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STAT1 belongs to the STAT family of transcription factors, which comprises seven factors: STAT1, STAT2,
STAT3, STAT4, STAT5A, STAT5B and STAT6. STATT1 is a 91 kDa protein originally identified as the mediator of
the cellular response to interferon (IFN) «, and thereafter found to be a major component of the cellular
response to IFNYy. STAT1 is, in fact, involved in the response to several cytokines and to growth factors. It is
activated by cytokine receptors via kinases of the JAK family. STAT1 becomes phosphorylated and forms
a dimer which enters the nucleus and triggers the transcription of its targets. Although not lethal at birth,
selective gene deletion of STAT1 in mice leads to rapid death from severe infections, demonstrating its
major role in the response to pathogens. Similarly, in humans who do not express STAT], there is a lack of
resistance to pathogens leading to premature death. This indicates a key, non-redundant function of STAT1
in the defence against pathogens. Thus, to successfully infect organisms, bacterial, viral or parasitic
pathogens must overcome the activity of STAT1, and almost all the steps of this pathway can be blocked
or inhibited by proteins produced in infected cells. Interestingly, some pathogens, like the oncogenic
Epstein—Barr virus, have evolved a strategy which uses STAT1 activation.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Activation of STAT1
1.1. Molecular structure of STAT1

STAT1 was initially identified as an interferon o, (IFNa) mediator
[1,2], and thereafter found to be a major component of the cellular
response to IFNy. STAT1 belongs to a family of transcription factors
comprising STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6
[3,4]. The transcript of STAT1 undergoes alternative splicing,
resulting in two isoforms: STAT1a (91 kDa) and STAT1p (84 kDa)
[5]. The o isoform possesses a complete transactivation domain
(TAD) and two major phosphorylated sites: tyrosine 701 and serine
727. The B isoform is shorter and lacks most of the TAD, including
serine 727; both isoforms contain an SH2 domain, a DNA-binding
domain (DBD) and an N-terminal domain. Diffraction studies
show STAT1 crystals dimers forming through interaction of the
phosphotyrosine 701 and the SH2 domain (Fig. 1).
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1.2. Stimuli that activate STAT1

STATT1 is an essential effector of IFNs. Following activation of the
IFNY receptor, its two subunits, IFNGR1 and IFNGR2 which are iso-
lated in the absence of stimulation [6—8] become assembled [9,10].
The two JAK family kinases, JAK1 and JAK2, which are constitutively
bound to the inactive chains of the receptor, become activated,
resulting in the autophosphorylation of JAK2, which in turn phos-
phorylates JAK1. The two kinases then phosphorylate the IFNR
subunits, forming STAT1 binding sites [11]. STAT1 binds via its SH2
domain [12] and is phosphorylated on tyrosine 701 [13,14] (Fig. 2A).
The activation of STAT1 following IFNa triggering is somewhat
different. The subunit IFNAR2 of the IFNaR forms a complex with
TYK2 and STAT2 in the absence of stimulation by IFNa, and the
subunit IFNART is associated to JAK1 [15,16]. Following interaction of
IFNa with the two subunits of its receptor [17,18], JAK1 and TYK2 do
not autophosphorylate, but instead phosphorylate one another [19],
and subsequently phosphorylate both IFNAR1 and IFNAR2 [20], as
well as the tyrosine 690 of STAT2 to which STAT1 binds through its
SH2 domain, and STAT1 on tyrosine 701. The phosphorylated STAT1/
STAT2 dimer is then released from the IFNAR2 chain (Fig. 2B). STAT1
is also activated in response to several interleukins, including IL2 and
IL6 (see Table 1 and references [21—24]); and in response to growth
factors including EGF and PDGF (see Table 1 and reference [21]).
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Fig. 1. Molecular structure and ribbon model of the STAT1 dimer. A: Schematic molecular organization of STAT1¢. and STAT1p. B: 3D structure of STAT1 (residues 135—712) (from
reference [56]). C. Schematic rendering of the STAT1 dimer in its phosphorylated form showing the SH2 domains interacting with tyrosine 701 (Y—P) the DNA-binding domain
(DBD) interacting with DNA and the cup-and-ball-like N-terminal domain (adapted from reference [83]).

Oncostatin M and growth hormone also activate STAT1: this occurs
through activation of JAK2 which binds to signaling proteins such as
Grb2, Ras or Raf [25—27]. Other factors such as angiotensin II [28],
HGF [29] and TNF [30] activate STAT1. However, they appear to do so
without inducing its nuclear translocation nor activating its DNA-
binding, suggesting cytoplasmic functions for STAT1.

1.3. Phosphorylation of tyrosine 701, serine 727,
and of other residues

The phosphorylation on tyrosine 701 that follows the activation
of JAK1 and JAK2 by the IFNyR or the activation of JAK1 and TYK2 by
IFNaR is necessary for dimerisation [13]. However, if leucine 706 is
replaced by a serine, phosphorylation on tyrosine 701 is no longer
detectable following treatment of the cells with IFNy. STAT1 retains
nonetheless the capacity to dimerise and to form gamma inter-
feron-activated (GAF) complexes [31], possibly through interaction
of the N-terminal domains [32] (Figs. 1 and 3).

Several different kinases phosphorylate serine 727, including
ERK 1/2 following IFNy stimulation [33,34], p38a following IFNYy
[35,36], LPS [36,37], UV [36] and BCR stimulation [38], calmodulin
kinase II (CaMKII) following IFNy [39] or BCR stimulation [38], and
PKCd following IFNe. [40] or IFNy stimulation [41] (see Table 2).
The mechanisms leading to serine 727 phosphorylation are yet to
be elucidated. For instance, while PKC3 can phosphorylate STAT1
on serine 727 in response to stimulation by type II or type I IFNs
[40,41], serine 727 phosphorylation is unchanged in PKC3-deficient
macrophages [42]. In addition, under certain conditions of stimu-
lation such as the addition of IFNy [43], serine 727 phosphorylation
may be entirely dependent on the phosphorylation of tyrosine 701;
while under other conditions, such as UV treatment or lipopoly-
saccharide stimulation [44,45], it is independent of it, suggesting
that different subsets of protein kinases are involved. Interestingly,
adenosine, an immunosuppressive compound, has been found to
inhibit serine 727 phosphorylation [46].

Although on serine 727, phosphorylation is not required for the
full activation of STAT1 [47], it seems to be required for certain
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Fig. 2. Mechanisms of activation of STAT1 in the cytoplasm following interferon receptor activation. A. Phosphorylation of STAT1 on tyrosine (Y) 701 by JAK1 and JAK2 following
IFNy stimulation. B. Phosphorylation of STAT1 on tyrosine (Y) 701 by JAK1 and TYK2 following stimulation by IFNa.

target genes such as Mx (myxovirus), IRF1 or CBP [42]. Interestingly,
mice expressing STAT1 with a S727L mutation were extremely
sensitive to bacterial infection and had strongly reduced expression
of IFNy gene targets [48]. The phosphorylation of serine 727 in
response to IFNy is also dependent on the conserved leucine 724
residue [49]. The function of other known phosphorylated sites of
STAT1 has not been completely elucidated. For instance, serine 708
phosphorylation following activation of the IkB Kinase ¢ (IKKe) by
INFa. [50] (Table 2). There may be a hierarchy between the

Table 1
STAT1 activators.
IFNs IFNo, IFN et IFNw (omega) [322]
IFNy [323]
IFN) (lambda) [324]
ILs IL2, IL3, IL6, IL9—-IL12, IL15, IL17, IL22 [21]
.21 [22]
1L26 [23]
IL27 [24]
FCs EGF (epidermal growth factor) [21]

VEGF (vascular endothelial growth factor)
FGF (fibroblaste growth factor)
HGF (hepatocyte growth factor)

Hs GH (growth hormone), Angiotensine, Oncostatine M (OSM) [21]

phosphorylation sites of STAT1, but probably due to the many
effectors involved, it is not currently understood.

