, and each binding site could obtain the closest gene to the
genome, thereby acquiring a specific distribution of the binding site on the genome. Transcription
factors are generally enriched near the start of transcription of the gene, the TSS region. As shown in
Figure 2B, the percentages of peaks enriched near the TSS region were 16.60%, 28.76%, 21.33%, and
18.33% in the L vs. D down, L vs. D up, P vs. D down, and P vs. D up groups, respectively. Results also
indicated that the percentages of down-regulated and up-regulated peaks enriched near the promoter
in the L vs. D group were 36.23% and 15.88%, respectively, while the percentages of down-regulated
and up-regulated peaks in the P vs. D group were 26.64% and 47.86%, respectively.
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Figure 2. Genomic distribution of differential peaks. (A) Circos map of differential peaks. (B) The
genome-wide distribution of the peaks. The genome-wide functional regions were divided into
promoter, downstream TTS, coding exon, intron, and distal intergenic regions.

2.3. Integration of ATAC-Seq Results with RNA-Seq

To determine whether the changes in open chromatin regions from the ATAC-seq analysis
correlated with the gene expression changes in LIPF, we integrated our ATAC-seq data with RNA-seq
data. RNA-Seq was performed using the three cultured group samples. The reads and nucleotides
for each sample are shown in Table S3. Based on the differential expression analysis, the light group
showed 827 up-regulated genes and 875 down-regulated genes, compared with the dark control group,
while the primordia group showed 1819 up-regulated genes and 1609 down-regulated genes, compared
with the dark control group (Figure 3A). The integration of ATAC-seq and mRNA-seq results showed
the genes that were highly and significantly expressed in each group. After overlapping the results
of the two sequence methods, 45 and 174 down-regulated genes were found in the L vs. D and P vs.
D groups, respectively, while 32 and 330 up-regulated genes were found in the L vs. D and P vs. D
groups, respectively (Figure 3B). With further overlapping of different groups, 30 genes were identified,
including 17 up-regulated genes and 13 down-regulated genes (Table S4 and Figure 3C).
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Figure 3. Integration of ATAC-seq and RNA-seq results. (A) Statistical pie chart of differentially
expressed genes identified using RNA-seq. (B) Overlap of differentially expressed genes identified
by ATAC-seq and RNA-seq. (C) Overlap of differentially expressed genes in the P vs. D and L vs.
D groups.
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According to the gene ontology (GO) annotation of these differentially expressed genes (DEGs),
the biological process categories included cysteine biosynthetic process via cystathionine, vitamin
B6 catabolic, glycine metabolic, glycine catabolic, ‘de novo’ L-methionine biosynthetic process,
trans-sulfuration, one-carbon metabolic process, sulfur compound metabolic process, quinolinic acid
transmembrane transport, and carboxylic acid transport. In addition, cellular component categories
were significantly enriched in the glycine cleavage complex. Similarly, the molecular function
categories included 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase activity,
glycine binding, pyridoxal phosphate binding, pyridoxine 4-dehydrogenase activity, cystathionine
beta-lyase activity, glycine dehydrogenase (decarboxylating) activity, cystathionine gamma-lyase
activity, cystathionine gamma-synthase activity, and carboxylic acid transmembrane transporter
activity (Figure 4A and Table S5). It was further noted that the DEGs were significantly assigned to
vitamin B6 metabolism; selenocompound metabolism; cysteine and methionine metabolism; glycine,
serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism pathways (Figure 4B).
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Figure 4. Function analysis of the differentially expressed genes (DEGs). (A) Histogram of the gene
ontology (GO) classification of the DEGs. Red color represents a significant term (p < 0.05), and blue
represents a non-significant term. (B) KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation
for the DEGs.

In order to more accurately determine the transcription factors that play a regulatory role based on
the chromatin open region and further study how transcription factors regulate downstream genes, we
analyzed changes in the chromatin open regions upstream and downstream of the DEGs. As Figure 5
shows, most of the signals in the open chromatin region near the down-regulated gene were lost, and
the same signals were gained near the up-regulated gene. These results indicated that the change in
the regulatory region recognized by ATAC-seq was consistent with the change in the expression of
surrounding genes. The genome-wide functional regions of the peaks near these DEGs were annotated.
There were 12, 9, 8, 7, and 2 peaks enriched near the promoter, exon, distal intergenic, TTS, and intron
regions, respectively (Table S6).
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Figure 5. The changes in the chromatin open regions near the DEGs, for each group. The TSS site of the
selected gene was expanded upstream and downstream to 100,000 bp, and the differential chromatin
open regions of ATAC-seq were analyzed.

