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Abstract

Background: Artificial intelligence (AI) has transformative potential to support pre-

hospital clinicians, emergency physicians, and trauma surgeons in acute traumatic

injury care. This scoping review examines the literature evaluating AI models using

prehospital features to support early traumatic injury care.

Methods: We conducted a systematic search in August 2023 of PubMed, Embase,

and Web of Science. Two independent reviewers screened titles/abstracts, with a

third reviewer for adjudication, followed by a full-text analysis. We included original

research and conference presentations evaluating AI models—machine learning (ML),

deep learning (DL), and natural language processing (NLP)—that used prehospital fea-

tures or features available immediately upon emergency department arrival. Review

articles were excluded. The same investigators extracted data and systematically cat-

egorized outcomes to ensure consistency and transparency. We calculated kappa for

interrater reliability and descriptive statistics.

Results: We identified 1050 unique publications, with 49 meeting inclusion criteria

after title and abstract review (kappa 0.58) and full-text review. Publications increased

annually from 2 in 2007 to 10 in 2022. Geographic analysis revealed a 61% focus on

data from the United States. Studies were predominantly retrospective (88%), used

local (45%) or national level (41%) data, focused on adults only (59%) or did not spec-

ify adults or pediatrics (27%), and 57% encompassed both blunt and penetrating injury

mechanisms. Themajority usedmachine learning (88%) aloneor in conjunctionwithDL

orNLP, and the top three algorithmsusedwere support vectormachine, logistic regres-

sion, and random forest. The most common study objectives were to predict the need

for critical care and life-saving interventions (29%), assist in triage (22%), and predict

survival (20%).
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Conclusions:A small but growing body of literature described AImodels based on pre-

hospital features thatmay support decisionsmade by dispatchers, EmergencyMedical

Services clinicians, and trauma teams in early traumatic injury care.

KEYWORDS

artificial intelligence, deep learning, emergency medical services, machine learning, natural
language processing, prehospital care, traumatic injury

1 INTRODUCTION

Prehospital traumatic injury care requires rapid decision-making based

on limited and dynamic information. National guidelines from the

American College of Surgeons (ACS) provide a framework for field

triage of injured patients, which accounts for age, injury patterns,

and physiologic assessment to determine a patient’s risk for serious

injury.1 Training and scope of practice for EmergencyMedical Services

(EMS) clinicians has further expanded over the past decade, bringing

advanced trauma care to the patient in the field.2 Despite significant

advances in prehospital trauma care, traumatic injury remains the lead-

ing cause of death in the United States for persons under 45 years and

amajor cause of death worldwide.3,4

In the past decade, artificial intelligence (AI) has shown signif-

icant potential as decision-support in the care of acute traumatic

injuries.5–7 AI, including machine learning (ML), deep learning (DL),

and natural language processing (NLP), has the ability to generate pre-

dictions from structured (ie, vital sign parameters) or unstructured

data (ie, text narratives or photos) without explicit human-operator

programming. In the setting of traumatic injury care, AI can automat-

ically extract a set of datapoints from dispatch narratives,8 continuous

vital sign monitoring,9–11 or the electronic patient care record,12 and

rapidly analyze it to make predictions to support EMS clinicians. Prior

scoping reviews have shown that AI may support prehospital care,13

emergency care,7 and early trauma care.6,14 To date, no studies have

assessed the extent of literature evaluating AI based on prehospital

information to support early traumatic injury care.

We performed a scoping review to understand current advances

in AI as decision-support for dispatchers, EMS clinicians, and trauma

teams based on readily available prehospital information to guide early

traumatic injury care.

2 METHODS

2.1 Study design

We performed a systematic search in accordance with the Preferred

Reporting Items for Systematic Reviews andMeta-Analyses Extension

for Scoping Reviews guidelines15 (Supporting InformationMaterial A).

2.2 Search strategy

A search was conducted on three databases including MEDLINE,

Embase, and Web of Science in August 2023 and targeted articles

focusedon traumatic injury, AI (includingML,DL,NLP), andprehospital

care. Search terms included “traumatic injury,” “artificial intelligence,”

“machine learning,” “deep learning,” “natural language processing,” and

“emergency medical services.” The full search criteria can be found in

the Supporting InformationMaterial B.

2.3 Selection of studies

After de-duplication, unique titles and abstracts were screened by two

independent reviewers (J.T. and J.W.) based on study inclusion criteria.