1.4. Other mechanisms of activation

Acetylation and methylation are also involved in STAT1 acti-
vation. Direct methylation of STAT1 on arginine 31 by methyl-
transferase PRMT1 (protein R (R for arginine) methyltransferase 1)
was suggested [51] but subsequently questionned [52,53]. Recent
work showed that it is the inactivator of STAT1, PIAS1 (protein
inhibitor of STAT1-1), which is methylated by PRMT1, leading
to increased affinity of STAT1 for its DNA targets [54]. Acetylation
of STAT1 on leucine favors tyrosine 701 dephosphorylation
(see: [55]).

1.5. Other conformations of STAT1

There are other configurations of the STAT1 dimer which may
not depend on phosphorylation. Dimers of STAT1 can form from
both phosphorylated and unphosphorylated STAT1 [56,57]. In the
case of unphosphorylated STAT1, the SH2 domains do not partici-
pate in dimerisation [57]: they are positioned at opposite ends of
the dimer, whose conformation involves the interaction of the N-
terminal domains, the coiled-coil domain and the DBD, resulting in
an antiparallel conformation [57] (Fig. 3). The role of the N-terminal
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Fig. 3. Speculative model for the mechanism of STAT1 activation. Unphosphorylated dimers can form (left side of figure) by interaction of the N-terminal ends (marked N). When
phosphorylated, the dimers form by interaction of SH2 domains with phosphotyrosine 701 (P-Y-701). Tetramers can also form by interaction of the N-terminal ends of the

phosphorylated dimers, in two different conformations (adapted from reference [59]).

domain is probably important, although still unclear as its crystal
structure is only partially elucidated due to its mobility. It is
thought to play a regulatory role by allowing the formation of
antiparallel dimers, thereby exposing tyrosine and facilitating its

Table 2
Stimuli and kinases involved in the phosphorylation of serine 727 of STAT1.
Kinase Stimulus Ref.
ERK1/2 IFNy [33,34]
P38a. IFNy [35]
LPS [37]
UV, LPS, IFNy [36]
BCR [38]
CAMKII IFNy [39]
BCR [38]
PKCd IFNo [40]
IFNy [41]

dephosphorylation [58]. In fact, a recent study suggests a regulatory
role for the equilibrium between phosphorylated and unphos-
phorylated STAT1 dimers, this equilibrium is tilted toward parallel
dimers by tyrosine phosphorylation [59]. One of the questions that
still remains unanswered is the real nature of the functional unit
formed by STAT1, including associated proteins.

2. Nucleo-cytoplasmic shuttling of STAT1

STAT1 is activated within the cytoplasm, and exerts its
known biological function as a transcription factor in the nucleus.
Activated STAT1 is transferred from the cytoplasm to the nucleus,
and once released from its targets, returns to the cytoplasm. Several
studies have shown that this process is complex and involves
a combination of active transfer requiring specialised transfer
proteins, and passive transfer, including transfer of non activated
STAT1 molecules.
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2.1. Nuclear import

Following IFNa- or IFNy stimulation, STAT1 becomes nuclear
within minutes. It interacts with protein complexes (pore targeting
complexes, PTACs) [60], comprising importin ¢ and B (or kar-
yopherin o and B) [61,62] which interact with the NLS (nuclear
localisation sequence) [63]. The NLS of STAT1 is dimer-specific
[64—66], it comprises an arginine/lysine rich motif (R378, K379,
K410, K413 and R418) that is located within the DBD of STAT1 [67] in
which residue K413 is essential [64]. Residue L407 [65], and the
N-terminal domain [68] are also essential, suggesting an important
role for spatial conformation in nuclear translocation. Nuclear
accumulation of STAT1 requires intact SH2 and tyrosine 701, and
its driving force is the binding to DNA which prevents tyrosine
dephosphorylation [69,70]; tyrosine dephosphorylation of STAT1
appears to take place within the nucleus and to be required for
STAT1's return to the cytoplasm [71,72] (Fig. 4). However, STAT1 also
undergoes a signal-independent constitutive nucleo-cytoplasmic
shuttling whose mechanism is still unclear [66,73]. Interestingly,
under certain conditions of stimulation such as angiotensin II [74],
TNF-o. [30] or HGF [29], phosphorylated STAT1 dimers were
found to be unable to enter the nucleus and bind DNA suggesting
that some forms of STAT1 may have a stricktly cytoplasmic function.
Thus, while it is clear that tyrosine 701 phosphorylation and
dimerisation of STAT1 are key processes for the nuclear localisation
of STAT1, there are mechanisms that are independent of the
formation of dimers, but which are not clearly identified. Moreover,
functions of STAT1 within the cytoplasm are probable, as was
shown for STAT3, which, in its unphosphorylated form, binds NF-kB
and activates a subset of kB-dependent genes [75].

receptor

~ Cytoplasm ™

phosphorylation

T - SEm()

Fig. 4. Nucleo-cytoplasmic shuttling of STAT1. STAT1 becomes phosphorylated on
tyrosine 701 in the cytoplasm and enters the nucleus by interaction of its dimer-
specific NLS with importin «/f. Phosphorylated STAT1 interacts with its DNA targets;
when released from DNA, STAT1 is dephosphorylated and can return to the cytoplasm
involving interaction of the NES with CRM1. There is also a constitutive nucleo-
cytoplasmic shuttle of unphosphorylated STAT1. (Adapted from [69]).

2.2. Nuclear export

STAT1 contains an NES (nuclear export sequence) located
between residues 392 to 413, within the DBD [65]. This sequence
interacts with exportin-1 (or CRM1) an essential component of the
export of high molecular weight molecules to the cytoplasm [76,77].
Nuclear export by exportin-1 requires that it interacts with the
component Ran-GTP [78,79]. The nuclear export of STAT1 requires
its dephosphorylation on tyrosine 701, an event which occurs once
STATT1 is released from its DNA target [69] (Fig. 4). However, nuclear
export of STAT1 appears to be also mediated by other molecules
than exportin-1. Comparative analysis of the nuclear shuttling of
the o and the B isoforms also revealed interesting differences
between both isoforms [80].

2.3. Constitutive nucleo-cytoplasmic shuttling
of non activated STAT1

In unstimulated cells, STAT1 is detectable both in the cytoplasm
and the nucleus, where it forms unphosphorylated dimers [81]
(see Fig. 4). As mentioned above, unphosphorylated dimers have
two possible conformations, an antiparallel conformation in which
the CC domain of one monomer interacts with the DBD of the other
monomer, and a parallel conformation [82,83]. Nevertheless, active
monomeric forms of STAT1 may exist.

3. STAT1 in transcription
3.1. Binding of STAT1 to its gene targets

The recognition sequence of STAT1 is an 8—10 base-pair sequence
with the STAT-consensus TTN4_gAA. Two STAT1-specific consensus
sequences have been identified, the GAS (Gamma interferon Acti-
vated Sequence), and the ISRE (Interferon Stimulated Response
Element). They bind STAT1, as shown by EMSA (Electrophoretic
Mobility Shift Assay), Chip (Chromatin Immuno-Precipitation) and
reporter assays. The GAS sequence consists in a palindromic
sequence (see Table 3) which interacts mostly with the GAF complex
(see above, and Fig. 5) [84]. Some promoters, such as those of IFNy
[85] and MIG1 (monokine inducer by gamma 1) [86] contain tandem
GAS sequences with which STAT1 homodimers interact via their
N-terminal domain, an interaction which apparently stabilises the
complex and increases the expression of the target gene [85,87].
The ISRE sequence is composed of repeats of the motif 5'-TTTC-3’ or
its complement 5'-GAAA-3’ (underlined in Table 3) separated by one
or two nucleotides [88]. In the case of the promoter of the ISG-15
gene, IRF9 binds the ISRE sequence and interacts with STAT1, which
binds the neighbouring half GAS site (highlighted in bold in Table 3),
thus stabilizing the complex [89]. Such a combination of consensus
motifs is also found in the promoter of the GBP gene, which contains
partially overlapping contiguous GAS and ISRE sites (see Table 3)
[90]. Both motifs are required for the induction of GBP by IFNa. Their