2.4. Validation of the Results by qRT-PCR

qRT-PCR was used to quantitatively validate the sequencing data. The DEGs exhibited similar
expression patterns to those in the ATAC-seq and RNA-seq experiments (Figure 6), except for U1
(dehydrogenase patE), U9 (SH3 domain-containing protein), U14 (putative methyltransferase-like
protein C27D7.08c), U16 (cysteine proteinase 1), D5 (cofactor-independent phosphoglycerate mutase),
D8 (meiosis-specific protein hop1), D9 (aldo-keto reductase yakc), and D13 (uncharacterized
trans-sulfuration enzyme YHR112C). Therefore, DEGs identified by ATAC-seq and RNA-seq can be
further investigated in the future as candidate genes involved in LIPF in S. latifolia.
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3. Discussion

Understanding the molecular mechanisms regulating the fruiting process in macro-fungi, especially
in industrially cultivated mushrooms, has long been a goal in mycological research [28]. As a brown
rot fungus, S. latifolia has exhibited various biological and pharmacological activities [16–18]. In China,
the total fresh production of S. latifolia is over 20 tons/d. However, the cultivation technology is still
controlled by a small group of people. Therefore, it is important to elucidate the mechanisms of
fruiting body development in S. latifolia. Recently, several research groups have sequenced the whole
genome sequence of Sparassis species [19,29], which will provide base information for further study.
Previous study showed that light was an essential environmental factor for the primordia formation
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in S. latifolia [30], but the molecular mechanism of light-induced primordia formation in S. latifolia is
still unclear.

In this study, we detected the changes in chromatin accessibility and gene expression in the
development of mycelia into primordia and combined the treatment of light. We firstly comprehensively
analyzed the changes in chromatin accessibility in LIPF in S. latifolia. ATAC-seq can identify open
chromatin regions that are trimethylated at H3K4, H3K36, and H3K79 [31]. This technology combined
with RNA-seq can provide high resolution of the potential functional interactions that occurred during
development [32]. ATAC-seq has been widely used in human, plant, and animal research, but few
studies have used this technology in fungi research [33,34]. Based on the quality control shown in
Figure 1, we think that we successfully applied ATAC-seq to the screening of functional genes of S.
latifolia, although the number of differentially expressed peaks in the L vs. D group was 507 (Table S2).
It was speculated that the possible reason was the time of sample illumination treatment for ATAC-seq.
In our previous studies, the expression level of some light receptors was significantly changed after
1 h light treatment [23,24]. So, this time duration was selected for the light treated mycelium group.
However, in other studies, light treatment time was usually shorter than 1 h [9,35,36].

The integration of ATAC-seq and RNA-seq results showed that 17 genes were up-regulated and
13 genes were down-regulated in both the L vs. D and P vs. D groups (Table S4 and Figure 3C).
The major advantage of this approach is the downstream interactions do not have to be previously
known. Integration of ATAC-seq and RNA-seq can determine the transcription factors that play
a regulatory role based on the chromatin open region and further study how transcription factors
regulate downstream genes. There were 12, 9, 8, 7, and 2 peaks enriched near the promoter, exon,
distal intergenic, TTS, and intron regions, respectively (Table S5). The result of GO analysis showed
that these DEGs were influenced by a variety of biological processes, particularly metabolic processes
(one-carbon metabolic process, sulfur compound metabolic process, glycine metabolic process). When
combined with the results of the KEGG pathway analysis of the DEGs, this indicated that functional
groups were associated with vitamin B6 metabolism, glycine metabolism, and cystathionine lyase,
which might play an important role in LIPF in S. latifolia. Metabolism of vitamins was also involved in
fruiting body formation in Lentinula edodes [37].

Tang et al. found the expression level of WC-1 was significantly up-regulated in brown mycelia in
L. edodes [38]. In C. cinerea, white collar proteins also play a role in photomorphogenesis and fruiting
body development [39]. WC-1 in Cordyceps militaris also could switch the vegetative growth state to
primordia differentiation [40]. The expression of WC-1 in S. latifolia was induced by light treatment and
up-regulated during development [23]. In this study, the expression of WC-1 was also up-regulated
both in ATAC-seq and RNA-seq, indicating that blue light receptor WC-1 must be associated with
light-induced primordium formation in S. latifolia.

Hydrophobins are small proteins of approximately 100 amino acids that are characterized by eight
cysteine residues in conserved positions. They are important for the formation and development of
fruiting bodies in macro-fungi. In S. commune, hydrophobins are involved in the formation of aerial
hyphae, as well as the formation of other aerial structures [41]. Hydrophobin 9 in F. filiformis was
involved in the formation of primordia [42,43]. In this study, a hydrophobin gene, U10 (Fruiting body
protein SC4), was up-regulated in LIPF.

However, the role of most of these DEGs in primordium formation and stress response in S. latifolia
is still unclear. Further study is required to investigate the function of these DEGs in LIPF in S. latifolia.