Original research and conference abstracts published from database

inception up to the search date were eligible for inclusion. Confer-

ence abstracts were included in this review given the limited volume

of peer-reviewed publications and to reduce the impact of publication

bias. Reportswere included if the study focusedonhuman subjects suf-

fering from traumatic injury. Studies must have utilized an AI model(s)

(ie, DL, ML, and NLP) based on prehospital features (eg, input data)

with a predicted outcome(s) that may support early traumatic injury

care. Prehospital features were defined as any information available

between 9-1-1 contact and emergency department (ED) transfer of

care that may feasibly be collected by dispatchers and/or EMS clini-

cians. Additionally, models with features collected immediately upon

ED arrival (ie, vital signs and Glasgow coma scale [GCS]) from simu-

lated care thatmay feasibly be collected in theprehospital setting, from

the military setting collected during field care and Role 1 care, and

frommass casualty incidents (real or simulated)were also included.We

excluded studies published in languages other than English, and those

that used AI to augment community preparedness, or trauma sys-

tem planning or surveillance. Lastly, we excluded review articles, study

protocols, study datasets, case reports, and gray literature. Any dis-

agreements during the title and abstract review phase were resolved

through discussion andwith a third reviewer (K.W.).

After title and abstract review, two independent reviewers (J.T. and

J.W.) reviewed all full-text publications based on the same screen-

ing criteria stated above. Reasons for exclusion after full-text review

were recorded.Disagreementswere again resolved throughdiscussion

and with a third reviewer (K.W.) if needed. The screening and full-

text review were performed using the web-based application Rayyan

(Rayyan Systems Inc.).

2.4 Data extraction and synthesis

Included studies were stored in the citation-manager Zotero (Version

6.0.23; Corporation for Digital Scholarship) and data were extracted
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by two independent reviewers (J.T. and J.W.) using a standardized form

in Excel (Version 16.66.1; Microsoft Corp). Data were cross-checked

after both independent reviewers extracted thedata, andanydisagree-

ments regarding extracted values were resolved through discussion.

Variables extracted included title, authors, publication year, country

of training dataset origin, study type (original research or conference

abstract), studydesign (retrospective or prospective), total sample size,

data source, validation method (if performed), comparator to AI (if

used), age demographic of population, mechanism of injury (blunt or

penetrating), AI branch (ie, DL, ML, and NLP), AI algorithm (ie, logistic

regression, and random forest), and feature types used (ie, heart rate

[HR] and age). Total sample size was defined as the sum of both the

training data set, and test and/or external validation data sets. Com-

parators to AI models were defined as any benchmark of performance

including existing decision tools or human experts. Age demographics

were broadly stratified into adult, pediatric, geriatric, or all ages based

on age cut-offs as defined in each study. Feature inputs were extracted

and categorized into general classes; for example, if a study described

their feature input as “initial HR,” “temporal HR variation,” and “HR

variability,” these were all grouped under HR.

Outcome(s) of included studieswere also extracted and two investi-

gators (J.T. and J.W.) categorized these into broad groups. Studies with

multiple outcomes were categorized into all appropriate groups. All

study categories are described in Figure 4. Studies predicting triage

category and injury severity were combined into a single group given

that any attempt to stratify injury severity in the prehospital set-

ting represents triage. Studies predicting the need for critical care

and life-saving interventions were combined into a single group given

that these actions are interdependent. Life-saving interventions were

defined differently in each study and generally included one or more

of the following: angioembolization, blood transfusion, cardioversion,

cardiopulmonary resuscitation, cricothyrotomy, endotracheal intuba-

tion, needle decompression, pericardiocentesis, thoracotomy, tourni-

quet application, and tube thoracostomy. Studies solely predicting the

need for any blood transfusion or massive transfusion were placed in a

separate category.

Additional information was extracted to understand the number of

studies with relevance to specific trauma and EMS sub-topics. These

included 9-1-1 dispatch, mass casualty incidents, military involvement

or sponsorship, and traumatic brain injury.

2.5 Data analysis

We calculated Cohen’s kappa for interrater reliability after title and

abstract screening and descriptive statistics, including frequency and

percentages, for extracted variables.

3 RESULTS

We identified a total of 1050 unique studies (Figure 1). After the title

and abstract review (kappa 0.58), 108 studies underwent full review;

after full-text review, 49 studies remained. Published studies increased

annually from two in 2007 to 10 in 2022 (Figure 2A). Geographic anal-

ysis of the dataset country of origin found 18 countries represented

and one study by Lammers et al. utilized combat registry data from

an unspecified location16; 30 (61%) studies used data from the United

States, seven (14%) from Europe, and five (10%) from Asia (Figure 2B).