Table 3
STAT1 binding sequences.
Sequence Name Interactor Ref.
5-TTCNNNT/GAA-3’ consensus GAS GAF [84]
5’-CGTCATTTCCCCGAAATCAG-3’ IRF1 GAS STAT1
AGTTTCNNTTTCNC/T consensus ISRE ISGF-3 [88]
- T (STAT1/STAT2/IRF9)
5'-CTCGGGAAAGGGAAAC ISG-15 ISRE IRF9 STAT1 [325]
CGAAACTGAAGCC-3’
5'-AAGTACTITCAGTTTCATATT  GBP GAS IRSE [90]

ACTCTAAATC-3'

5-GGAAAAGAGAAGAGAAAGT-3’ unusual ISRE  IRF1 [93,94]
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Fig. 5. Transcriptional complexes formed with STAT1 following treatment with IFNo
and IFNYy. There are two major complexes: the ISGF-3 complex comprising STAT1, IRF9
and STAT2 which binds the ISRE DNA motif, and the GAF complex comprising a STAT1
homodimer which binds the GAS DNA motif.

combination may facilitate the induction of GBP by IFNs type I and
Il [91,92]. Other ISRE motifs (unusual ISRE) comprise 5'-TTTC-3’
sequences separated by nucleotides, and are also recognised by
factors of the IRF family [93,94], such as the Sp100 gene, a target of
IRF1 (see Table 3).

Given that the different STATs have very different functions in
cells, the similarity between their DNA target sequences [95] is
intriguing. For instance, STAT1 and STAT3 share 72% homology in
protein sequence and recognise very similar, if not sometimes
identical, consensus sequences on their target genes [95]. Yet, STAT1
is mostly an inhibitor of proliferation and promoter of cell death, and
STAT3 is mostly involved in cell survival and proliferation. Further-
more, in STAT3-depleted cells, STAT1 was found to loose its ability
to induce some targets but not others [96], suggesting a complex
coordination of these two STATs, as previously discussed [97].
Identification of the genuine STAT-binding sequences within IFN-
treated cells using whole genome analysis such as CHIP (Chromatin
Immuno-precipitation) or CHIP—chip (CHIP combined with micro-
array), although still technically challenging, has started to reveal
STAT1's chromosomal targets [98,99] and suggests that multiple
mechanisms direct STAT1 binding to its targets under different
activation conditions [98].

3.2. Components of the transcriptional complex

Once in the nucleus, the phosphorylated and dimerised STAT1
needs to interact with other components to induce transcription. The
required co-factors include Nmi-1 (N-myc interacting protein 1),
CBP/p300 (for CREB (cyclic AMP Response Element) Binding protein)
MCM-5 (minichromosome maintenance 5) and BRCA-1 (BReast
CAncer susceptibility gene-1) [100]. MCM-5 is a helicase with an
ATPase activity involved in DNA replication, which binds the STAT1a.
isoform and increases its transcriptional activity [101,102]. CBP/p300
is a histone acetyltransferase involved in chromatin remodeling,
which binds both the C-terminal and the N-terminal regions of STAT1
[103]. This interaction is mediated by the phosphorylated serine 727
and the adjacent leucine 724, the latter being required for the binding
of the STAT1 complex to RNA polymerase [49]. Interestingly, the CBP/
p300 is in limiting amounts in the nucleus and the different tran-
scription factors compete for it. CBP/p300 can form complexes with
STAT1 without directly interacting with it, as in the ISGF-3 complex in
which CBP/p300 interacts with STAT2, but not STAT1 [104]. Although
it binds the same target sequences as the o isoform, the § isoform of

STAT1 has not been reported to interact with CBP/p300. If such an
interaction did occur, it would involve only the N-terminal domain of
STAT1p and might not be functional.

3.3. Transcriptional activity of STAT1

The regulation of gene expression by STAT1 varies with the
target and the cellular context. It can be direct or indirect, and it can
be an activation or an inhibition. In cellular systems in which STAT1
is activated, the expression of many genes is induced, including
CXCL9 (or Migl) [105], p21waf1/cip1 [106—108], ifi205 [33], and
Hsp70[109,110]. STAT1 also stimulates the transcription of genes in
cooperation with other transcription factors such as NF-kB [111], as
observed for IP10 (induced protein 10) [112] and ICAM1 (intracel-
lular adhesion molecule 1) [113,114]; STAT1 also cooperates with
Sp1 [115] for the induction of several genes including IRF1 [116].
The cooperation of STAT1 with other transcription factors varies
with the cellular system. In monocytes STAT1 cooperates with PU.1
in the induction of the FcyR1 (Fc gamma Receptor 1) [117], and in
differentiating myeloid cells STAT1 cooperates with IRF1 and PU.1
for the induction of the gene Phox [118]. In these systems, a basal
level of STAT1 may be required since its presence in the complex is
required for CBP/p300 to associate to the transcriptional complex
[119,120]. STAT1 can also inhibit the transcription of genes such as
cyclin A [121-123], c-myc [124], MMP-9 [125], Bcl2 and BclxL [126].
Even when it is not phosphorylated, STAT1 can induce the consti-
tutive expression of a subset of genes involved in immune regula-
tion [127], in particular LMP2 (low molecular mass polypeptide 2),
TAP1 (transporter associated with antigen processing 1) [128,129]
and procaspase 3 [130] (Fig. 6). However, STAT1f, which has
a truncated TAD, is apparently unable to promote transcription
despite its ability to bind the promoter regions of IRF1 [131], LMP2,
TAP1 [128] and Fas [35]. It has been suggested that induction of
transcription by STAT1f can take place with plasmid-encoded

T lymphocyte
/

A O peptide antigen

cytoplasm

TAP 3 =
= r—
MHC-I
CTIIA CTIIA =

LMP2 ‘nucleus

Fig. 6. Components of antigen presentation by CMH1 whose expression is modulated
by STAT1a. The figure depicts the antigen presenting machinery; the identified STAT1
targets are highlighted in bold.
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promoters but not with cellular promoters because its lack of TAD
impairs chromatin remodeling [101].

4. STAT1 as an inhibitor of infection and of proliferation

STAT1 regulates the immune system, cell differentiation,
tumour suppression, cell growth inhibition and apoptosis.

4.1. Stimulation of the immune system

STAT1 plays an essential role in the immune response to viruses
[132—134], bacteria [31,134—136] and parasites [137,138]. STAT1-
deficient mice die mainly of viral infection after less than 8 weeks
[42,134,139]. In humans, high sensitivity to mycobacterial infection
has been found to be associated with mutations in STAT1 that
interfere with its functions [31,140,141], and high sensitivity to viral
diseases has been shown to be associated with mutations in the
STAT1 gene resulting in the complete absence of the protein [133].
Thus, reduced activity of STAT1 is associated with susceptibility to
infectious diseases. STAT1 is involved in all the steps of the pro-
cessing and the presentation of antigenic peptides by the major
histocompatibility complexes (MHC) I and II, including the expres-
sion of the proteasome subunits LMP2 [128] and LMP7, TAP1 [129],
and indirectly the MHC-I and MHC-II through activation of CIITA
(class II transactivator) [142] (see Fig. 6). In mice, STAT1 regulates
the expression of immunoglobulins: in its absence, circulating IgE
increases [143]. STAT1 is also necessary for class switching, an
early step of B cell maturation which is induced by IL27 [24]: IgM-to-
IgG2A class switching is abolished in the absence of STAT1[24].
STAT1 also plays an essential role in the production of IgG2A
following BCR stimulation [38,144]. STAT1 directly induces the
expression of the protein T-bet [ 144] which itself activates the class
switching of immunoglobulins [ 145] (Fig. 7). There are no studies on
the implication of STAT1 in the class switching of immunoglobulins
in humans. Recently, the expression of surface IgG was found absent
in cells from STAT1-deficient patients [326].