4. Materials and Methods

4.1. Strains, Culture Conditions, and Isolation of Nucleic Acids

The S. latifolia strain SP-C was preserved at the Institute of Edible Fungi, Fujian Academy of
Agricultural Sciences (Fuzhou, China). The strain was maintained on potato dextrose agar slants, and
seed culture medium was composed of potato (20%), glucose (2%), and fish peptone (0.3%). The pine
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wood sawdust substrate for S. latifolia culture was prepared as described in our previous study [44].
Samples of fungi were divided into three different groups: mycelium group (D), incubated at 23–25 ◦C
in darkness for 28 d after inoculation; light-induced mycelium group (L), 1 h light (200 lx white LED)
induced mycelium from group D; and primordia group (P). The D group mycelia were continuously
cultured under 14:10 h of light/dark for 2 weeks and primordia were formed. Samples were ground in
liquid nitrogen using mortar and pestle. DNA and total RNA were isolated using previous method
with some modifications [45].

4.2. ATAC-Seq

ATAC-seq was performed as previously described [26]. Raw sequence reads were initially
processed for quality control by FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
and then Cutadapt was used to remove adapter sequences and poor quality reads [46]. Subsequently,
the remaining reads were mapped to the reference genome of S. latifolia strain SP-C [19] using BWA
(Burrows-Wheeler Alignment) (0.7.10) [47]. SAM files were converted to BAM format using Samtools
and used for peak calling. The consensus map was created for each group by merging all samples
using the BEDTools [48] merge command. MACS2 (2.1.1) [49] was used to call peaks and an initial
threshold was defined as |log2FC| > 0.26, with p < 0.05. After performing PCA on the signals of merged
peaks from all samples, plotPCA was used to sort the principal components according to the amount
of data variability. The pair-wise Spearman correlation between any pair of ATAC-seq samples was
calculated based on read counts/signals on merged ATAC-seq peaks from all samples. ATAC-seq peaks
were annotated using Homer’s annotatePeaks.pl [50]. Two biological replicates were used.

4.3. Integration Analysis of ATAC-Seq and RNA-Seq

The ATAC-seq results were combined with expression data from RNA-seq analysis in order to
accurately determine the transcription factors that play a regulatory role based on the chromatin open
region and to further study how transcription factors regulated downstream genes. RNA-seq was
performed as previously described [5]. Three biological replicates were used for RNA-seq. Raw data
(raw reads) of FASTQ format were filtered by Cutadapt [46]. Files were then processed by FASTQC.
Reference genomes were directly downloaded from the National Center for Biotechnology Information
(NCBI) genome website [19]. The reference genome index was constructed and paired-end clean reads
were aligned to the S. latifolia genome using STAR [51]. The read numbers mapped to each gene were
counted using HTSeq v0.6.1 [52]. DESeq2 R package was used to analyze the differential expression [53].
Genes with |FoldChange| > 1.2 and adjusted p-value ≤ 0.05 were assigned as differentially expressed.
When several ATAC-seq peaks were associated with one gene, the highest ATAC-seq peak was selected
among the gene-proximal peaks. The down-regulated DEGs in RNA-seq were overlapped with the
associated gene with a chromatin open region with ATAC-seq signal attenuated, and the up-regulated
DEGs in RNA-seq were correlated with ATAC-seq signal-enhanced chromatin open region-related
gene. Further, the overlapped DEGs between ATAC-seq and RNA-seq were again overlapped between
the L vs. D group and the P vs. D group.

4.4. Function Annotation

KEGG pathway analysis was used to discover the significant pathway of differential genes.
The significant pathways were selected using Fisher’s exact test, and the p-value and false discovery
rate (FDR) were used to define the threshold of significance [54]. GO analysis was performed to
facilitate the elucidation of the biological implications of unique genes in LIPF [55]. We downloaded
the GO annotations from UniProt (http://www.uniprot.org/), NCBI (http://www.ncbi.nlm.nih.gov/),
and Gene Ontology (http://www.geneontology.org/). Fisher’s exact test was applied to identify the
significant GO categories and FDR was used to correct the p-values.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.uniprot.org/
http://www.ncbi.nlm.nih.gov/
http://www.geneontology.org/
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4.5. Gene Expression Analysis

Gene expression analysis was performed by qRT-PCR as previously described [24]. Briefly, total
RNA was isolated using TRIzol reagent (Invitrogen, San Diego, CA, USA) and then reverse-transcribed
with PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara, Japan) following the manufacturer’s
instructions. cDNA was quantified using SYBR Premix Ex Taq kit (Takara, Japan) on an ABI
QuantStudio instrument. Each gene was analyzed in duplicate and normalized to the housekeeping
gene GAPDH [23]. Primers used in this study are described in Table S2. The reaction mixture contained
4.5 µL cDNA, 0.5 µL primers (10 µM), 12.5 µL 2× SYBR Premix Ex Taq, and ddH2O up to 20 µL. The
thermal cycling conditions were: 95 ◦C for 1 min; followed by 40 cycles of 10 s at 95 ◦C, 34 s at 60 ◦C,
and 60 ◦C for 1 min. Three biological replicates were used.

5. Conclusions

In conclusion, here, we try to use a new technology, integration of ATAC-seq and RNA-seq, to
investigate differences in gene expression patterns during primordia formation of Sparassis latifolia.
We found some key genes that could serve as potential biomarkers to provide insights into the
transformation of mycelia to fruiting body in Sparassis latifolia.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/1/185/s1.
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