One study by Larsson et al. used data from both the United States and

Sweden.17

Complete descriptive statistics are shown in Table 1. Of the 49

studies, most were retrospective (n = 43, 88%). The median sam-

ple size for retrospective and prospective studies was 9,447 subjects

(interquartile range [IQR] 903, 54,292) and 32 subjects (IQR 17,

47), respectively. Many studies focused only on adults (n = 29, 59%)

or did not specify a specific age demographic (n = 13, 27%); three

(6%) focused on pediatric18–20 and two (4%) focused on geriatric21,22

populations. The majority focused on patients with both blunt and

penetrating mechanisms of injury (n = 28, 57%). Data were primar-

ily from local EMS providers or hospitals (n = 22, 45%) or from

national registries (n = 20, 41%); the most common national registries

were the ACS-Trauma Quality Improvement Program, ACS-National

Trauma Data Bank (NTBD), and National Automotive Sampling Survey

Crashworthiness Data Systems.

Forty-eight (98%) studies developed and/or validated an AI

model(s); 38 (78%) performed internal validation via hold-outmethods

(ie, splitting the dataset into a training and test set) or cross-validation

and 10 (20%) carried out external validation. Ting et al performed

a study using principle component analysis to identify high value

features and as such, validation does not apply to this study.18 Many AI

models used ML (n = 41) only or in combination with DL and/or NLP;

four used DL alone, three used NLP alone, and one did not specify.

Among the 41 models using ML, the top five algorithms used were

support vector machine (n = 17, 41%), logistic regression (n = 16,

39%), random forest (n = 16, 39%), extreme gradient boosting (n = 7,

17%), and k-nearest neighbor (n = 7, 17%). The top five most common

features selected asmodel inputs were systolic blood pressure (n= 25,

60%), HR (n = 23, 56%), age (n = 21, 51%), GCS (n = 21, 51%), and

respiratory rate (n = 19, 46%) (Figure 3). Three studies utilized multi-

dimensional vital sign parameter data (ie, patterns of variability and

time-series).9–11

The different study outcomes are displayed in Figure 4. Four-

teen (29%) predicted the need for critical care and life-saving

interventions, of which five predicted the need for any life-saving

interventions,19,23–26 four predicted theneed for any critical care,27–31

one focusedonprehospital airwaymanagement,32 one focusedonhos-

pital mechanical ventilation,29 one predicted intra-abdominal injuries

requiring surgical intervention,20 one predicted traumatic brain injury

requiring neurosurgical intervention,33 and one predicted any surgical

procedures including orthopedic surgeries.21

Eleven studies (22%) predicted patient triage categories and

injury severity. Among these, six were focused on injury sever-

ity prediction18,22,31,34–36 and five were focused on triage category

prediction.17,19,37–39 While themajority of thesemodels used features

collectedbyEMSclinicians (ie, demographic andphysiologic data), Chin
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F IGURE 1 Flow diagram.

et al usedNLP to carry out textmining fromdispatcher audio to predict

the need for prehospital major trauma activation37 and Lu et al utilized

images of victims collected from an unmanned aerial drone to predict

injuries after a simulatedmass casualty event.39

Ten studies (20%) predicted survival outcomes. Six predicted in-

hospital survival outcomes,18,27,35,40–42 two predicted survival at

ED discharge,43,44 and Taamneh and Taamneh predicted survival at

30 days.31 One study did not specify a time period for survival

prediction.45 Finally, seven studies (14%) predicted the presence of

traumatic hemorrhage requiring transfusion. Five predicted the need

for transfusion of at least one unit of blood products,9–11,46,47 while

two predicted the need for massive transfusion.16,26

4 LIMITATIONS

The following limitations should be considered. First, the search did

not encompass databases including those specific to nursing and allied

health professionals, engineering, and computer science. Citations of

included articles were also not reviewed for additional studies not

located in the primary search. However, we feel that our initial search

across three databases was comprehensive enough to have identified

most of all relevant publications. Second, this study did not include

gray literature, which may be important given that the study of AI is

an emerging field; however, we suspect that the risk of missing impor-

tant non-peer reviewed publications evaluating AI models to support

trauma care is small. Third, this review excluded AI models which uti-

lized feature inputs that were obtained during the ED course including

laboratory values. Nonetheless, some more advanced EMS systems

may have field-based point-of-care testing or other advanced capabil-

ities, and as such, the results of this review may not be representative

of those systems. Lastly, only studies written in English were included,

whichmay have resulted in bias.