4.2. Inhibition of cell growth

IFNo. and IFNy require STAT1 to exert their negative action on
proliferation [146]. This is also true of retinoic acid [123]. Interestingly,
in systems in which EGF negatively regulates proliferation,
the activation of STAT1 is observed, and its expression is required
[147,148]. Active cyclin/CDK complexes are required, and in sufficient
amount, for the G1/S and the G2/M transitions to occur normally [149].
Inhibition of cell growth by STAT1 occurs mainly through the

v

IgM > 12G2a
Class switching

Fig. 7. Mechanism of the modulation of IgM to IgG2A class switching in mice by STAT1.
In mice, the class switching of Ig is under the control of STAT1 through its target T-bet.

regulation of genes involved in cell cycle control: two CDKs (Cyclin
Dependent Kinase) inhibitors, p21wafl and p27kip1, which associate
to CDKs and inhibit their kinase activity [150] are induced by STAT1
[123,148,151,152]; and cyclin A [122,123], and cyclins B, D2, D3 and E
[123] are repressed. STATT1 is also responsible for the inhibition of the
expression of c-myc [124,153]. As c-myc represses the expression of
p21wafl, this further enhances cell cycle arrest.

4.3. Regulation of cell death

STAT1 induces the expression of procaspases, the latent forms
of the caspases which are proteases that transmit the apoptotic
pathway in the cytoplasm by sequential cleavage in response to
external or internal stimuli. STAT1 was shown to constitutively
induce the expression of the procaspases —1, —3 and —11; —1 and
—11 are required for the subsequent cleavage of procaspases —3
and —8 in murine lymphocytes [154,155]. STAT1 also induces the
expression of procaspases in response to external stimuli: the
expression of procaspase-3 in response to TNF-o, requires STAT1
[130], and IFNY, EGF, 7-ketocholesterol and thrombin have been
shown to induce the expression of procaspases in a STAT1-depen-
dent manner but with considerable variation according to the
stimuli reaching cells. STAT1 also mediates cell death induced by
[L21 in mantle cell lymphoma [156] (see Table 1). Procaspases genes
are not the only proapoptotic genes that are induced by STAT1.
The Fas gene (CD95/AP0O-1) is induced in response to IFNYy in colon
adenocarcinoma cells [157,158], in microglial cells [159] and in
fibroblasts [158]. In cardiac muscle cells, the ischaemia/reperfusion
injury-induced apoptosis is accompanied by activation of STAT1,
which induces the expression of the FasL (Fas ligand) Fas and cas-
pase-1 genes [35,160]. This is inhibited by STAT1 anti-sense RNA.
In addition, in this system, the activation of STAT1 leads to the
inhibition of the promoters of the anti-apoptotic proteins Bcl2
and Bcl-X [126]. In multiple myeloma cells treated with IFNy, the
expression of the TRAIL gene (TNF-related apoptosis inducing
ligand) has been found to increase [161].

A high level of expression of STAT1 stimulates the TNF-a proa-
poptotic pathway. STAT1 has been shown to interact with TRADD,
thereby inhibiting the activation of NF-kB [162], STAT1 competes
with TRAF2, and prevents the formation of the NF-kB activating
complex TRADD/TRAF2/RIP [163]. STAT1 operates at two different
levels to potentiate TNF-a-induced apoptosis: it inhibits NF-kB
signaling [164] and it induces the constitutive expression of pro-
caspase-3, a component which is required for caspase-8-induced
apoptosis [130] (see Fig. 11).

STAT1 also interacts with p53 (Fig. 8), a major regulator of
apoptosis and cell cycle. The transcription factor p53, present at low
basal levels, is induced following hypoxy, nutrient starvation, DNA
damage or activation by oncogenes. Activation of p53 involves
several post-translational modifications including phosphorylation
[165], methylation [166] and acetylation [167]. The phosphoryla-
tion of p53 is a key event of its activation and involves some 15
different kinases [168,169], while ubiquitination by the ubiquitin-
ligase Mdm2 (mouse double minute 2) is a negative regulator [170].
The incidence of spontaneous or chemically induced tumours has
been found to be higher in STAT1/p53 double knock-out mice than
in p53 knock-out mice [171]. In murine embryo fibroblasts (MEF),
apoptosis induced by cytotoxic agents such as cisplatin or doxor-
ubicine requires the expression of a functional STAT1. In these cells,
STAT1 potentiates p53 by increasing its expression through the
repression of the expression of its inhibitor Mdmz2; furthermore,
STAT1 interacts directly with p53 and increases its transcriptional
activity on targets such as Noxa, Bax and Fas [172]. In human
fibroblasts, activation of p53 by DNA damage following Xray
exposure is regulated by STATT1. In this system, STAT1 regulates the



432 1. Najjar, R. Fagard / Biochimie 92 (2010) 425—444

A murine fibroblasts

cisplatin

4 )

()
E proteolysis ps3
P mdm2

O

Yot IJ-

C
o —
” nucleus
45 3E
- Noxa
- Bax
- Fas

B humans fibroblasts

y rays

/

7 nucleus

Fig. 8. Modulation of p53 activity by STAT1a. A: STAT1« stabilises p53 by inhibiting Mdm2 expression, and potentiates the transcriptional activity of p53 by forming complexes at

the promoter level. B: STAT1a. promotes serine 15 and serine 20 phosphorylation of p53.

phosphorylation of p53 on serine 15 by ATM (ataxia telengiectasia
mutated), and on serine 20 by Chk2 (checkpoint 2). It also facilitates
the activation of Chk2 by ATM [173]. In B cells, physical interaction
of p53 and STAT1 has also been observed, and it has been found
that inhibition of STAT1 protects cells against apoptosis induced
by fludarabine [174], a cytotoxic compound used mainly in B cell
lymphoma and chronic lymphoid leukemia (CLL) [175], whose
efficacy depends on a functional p53 [176]. Fludarabine has also
been found to reduce specifically STAT1 protein and mRNA levels in
peripheral lymphocytes [177] and lymphoblastoid B cells [178].
However, in the same cells, overexpression of STAT1a sensitised
to fludarabine treatment [174], suggesting that STAT1 may act at
different antagonistic levels of the pathways triggered by fludar-
abine. In fact, recent data indicate that treatment of cells with
genotoxic agents, such as doxorubicin and to a lesser degree flu-
darabine, activates STAT1. This activation depends on p53, even if it
is transcriptionally inactive [179]. Thus, the function of STAT1 goes
beyond the activation of the transcription of proapoptotic genes. By
its action on p53 it participates in the selection of which pathway —
leading to cell death, or cell cycle arrest — will take place when
cells are exposed to different stresses (Fig. 8). Although some of the
relevant mechanisms have been clarified, it is still unclear how
STAT1 influences the expression of the targets of p53.

4.4. Involvement in cell differentiation

Arole for STAT1 in cell differentiation has been demonstrated in
STAT1 —/— mice. In these mice, excessive osteoblastogenesis is the
result of increased activity of the transcriptional factor Runx-2,
which is normally sequestered in the cytoplasm by unphosphory-
lated STAT1 [180,181]. In human cells, the differentiating action of
bryostatin-1 [182] has been found to depend on the expression of
STAT1 [183]; and the differentiation of acute promyelocytic

leukemia cells induced by retinoic acid was found to require the
phosphorylation of STAT1 on serine 727 [184,185].

4.5. Tumour suppression

STAT1 is a negative regulator of tumorigenesis, angiogenesis and
metastasis formation [186]. In STAT1-deficient mice, spontaneous
and chemically induced tumours arise more frequently than in
wild-type animals, and the anti-tumour activity of IFNa is reduced
[187], thus defining STAT1 as a “tumour suppressor” [171]. Indeed,
in humans several cancers which resist IFN treatment are associ-
ated with a diminished expression of STAT1 [188—190], and in
mammary cancer, the level of activation of STAT1 is linked to a good
prognosis, correlating well with the stage of the tumour, the
extension to ganglia and the expression of cathepsin D [191]. In
Wilms tumours, the phosphorylation of STAT1 on serine 727 is also
associated with a good prognosis [192]. In addition, STAT1 inhibits
the expression of rho, rac and cdc42, and the activity of the Ras
MAPkinase pathway in Ras activated cells [193]. The function of
STAT1 as a tumour suppressor is probably linked to its function in
the immune system. STAT1 activates directly the expression of the
transcription factor CIITA (Class II of MHC transactivating protein),
which itself activates the transcription of the MHCII (major histo-
compatibility complex class II) [194]. In addition, STAT1 is involved
in the negative regulation of the MMP-9 which serves as an
angiogenic factor [125]. However, although STAT1 is a tumour
suppressor, there are indications that it can function positively in
tumour growth. One report showed that it can accelerate the
development of hematopoietic tumours independently of IFN
signaling and in association with upregulation of the MHC class I
molecules [195], suggesting a IFN-independent tumorigenic func-
tion of STAT1. Another report showed that STAT1 positively regu-
lates some of the enzymes of the glycolysis pathway, thereby
linking it to the Marburg effect [196].
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5. Pathogens inhibit the STAT1 pathway
5.1. STAT1 is an essential component of the resistance to pathogens

The IFN system is part of a sensing mechanism that detects
pathogen invasion and triggers a response which limits the spread of
the pathogen. The pathogens are detected by cytoplasmic or endo-
somal sensors (reviewed in: [197]and [198]) that trigger pathways
leading to the activation of IRFs, AP1 and NF-kB. Among the early
genes induced by these transcription factors the type I IFNs are key
players. They trigger the IFNR/JAK system (see above) which acti-
vates the STATs, and particularly STAT1. IFNe. and  are potent anti-
viral agents, playing a key role in the regulation of the immune

system by controlling the proliferation, differentiation, activation
and maturation of several cell populations, including: dendritic cells
(DC), natural killer cells (NK), Th1l cells, and memory CD8+
lymphocytes. IFNYy is produced mainly by T helper type 1 lympho-
cytes, but is also produced by many other cell types. Its function is
primarily to promote the antimicrobial activity of macrophages.
Indeed, the main target of IFNy is the macrophages in which, in the
context of infected cells and through a specific subset of receptors, it
principally activates STAT1 (see above). In macrophages, the IFNy/
STAT1 pathway activates microbicidal activity through the induction
of NADPH oxidase and iNOS, which are key components of the
efficient killing of bacteria, viruses, parasites and fungi (see: [199]).
This is highlighted by the efficiency of defence against most
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pathogens. For instance, there is a 90% inhibition of the replication of
Chlamydia in IFNy-treated cells [200]. Possible mechanisms involve
processes that are downstream of the cellular entry of the bacteria
[201]. Another example is the intracellular multiplication of
Legionella pneumophila in alveolar resident macrophages, which is
inhibited by IFNy-treatment, again indicating the antibacterial effect
of [FNy [202]. The IFN-induced anti-viral state of cells is due in large
part to targets of STAT1. Among these, the expression of the protein
kinase PKR, a target of STATT, is induced by IFNs and is subsequently
activated by double stranded RNA (dsRNA), an intermediate of RNA
viruses' replication. Activated PKR phosphorylates the o subunit of
eukaryotic initiation factor 2 resulting in protein synthesis shut-
down. The IFN/STAT1 pathway also induces cell cycle arrest through
induction of the cyclin kinase inhibitors p21 and p27, and apoptosis
through targets of STAT1, or of its early target IRF1. The essential
role of STAT1 in the IFNy pathway is further demonstrated by the
high sensitivity of STAT1 —/— mice to infection, including infection
by viruses such as the vesicular stomatitis virus (VSV) the mouse
cytomegalovirus (MCMV) [134], and by bacteria such as Listeria
monocytogenes. Interestingly, there are many different mechanisms
by which pathogens inhibit STAT1 (Fig. 9).

5.2. Pathogens can inhibit every step of STAT1 activation

Over the course of coevolution, many pathogens, viruses,
bacteria or parasites, have become able to efficiently overcome the
organism's defences against them. Many of the processes devel-
oped by these pathogens are aimed at the IFN-STAT1 pathway, and
specifically target steps of the activation process of STAT1, such as
its phosphorylation or its nuclear localisation. Pathogens can also
induce the dephosphorylation of STAT1 or prevent its methylation
in the nucleus, induce the expression of its 3 isoform, and they also
can induce its selective degradation. The mechanisms developed by
viruses to overcome the potent effects of the defence system have
been well studied: many viral proteins have been identified and
several processes of inhibition have been unveiled at least partially
(Fig. 9). However, the precise ways in which bacteria and parasites
affect the function of STAT1 are much less well-understood. In
many instances, although the cellular target has been identified,
the molecular process (i.e. the bacterial or parasite proteins)
has not.

5.2.1. Degradation of STAT1

Many viruses target STAT1 by inducing its intracellular degra-
dation. Viruses of the Paramyxoviridae family (Mononegavirales
order) form a large family of RNA viruses and code for V proteins
whose expression greatly reduces the half life of STAT1 and STAT2,
thereby inhibiting the JAK-STAT IFN signaling pathway; however, the
mechanisms involved for each V protein are different. These viruses
are classified into two subfamilies. One is the Paramyxovirinae
subfamily, which comprise the Respirovirus genus (formerly Para-
myxovirus), including the Sendai virus (SeV) and the human para-
influenza type 3 (HPIV3) virus; the Rubulavirus genus, comprising
the simian virus 5 (SV5) the mumps (MuV) and human parainfluenza
virus type 2 (HPIV2), and the Morbillivirus genus, comprising the
Measles virus. The other is the Pneumovirinae subfamily which
consists only of the Pneumovirus genus to which the human respi-
ratory syncytial virus (RSV) belongs. The V proteins from the HPIV2,
SV5 and MuV target STAT1 for proteasome-mediated degradation
[203,204], some proteins target STAT1 only, others target both STAT1
and STAT2, some target only STAT2 and some target STAT3 for
degradation. Expression of the V proteins by the simian virus 5 (SV5)
and HPIV2 by the human parainfluenza virus type 2 (HPIV2) high-
jacks the polyubiquitinylation pathways of the cell and induces
polyubiquitylation of STAT1 and STAT2 resulting in their degradation

by the proteasome, an action that is inhibited by proteasome
inhibitors such as lactacystine or MG132 [205]. The process driven by
the V proteins of HPIV2, SV5 and MuV involves the assembly
of cellular Ub-activating enzyme E1, the cellular Ub-conjugating
enzyme E2 to STAT1/STAT2 dimers, resulting in the poly-
ubiquitylation of either STAT1 or STAT2 [204,206,207]. The New-
castle disease virus (NDV) encodes a V protein which also induces
the degradation of STAT1, but the mechanism involved has not been
elucidated [208]. The SeV also induces degradation of STAT1 by
directing its polyubiquitylation [209].