5 DISCUSSION

This scoping review identified a small but growing number of heteroge-

nous studies evaluating the utilization of AI as decision-support for

dispatchers, EMS clinicians, and trauma teams during the early phases

of traumatic injury care. The dramatic 500% increase in annual publi-

cations during the study period aligns with advancements such as the

digitalization of prehospital patient care reports, wider access to large

trauma registries, and an emerging global interest in AI healthcare

decision-support.48 The studies we identified evaluated information

captured fromall stages of prehospital care fromdispatch toEDarrival.

Predictions generated from this early and critical care period have

the potential to impact decisions in both prehospital and hospital set-

tings, and reduce trauma patient morbidity and mortality.49 To our

knowledge, this is the first scoping review to comprehensively ana-

lyze the breadth of studies assessing AI-based primarily on prehospital

information and aimed at supporting early traumatic injury care.

EMS clinicians are challenged by a multitude of factors when deliv-

ering effective field trauma care. Out-of-hospital challenges include an

information- and personnel-limited environment and situational ele-

ments such as badweather, low lighting, andpoor ergonomics. All these

may influence EMS clinician care delivery and intensify cognitive bur-

den. In trauma care, AI has the potential to decrease inter-provider

decision-variability and improve decision accuracy. In an ideal set-

ting, prehospital information (ie, vital signs) would be automatically
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F IGURE 2 (A) Study Publications between 2007 and 2023. Data for the year 2023was included up to August 2023. (B) Country of dataset
origin.

collected and an autonomous algorithmwould then suggest delivery of

life-saving interventions, provide alerts about imminent decompensa-

tion, or give destination recommendations. All predictions would auto-

matically be updated as additional information is available. Integrating

AI decision-support with EMS clinician training and experience could

drive improvements in care quality and patient outcomes. Nonethe-

less, it is critically important that available AI decision-support tools,

including those that become commercially available, are supported by

published research prior to routine use.

The time-sensitive need for critical interventions in trauma care

necessitates rapid decision-making; it is thus unsurprising that most AI

in this review focused on predicting triage categories and the need for
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F IGURE 3 Top fivemost common features. GCS, GlasgowComa Scale; HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure.

F IGURE 4 Categorization of study objectives for included studies. Some studies may have hadmore than one study objective.

life-saving interventions. Larsson et al. used the NTBD and SweTrau

(a National Swedish Trauma Registry) to develop ML which predicted

over- and under-triage rates based on similar parameters.17 While ML

demonstrated appropriate over-triage rates at 32%, an under-triage

rate of 31% far exceeded the 5% cutoff recommended by the ACS

Committee on Trauma.50 Among studies identifying patients who may

require critical care and life-saving interventions, Kang et al performed

the largest usingKorean traumadata todevelopandexternally validate

a DL model which predicted intensive care unit admission with high

predictive performance.30 Models predicting the need for critical care

and surgical intervention could better inform trauma teams and hospi-

tal resource mobilization as well as indicate cases that would benefit

from online medical direction (ie, remote consultation of a physician

or mobile intensive care nurse). These studies underscore the numer-

ous potential implementations of AI to support clinicians early in the

continuum of trauma care.
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TABLE 1 Descriptive statistics (n= 49).

Characteristic Frequency Percentage

Type

Conference abstracts 11 22

Original research 38 78

Study design

Retrospective 43 88

Prospective 6 12

Population

Adult 29 59

Pediatric 3 6

Geriatric 2 4

All ages 2 4

Not specified 13 27

Mechanism of injury

Blunt 14 29

Penetrating 4 8

Both 28 57

Not applicable 3 6

Focused on traumatic brain injury 5 10

Focused onmass casualty incidents 4 8

Military involvement/sponsorship 7 14

Involved dispatch-level data 4 8

Data source

Local provider/hospital data 22 45

Military registry 1 2

Multi-national registry 1 2

National registry 20 41

Simulation/lab 5 10

Branch of artificial intelligence

DL 9 –

ML 41 –

NLP 6 –

Not specified 1 –

Top 5 classification algorithms

Support vector machine 17 –

Logistic regression 16 –

Random forest 16 –

Extreme gradient boosting 7 –

K-nearest neighbors 7 –

Abbreviations: DL, deep learning; ML, machine learning; NLP, natural

language processing.