5.2.2. Inhibition of STAT1 phosphorylation

Many pathogens prevent the phosphorylation of STAT1. The
human metapneumovirus (hMPV), a recently discovered Para-
myxovirus involved in respiratory tract infections, inhibits IFNa
signaling by preventing the phosphorylation and nuclear trans-
location of STAT1, but the mechanism involved has not been
yet elucidated [210]. In the human macrophage U-937 cell line, the
parasite Leishmania donovani prevents the phosphorylation of STAT1
in response to IFNy [137] thereby efficiently impairing the IFNy-JAK-
STAT1 pathway by inhibition of STAT1a binding to the IFNy response
region [211]. In more recent studies performed in the murine J774A.1
and RAW264.7 macrophage cell lines, the different species of
Leishmania have been found to affect the IFNy-JAK-STAT1 pathway
differently: the L. donovani, Leishmania major and Leishmania mex-
icana species all inhibit phosphorylation of STAT1 in response to
IENYy, but L. mexicana, which is apparently a more efficient inhibitor
of the IFNY-JAK-STAT1 pathway, induces the preferential phos-
phorylation of STAT1p, thereby contributing to the inhibition of
STAT1a. [212]. However, the mechanism of inhibition of STAT1 by
Leishmania may be even more complex as another study found that
L. donovani, L. major and L. mexicana trigger the specific degradation
of STAT1 by the proteasome; indeed, infection by the parasite was
significantly inhibited by the addition of proteasome inhibitors to
infected cells [213], raising the question of whether there can be
specific targeting of STAT1a and not of STAT18 for the proteasome.
The contribution of STAT1 to resistance to L. major appears to be an
upregulation of CXCR3, which stimulates the migration of Th1 cells
to the infection site [214]. In fact, another species, Leishmania ama-
zonensis, was shown recently to efficiently downregulate the acti-
vation pathway of several cytokines, including IFNYy, by inducing
decreased phosphorylation of STAT1, STAT2 and STAT3 and also
specific degradation of STAT2 [215]-an action that is prevented by
proteasome inhibitors. Several pathogens inhibit the IFNy pathway
by interfering with phosphatases; in one study, however, the acti-
vation of the SHP-1 phosphatase by L. donovani did not correlate
with the inhibition of STAT1, although it contributed to the resis-
tance of the parasite in cultured macrophages. In other words,
inhibition of STAT1 by the parasite was independent of the induction
of SHP-1 [216]. Another counterintuitive observation is that STAT1
—/— mice are more resistant to visceral leishmaniasis than STAT1
proficient mice [217] suggesting that the parasite needs an efficient
IFNy pathway at some point.

5.2.3. Trapping of STAT1 into high molecular weight complexes

The parainfluenza type 5 virus (HPIV5) sequesters STAT1 [218] as
do the Nipah viruses. The Nipah (niV) and Hendra Paramyxovirus-
family virus proteins prevent activation and nuclear translocation of
STAT1 and STAT2 by trapping them into cytoplasmic high molecular
weight complexes [219—221]. The Nipah virus V protein inactivates
STAT1 by forming a complex with STAT2, and its expression into cells
results in STAT1 being relocalised to the cytoplasm. The Nipah virus
V protein possesses an NES motif which is necessary for the cyto-
plasmic export of the protein and the cytoplasmic relocation of
STAT1; nevertheless, deletion of this NES motif does not abrogate the
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ability of the protein to block the IFN response, indicating that other
domains of the protein play an important role. The P protein of the
measles virus directly interacts with STAT1 and prevents its phos-
phorylation [222]. The Nipah virus P protein, on the other hand,
sequesters inactive STAT1 in the nucleus [223].

Although it also belongs to the Paramyxoviridae, the Measles
virus (MV) functions differently. Rather than inducing the degra-
dation of STAT1, its V protein interacts with STAT1, STAT2, STAT3
and IRF9, forming high molecular weight complexes that are
packaged to cytoplasmic bodies containing an assembly of viral
proteins and nucleic acid material of viral origin [224]. Although
expression of the V protein of the MV clearly shows that it is a major
component of the inhibition of STAT1 in cells, two other viral
proteins transcribed from the same P gene are also involved. One of
these, the P protein, contributes to immune evasion: its mechanism
of action is proposed to be inhibition of the phosphorylation
of STATT1, possibly by direct interaction [222]; the P gene of the MV
also encodes a C protein: expression of this recombinant protein in
cells inhibits IFNa/f and IFNy signaling, by a mechanism that has
not been deciphered [225]. Deletion of regions of the V protein of
MV has shown that discrete peptides specifically bind STAT1 and
STAT2, preventing phosphorylation by JAK1 [226,227].

5.2.4. Inhibition of the nuclear translocation of STAT1

The rabies virus is a Rhabdoviridae which belongs to the Mono-
negavirales order. This neurotrophic single stranded RNA virus
replicates in the host's cytoplasm and encodes an RNA polymerase
complex consisting of a large protein L and a phosphoprotein P, both
of which participate in transcription and replication. A two-hybrid
screening system showed that the P protein interacts through its
C-terminal domain with the N-terminal domain of STAT1 [228], this
results in efficient inhibition of STAT1 nuclear accumulation in
response to stimulation by either IFNo or IFNy. The inhibitory action
of protein P does not involve reduced phosphorylation or reduced
homodimerisation of STAT1, or heterodimerisation with STAT2
[228], although it interacts much more strongly with phosphory-
lated STAT1 than with non-phosphorylated STAT1 [229]. Intrigu-
ingly, the P protein contains both an NLS and an NES motif [230],
and its subcellular location directs that of STAT1, thereby preventing
STAT1 nuclear location after IFN stimulation [231]; however,
mutant forms of the P protein that do not contain the NES signal
appear to be able to inhibit the binding of STAT1 to its DNA target
[231]. The nuclear import of proteins can be either facilitated or
inhibited by microtubules (MT); the P proteins use MT-facilitated
nuclear transfer, but they have the ability to switch to MT-inhibited
transfer; in addition, they can impose a switch of STAT1's IFNa-
induced nuclear transfer to a MT-inhibited mode, thereby pre-
venting STAT1 nuclear import [232]. The Ebola virus, which causes
Ebola hemorrhagic fever with an extremely high mortality (80%),
is an efficient inhibitor of IFNa,/B signaling. Its protein VP35, when
expressed in cells, blocks several components of the anti-viral
response, including IRF-3 [233]. A single amino-acid change can
reverse this action [234]. Interestingly, a VP24 protein encoded by
the virus directly interacts with karyopherins a1, a5 and a6 [235],
thereby preventing STAT1's interaction with these karyopherins
without modifying its phosphorylation on tyrosine 701 [236,237],
thus indirectly inhibiting STAT1. Another virus which exerts its
inhibition of the IFNy-STAT1 pathway through inactivation of the
nuclear transport machinery is severe acute respiratory syndrome
virus (SARSV). This virus which induces a severe and frequently
fatal acute respiratory syndrome, has the ability to inhibit the IFN
response in infected cells. STAT1 has been found to play a role in the
resistance of infected animals [238]. Transfection of SARSV viral
proteins — the ORF3b, ORF6 and N protein — demonstrated their
ability to specifically inhibit the expression of IFN transcriptional

targets [239]. The ORF6 protein was found to specifically inhibit the
nuclear translocation of STAT1 [239] by tethering karyopherin a2
and B1 to the membrane of the endoplasmic reticulum, thereby
disrupting the nuclear transport of STAT1 [240].

5.2.5. Dephosphorylation of STAT1

The vaccinia virus, a Poxviridae family virus, encodes for several
proteins which neutralize the IFN host defence system at different
levels, including inhibition of PKR, and the release of cytokine
homologues which block the IFNa/ and y Receptors. In addition to
this, the virus encodes a protein with dual tyrosine/serine phos-
phatase activity whose expression is required for virus viability
in tissue culture [241,242]. The dual phosphatase can both prevent
STAT1 phosphorylation in infected cells and induce its dephos-
phorylation, thereby preventing the nuclear translocation of STAT1
and the induction of gene targets [243]. The mosquito-borne Japa-
nese Encephalitis flavivirus also blocks the IFN-induced JAK-STAT
pathway: its non-structural protein NS5 induces the dephosphor-
ylation of TYK2 and STAT1, thus preventing STAT1 nuclear trans-
location and the transcription of its gene targets [244]. However,
the phosphatase or phosphatases involved, which are probably
tyrosine-phosphatases have not been identified.

The human cytomegalovirus (HCMV), a member of the
B-herpesvirus subfamily, is a widespread DNA virus which infects
a high percentage of the population. The host's immune system
plays a crucial role, and in the defence against the virus, besides
TNF-a, IFNy secreted by T cells can efficiently block HCMV repli-
cation in vitro. However, the virus has evolved mechanisms that
can counteract the control of infection by inhibiting phosphoryla-
tion of tyrosine 701. This process appears to be due to the induction
of SHP2, which directly dephosphorylates nuclear STAT1-P-tyr,
resulting in its downregulation [245]. Upregulation of a another
protein phosphatase, protein phosphatase 2A (PP2A), is involved
in the resistance of hepatitis C and B viruses to IFN signaling.
The mechanism involves upregulation of PP2A, which inhibits the
protein arginine methyltransferase 1 (PRMT1) resulting in reduced
STAT1 activity [246]. Other sites of inhibition of the IFN pathway by
HCMYV include the JAK kinase TYK2 [247], a targeted degradation of
STAT2 [248] by the viral 72 kDa protein IE1 which forms physical
complexes with STAT1 and STAT2, thereby preventing correct
nuclear localisation and association with the promoters of IFN-
responsive genes [249].

5.2.6. Inhibition of STAT1 via methylation

The hepatitis B virus (HBV) is able to block IFNa’s action by
inhibiting the methylation of STAT]1, this results in an increased
interaction of STAT1 with PIAS1, thereby protecting the virus
against the anti-viral action of the IFN [250].

5.2.7. Inhibition of STAT1 transcriptional activity

The Hepatitis C virus (HCV) efficiently antagonises the anti-viral
action of IFN. The molecular mechanism by which this inhibition
occurs has not been well characterised. Transfection of full length
HCV and subgenomic fragments in the hepatocyte cell line Huh-T7
showed degradation and reduced phosphorylation of STAT1 [251].
Subsequent studies using transfection of the NS5A (non-structural
protein5A) of HCV have shown that expression of this protein in
Huh?7 cells prevents normal activation of STAT1 by inhibiting its
phosphorylation on tyrosine 701 and its nuclear translocation
[252,253], an action that was specific to cells of hepatic origin [253].
This discrepancy between observations using transfection of single
viral proteins may be due in part to the involvement of other viral
proteins. For instance, the transfection of NS3/4A, another non-
structural protein of HCV, has been found to inhibit the phos-
phorylation of STAT1 on serine 727, contributing to the efficient
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inhibition of the IFN-STAT1 pathway [254]. Differences in published
observations may be due in part to the use of different cellular
systems; thus, the choice of cellular system may be important when
dealing with a hepatotropic virus [253].

Brucella melitensis can develop intracellularly within phagocytes
and cause chronic infection, this requires that the IFNy pathway
be silenced: in Brucella-infected macrophages, the IFNy-induced
STAT1-CBP/P300 association, required for a normal response to the
cytokine, is disrupted [255].

The parasitic protozoan Toxoplasma gondii is a widespread para-
site in human and animal populations, probably in part because
it causes asymptomatic infection. This parasite has the ability to
simultaneously suppress and trigger innate immune function in the
host. Infection by Toxoplasma includes an acute phase in which the
parasite disseminates in cells, which is followed by chronic infection
in which the parasite is confined within quiescent cysts within
tissues (reviewed in [256]). The strong Th1-type immune response
raised by Toxoplasma involves an IL-12-driven IFNy secretion
by lymphocytes and the activation of STAT1. In non-professional
phagocytic cells that do not express STAT1 there is no anti-Toxo-
plasma activity [257], and STAT1 —/— mice die of infection although
they produce normal levels of IFNy [258], pointing to a key function
of STAT1 in the anti-parasitic function itself. Indeed, IFNy-inducible
genes include genes such as inducible nitric oxyde synthase (iNOS),
which is under the control of STAT1 (see: [256]). Part of the parasite's
immune evasion may result from its ability to induce the IFNy-
signaling inhibitor SOCS-1 (suppressor of cytokine signaling 1):
in murine macrophage cell lines T. gondii infection induced the
expression of SOCS-1, resulting in inhibited STAT1 tyrosine phos-
phorylation, and in SOCS-1 —/— mice, inhibition of the anti-parasitic
effect of IFNy was reduced [259]. However, in a different context,
that of human fibroblasts, T. gondii was found to inhibit IFNy-
dependent STAT1 activation without affecting its phosphorylation
and nuclear trafficking, by blocking its transcriptional activity on
IFNy-responsive genes, including IRF1 [260]. Interestingly, although
the targeting of STAT1 by T. gondii is clearly established, the molec-
ular mechanism of how the parasite's proteins achieve STAT1 inhi-
bition is not known in detail. Among the identified mechanisms, two
bring about an increased IL-12 production: the triggering of the Toll
Like Receptor by the parasite's surface glycosylphosphatidylinositols
(GPI), involving MyD88 and the NF-kB pathway; and the triggering
of the chemokine receptor 5 (CCR5) by the parasite cyclophilin
C-18 [261]. The blockade in STAT1 signaling, as well as that of NF-kB
signaling, has also been attributed to a parasitic heat shock protein
(HSP-70) which efficiently attenuates the suppressive action of
T. gondii within infected cells (see: [256]), however, the mechanistic
details of how STAT1 is blocked are not identified.

5.2.8. Increased expression/phosphorylation
of the inhibitory form STAT18

When infecting cells, the bacterium Mycobacterium tuberculosis
induces cell-mediated immunity: infected macrophages secrete
IFNe and IFNB [262], as do dendritic cells (DC) [263]. In the mean-
time, events downstream from IFN activation are impaired,
including a significant reduction in the abundance of the ISGF-3
components STAT1, STAT2 and IRF9 [264]. In addition, IFN-y-acti-
vated human macrophages are unable to restrict the growth of the
virulent M. tuberculosis [265,266] suggesting that the bacterium
interferes with the response to IFNy [267] and efficiently subverts
IFN action by acting on events that are downstream of the triggering
of IFN receptors. Surprisingly, however, the tyrosine phosphoryla-
tion, dimerisation, nuclear transfer and the DNA binding of STATT1 all
appear to function normally [264]. Although reduced binding to the
CBP/p300 coactivator was noted early on in M. tuberculosis-infected
murine macrophages, the transcription of STAT1a-dependent IFNy

targets has been found to be blocked in the absence of any modifi-
cation of the phosphorylation or stability of STAT1a [268]. As dis-
cussed in the above sections, the STAT14,/STAT1p ratio affects the
resistance of cells to apoptosis [174] and to viral infection [269].
Interestingly, in one study of M. tuberculosis-infected cells, stabili-
sation of the mRNA for STAT1p was observed, accompanied by
increased expression and phosphorylation of this isoform, suggest-
ing a mechanism for inhibiting the signaling pathway of STAT1 [270].

L. mexicana, as already discussed above, inhibits IFNy signaling
through an IFNR/JAK-independent increased phosphorylation of
STAT1, thereby inhibiting STAT1a, possibly through competition at
the level of target gene promoters [212].

6. The paradoxical activation of STAT1 by the
oncogenic Epstein—Barr virus

The Epstein—Barr Virus (EBV) has evolved an extremely complex
and intertwined interaction with its host's defence system.