Comparing trauma-focused AI models with conventional predic-

tive instruments is essential in validating AI’s capabilities and ensuring

clinical readiness. Three studies compared the Revised Trauma Score

(RTS)51,52 to AI and, in general, AI outperformed the RTS.43–45 Other

studies compared AI to the Trauma Score and Injury Severity Score

(TRISS) or Injury Severity Score (ISS); these scores represent an injury

classification benchmark and neither can be feasibly calculated in the

prehospital setting.53 Four studies compared TRISS and/or ISS to AI

and found that AI performed at least as well.40,41,43,45 Kang et al

compared an AI triage model to the National Early Warning Score

and Emergency Severity Index,30 while Chernbumroong et al. com-

pared a pediatric AI triage model to the Pediatric Triage Tape and

JumpSTART.19 These comparisons represent an initial step toward

understanding the potential impact that AI may have on trauma care

in specific populations.

Additional studies compared AI to human decision-making. Two

studies evaluated the use of AI models at the dispatch level in com-

parison to human-operators.27,37 Chin et al found that AI did not

outperform humans in dispatching the appropriate resources in rou-

tine traumatic injury cases, but had higher accuracy when dispatchers

were less certain of their judgements.37 Spangler et al found that AI

outperformed dispatchers in predicting call priority.27 Outside of dis-

patch, Marsden et al prospectively compared the performance of air

ambulance EMS clinicians versus AI in estimating the risk of trauma-

induced coagulopathy; the AI outperformed clinicians.54 This small

subset of studies support the notion that AI may support complex clin-

ical decision-making for both experienced and non-experienced EMS

clinicians alike.

When developing trauma-focused models, selection of the number

and set of features using AI has demonstrated advantages. ML and

DL algorithms have the capability to automatically identify and extract

important features from large,multidimensional databaseswithout the

need for explicit human programming. Ting et al utilized principal com-

ponent analysis, a technique used to reduce dimensionality in large

data sets and identify key variables, and found that prehospital GCS

and RTS were most correlated with trauma injury severity, length of

stay, and mortality.18 Other investigators utilized ML algorithms, such

as random forest or gradient boosting, to automatically assess feature

importance in a dataset.12,21,25,27,29,32,33,35,38,42–44,47,55 Studies have

also found that increasing the number of features did not significantly

improvemodel performance.12,34 Abe et al used Japanese trauma data

topredicted traumatic intracranial hemorrhageand found that a reduc-

tion from 18 to five features showed similar performance.12 Through

careful feature selection, this reduces the chance of overfitting that

occurs when amodel is trained to predict training data toowell but has

poor performance on external data.Whendevelopingmodels, use of AI

to support appropriate feature selection will enable timely, accurate,

and actionable prehospital predictions while limiting the possibility of

missing data from the prehospital setting.

Finally, this review identified gaps in current literature includ-

ing a lack of externally validated models, prospective investigations,

and pediatric-focused studies. External validation, which may be con-

ducted retrospectively or prospectively, andprospective investigations

are crucial to evaluate for generalizability and overfitting. In this

review, only six small prospective studies were identified, nearly all of

which were simulation studies.39,54,56–59 Only 11 studies conducted

external validation.8,19,27,40,42,44,55,60–62 Further, only three studies

focused specifically on pediatrics.18–20 Detection of decompensation
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in pediatrics is often more difficult due to increased compensatory

reserves and by environmental stressors (ie, emotional parents and

non-accidental trauma) that may cloud clinician judgment. As such,

real-time AI decision-support in pediatric trauma care represents an

area that is ripe for innovation. Unfortunately, a lack of large pediatric

focus trauma databases has likely hindered development. Identifying

these gaps not only directs future research efforts but also underlines

the urgency for developing future AI models tailored for pediatric and

other specialized trauma care needs.

6 CONCLUSION

A small but growing body of literature exists describing AI using pre-

hospital features to make predictions that may support dispatchers,

EMS clinicians, and trauma teams in early traumatic injury care. The

studyoutcomes identified in this reviewwereheterogeneous; themost

common models aimed to predict the need for critical care and life-

saving interventions, assist in triage and injury severity classification,

andpredict survival. Additionally, therewas a lack of prospective inves-

tigations andpediatric-focused studies.While the results of this review

demonstrate the potential of AI to support early traumatic injury care,

there is significant opportunity for future investigations to standard-

ize outcomeprediction, externally validatemodels, and understand the

barriers associated with real-time implementation.
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