6.1. Epstein—Barr virus — transformed cells

The EBV is usually responsible for a mild, often asymptomatic and
undetected infection; but this DNA virus is also associated
with several malignant diseases, including Burkitt's lymphoma,
post-transplant lymphoma, lymphoma associated with HIV infec-
tion, Hodgkin's disease, T cell lymphomas and leukemia, epithelial
neoplasia such as nasopharynx carcinoma, mammary carcinoma,
and gastric carcinoma [271,272]. Following infection, the EBV
persists in a latent form within memory B cells that are CD23- and
CD27-positive and CD5- and IgD-negative. There is also a persisting
production of virion by the salivary glands of the healthy subject
[273,274]. Among the many genes encoded by the EBV, a limited
number have been shown to be essential for latency. Two of these
genes code for non-polyadenylated small RNAs, EBER1 and EBER2
(for EBV Encoded RNA), six genes code for nuclear proteins EBNA 1, 2,
3A, 3B, 3Cand LP (EBNA for EBV Nuclear Antigen) and three code for
membrane proteins LMP1, LMP2A and LMP2B (LMP stands for Latent
Membrane Protein) [275,276]. The expression of these proteins
varies with the pathophysiological context. A classification of four
viral latencies is used (latencies 0, I, Il and III). The EBV has also been
shown to transform cells in vitro [277], resulting in lymphoblastoid
cell lines (LCL) which grow indefinitely and express the EBV genes
corresponding to latency III [278,279]. It is important to note that
LCLs can arise in vivo. They probably originate from a subpopulation
of memory B cells which remain positive for EBV and have kept the
potential to spontaneously generate LCLs [280—282] with charater-
itics similar to the LCLs generated in vitro [276]. Cells from LCLs are
similar to lymphoblastic B cells. They are bigger than B lymphocytes,
with a larger cytoplasm and numerous short cytoplasmic extensions.
Their growth rate is variable, with a doubling time varying from 20 to
48 h. They tend to form aggregates, but do not adhere to the plastic
of the culture flask [276]. On their surface they express the B cell
markers, CD19 and CD20, and the B cell differentiation markers that
are induced by the EBV: CD23, CD38, CD39, CD54, CD58 and CD70
[283—285]. The LCLs retain the capacity to spontaneously differen-
tiate in so-called plasmacytoid cells. The plasmacytoid cells are
similar to plasma cells, they produce high levels of immunoglobulins
and have a diminished expression of CD23, CD11a and CD58, and
an elevated expression of CD54 and CD38 [286]. Interestingly, these
changes also occur during normal differentiation of B lymphocytes
to plasma cell. Meanwhile, the expression of the latency proteins
EBNA2 and LMP1 diminishes during the differentiation of LCL into
plasmacytoid cells [286,287].

The latency protein LMP1 is a transmembrane protein of 63kDa
encoded by the BNLF1 gene of the EBV. It consists of six
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transmembrane domains (from amino-acid 25 to amino-acid 194).
The N-terminus is a short cytoplasmic sequence (1—24) and the C-
terminus is a longer cytoplasmic stretch (195—386) which contains
two activating regions, CTAR1 (C-terminal activating region 1) and
CTAR2 [288] (Figs. 10 and 11). LMP1 has been shown to be involved
in cell transformation and cell immortalisation [289—291]. LMP1
forms homo-aggregates through interaction of its cytoplasmic
N-terminal ends [292]. Following oligomerisation, LMP1 behaves in
a manner similar to an activated TNF receptor (TNFR) [293—295].
The cytoplasmic regions CTAR1 and CTAR2 allow the association of
the signaling molecules: TRAF, (TNFR-associated factor) [296,297],
TRADD (TNFR-1-associated death domain protein) [298], and RIP
(receptor-interacting protein) [299]; these proteins activate the
kinases p38a, NIK (NF-kB-inducing kinase) and JNK which in turn
activate transcription factors including ATF2 (activating transcrip-
tion factor 2), NF-kB [300—303] and AP1 [304]. These transcription
factors in turn activate the transcription of genes involved in cell
growth, such as c-Met, the EGF receptor and cyclin D2; angiogen-
esis, such as FGF2, VEGF MMP-9 and IL8; and protection against
apoptosis such as Bcl2 [305], BIf-1 [306] and A20 [307,308]. These
proteins potentially account for the bulk of the molecular mecha-
nism of cell transformation induced by LMP1. In addition, some of
the transcription factors that are activated, such as ATF [309]
and AP1 [310], contribute to the maintenance of viral latency by
activating the expression of LMP1 itself.

6.2. Activation of STAT1 by the oncoprotein LMP1

The constitutive phosphorylation of STAT1 on tyrosine 701 and
serine 727 has been described in most cells expressing LMP1 such
as LCLs or EBV-positive Burkitt lymphoma [178,311—313]. However,
it is not always observed [314], particularly not in all LCLs [315], and
may depend on the cell type. The activation of STAT1 in LMP1-
expressing cells was initially thought to result from the binding of
JAK3 to CTAR3, identified as a JAK-binding motif in the cytoplasmic
region of LMP1 [312]. However, there is no detectable binding of
JAK3 to LMP1 in either EBV-infected Burkitt lymphoma or in LCLs
[316]. Furthermore, mutation of key amino-acids in either CTAR1,
CTAR2 or both, results in the suppression of NF-kB, AP1 and STAT1
activation [317]. By combining inhibition of NF-kB activation and
antibody neutralisation of IFNs, we were able to show that activa-
tion of STAT1 in LCLs can be accounted for by the constitutive

Fig. 10. Proposed mechanism for the activation of STAT1 by the oncogenic protein
LMP1 in Epstein-Barr-transformed lymphoblastoid cell lines. Activation of the onco-
protein LMP1 results in the activation of NF-kB, the induction of the expression of IFNs
and their production by cells drives the constitutive activation of STAT1 (adapted from
reference [318]).
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Fig. 11. Actions of STAT1 in EBV-positive lymphoblastoid cells expressing LMP1.
A: activation of the NF-«kB pathway by LMP1 or the TNFR. B. Complex interaction of
STAT1 with the LMP1-activated NF-kB pathway. 1: Induction by NF-«B of IFNa and y
production leading to STAT1 activation. 2: Inhibition of TRADD by STAT1e. binding,
leading to NF-kB inhibition. 3: Activation of STAT1 by IFNRs following its liberation
from TRADD. 4 and 5: activation of the NF-kB pathway by LMP1.

activation of NF-kB by LMP1, resulting in enhanced secretion of
IFNo, activating STAT1, which in turn induces IFNy expression [318].
The direct involvement of LMP1 has further been demonstrated by
the observation that STAT1 is phosphorylated on tyrosine 701 in
Burkitt cells transfected with an inducible LMP1 [319]. In these
experiments, the phosphorylation of STAT1 was detected after 4 h
of induction, which is compatible with a secretory loop of IFNs
(Fig. 10). However, in some LCLs, phosphorylation of STAT1 was
detected on serine 727 but not on tyrosine 701, and DNA-binding
capacity was increased, suggesting that perhaps other modifica-
tions of STAT1, such as acetylation, may also be involved in its
activation by LMP1 [315]. This also points to the importance of the
phosphorylation of serine 727 of STAT1, which is due in part to the
activation of p38a and JNK by LMP1 through TRAF1 and RIP, but
independent of NF-kB, and can be further enhanced by the induc-
tion of IFNa. and IFNYy secretion, which activate ERK 1/2, CaMKII and
PKCd. STAT1 is probably not the only STAT family member to be
activated by LMP1: in the BJAB cell line transfected with inducible
LMP1, the phosphorylation of STAT3 is also detected. STAT1 is an
inhibitor of cell growth and activator of apoptosis, and it is not
clear why in some LCLs it can be constitutively activated. Several
explanations can be proposed. Firstly, STAT1la was found to
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associate to TRADD, thereby inhibiting the TNF-a-induced activa-
tion of NF-kB [163]: it follows that IFNY, by increasing the recrut-
ment of STAT1 monomers to the IFNGR1 receptor, can potentiate
the action of TNF-a, [320]. Since LMP1 activates NF-kB by mecha-
nisms that are similar to those triggered by the TNEFR, it is possible
that in LMP1-expressing cells activation of STAT1 results in the
potentiation of NF-kB activation. Indeed, the inhibition of STAT1 by
overexpression of the f isoform results in a diminished NF-kB
capacity to bind the DNA kB sequence. Secondly, the promoter
region of LMP1 contains the sequence 5'-TTCctgGAA-3’, which is
similar to a classical GAS sequence such as the one present in the
IRF1 promoter [314]; however, DNA-binding and reporter gene
experiments have shown STAT3 binding to this motif [314].
Nevertheless, the function of STAT1 activation in EBV-transformed
cells is not entirely clear. It has recently been shown that LMP2A
and LMP2B, whose function is not fully elucidated, induce
decreased responsiveness of cells to IFNs by accelerating their
surface turnover, thereby reducing STAT1 activation [321].
Although this observation was made in transfected epithelial cells,
it indicates that the interaction of the EBV with its host's defence
system is complex, and that the survival of EBV-transformed cells in
the host must be the result of a subtle equilibrium between the
cells' anti-viral defence, including STAT1, and the virus's mainte-
nance proteins.
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