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Abstract: Plants or plant extracts are widely investigated for preventing/counteracting several
chronic disorders. The oral route is the most common route for nutraceutical and drug administration.
Currently, it is still unclear as to whether and how the pattern of phenolic compounds (PCs) found in
the plants as well as their bioactivity could be modified during the gastrointestinal transit. Recent
studies have revealed antioxidant and anti-steatotic properties of Thymbra spicata. Here, we investi-
gated the possible loss of phytochemicals that occurs throughout the sequential steps of a simulated
in vitro gastrointestinal (GI) digestion of aqueous and ethanolic extracts of aerial parts of T. spicata.
Crude, digested, and dialyzed extracts were characterized in terms of their phenolic profile and
biological activities. Total contents of carbohydrates, proteins, PCs, flavonoids, and hydroxycinnamic
acids were quantified. The changes in the PC profile and in bioactive compounds upon the simulated
GI digestion were monitored by HPLC–MS/MS analysis. The antioxidant activity was measured by
different spectrophotometric assays, and the antiproliferative potential was assessed by using three
representative human cancer cell lines. We observed that the simulated GI digestion reduced the
phytochemical contents in both aqueous and ethanolic T. spicata extracts and modified the PC profile.
However, T. spicata extracts improved their antioxidant potential after digestion, while a partial re-
duction in the antiproliferative activity was observed for the ethanolic extract. Therefore, our results
could provide a scientific basis for the employment of T. spicata extract as valuable nutraceutical.

Keywords: Thymbra spicata L. extracts; in vitro gastrointestinal digestion; phytochemical characterization;
antioxidant capacity; cytotoxic effect

1. Introduction

Dietary phytochemicals are found abundantly in fruits, vegetables, grains, plant-based
foods, and beverages [1]. Consumption of phytochemicals plays a main role in healthcare by
preventing many chronic diseases including non-alcoholic fatty liver disease (NAFLD) [2],
cardiovascular disease [3], neurodegenerative diseases [4], and some types of cancer [5].
For this reason, extracts from plants or plant parts have been largely tested to develop
new functional foods for preventing/counteracting many chronic disorders [6]. Phenolic
compounds (PCs) are the most abundant phytochemicals in many edible and medicinal
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plants, and they are the main responsible agents for the beneficial effects, especially the de-
fense against oxidative stress [7]. PCs include numerous varieties of compounds classified
into flavonoids and non-flavonoids: flavonoids include flavonols, flavones, flavan-3-ols,
flavanones, and anthocyanins; non-flavonoid compounds include phenolic acids, volatile
phenols, stilbenes, lignans, and coumarins [8].

Importantly, the bioavailability of several plant extracts as a source of PCs is likely
affected by changes occurring during the gastrointestinal (GI) transit. Foods and nutraceuti-
cals introduced by the oral route undergo digestive processes throughout GI compartments
and cross physiological barriers that are able to influence their delivery [9]. Indeed, the
main challenges for bioactive compounds are the rate and degree of absorption, as well as
their solubility, stability, and permeability across the mucosal and intestinal barriers [10].
Moreover, metabolites can show completely different bioavailability compared to the
parental phenolic compounds due to the physiological environment and cofactors [11,12].
Experimental approaches using in vitro GI models can overcome difficulties associated
with human studies that are often poorly reproducible and comparable, expensive, time-
consuming, and might generate ethical issues, depending on the study design and food
being tested [13]. In fact, several digestion methods have been proposed in the literature
review, often differing in the applied conditions. To give an example, the origin of the used
enzymes (porcine, rabbit, or human); the environmental factors (pH, ionic strength, and
digestion time); and other parameters such as the presence of phospholipids, digestive
emulsifiers vs. their mixtures (e.g., pancreatin and bile salts), and the ratio of food bolus
to digestive fluids, which alter enzyme activity, may considerably alter the results. While
modifying some of these parameters with a possible and major impact on the matrix release
or digestibility of some compounds, we were concerned with applying a standardized
and practical simulated in vitro GI digestion method based on physiologically relevant
conditions that can be applied for various endpoints and may be amended to accommodate
further specific requirements mainly developing a more accurate in vitro human digestion
model, taking into consideration the intestinal microbiota presence and conditions.

Lamiaceae is a family of mostly shrubs and herbs with a wide distribution world-
wide, especially in the Mediterranean basin [14]. In this family, Thymbra spicata L., locally
known as “Za’atar”, is employed in the folk cookery (as salad or tea infusion), but also
in traditional medicine, mainly for its antimicrobial and antiseptic properties [6]. Recent
studies have revealed several beneficial properties of T. spicata L. leaves such as antioxidant,
hypocholesterolemic, and anti-steatotic activities [15], as well as anti-inflammation [16],
anti-proliferative, and pro-apoptotic [17] potential. The abundancy of PCs in T. spicata L.
leaves including phenolic acids (rosmarinic acid), phenolic monoterpenoids (carvacrol,
thymol), and flavonoids (both glycosides and aglycones) stand behind the wide array of its
pharmacological activities [18,19]. The beneficial effects of T. spicata L. as herbal medicine or
nutraceutical preparation might be modified during the GI transit where the bioconversion
is elicited by low gastric pH, digestive enzymes, and the microbiota [11].

In this context, our study aimed to assess if and how two different extracts from
T. spicata L. aerial parts were modified after applying a simulated in vitro GI digestion
method. The extracts before and after digestion were characterized for their composition in
bioactive compounds and their antioxidant potential. The biological effects were assessed
by cellular studies focusing on the antiproliferative capacity on different cancer cell lines.

2. Materials and Methods
2.1. Reagents and Enzymes

All reagents otherwise indicated, including enzymes, were purchased from Sigma-
Aldrich Corp. (Milan, Italy). All reagents were of analytical purity.

Sources and Activities of Enzymes

• α-Amylase from human saliva (A0521-500 units/mg). α-Amylase catalyzes the hy-
drolysis of α-1,4 glycosidic linkage in oligosaccharides.
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• Pancreatin from porcine pancreas (P3292-100G). Pancreatin contains enzymatic com-
ponents including trypsin, amylase and lipase, ribonuclease, and protease, produced
by the exocrine cells of the porcine pancreas.

• Pepsin from pig gastric mucosa (≈2500 units/mg protein). Pepsin is an aspartic end-
proteinase used for the unspecific hydrolysis of proteins and peptides in acidic media.

2.2. Plant Collection

Aerial parts of Thymbra spicata L. were collected from flowering plants growing in
“Maarakeh”, South Lebanon. Voucher specimen (L1.125/1) was authenticated by Prof.
G. Tohme (CNRS, Beirut, Lebanon) and was kept in the Herbarium of the Botanical
Department-Lebanese University (Beirut, Lebanon). The in vitro gastrointestinal (GI) di-
gestion of T. spicata aerial parts was performed according to protocol [20] with slight
modifications in order to sequentially simulate the mouth, stomach, and small intestine
digestion. The composition of buffers is reported in Table 1.

Table 1. Chemical composition of the buffer employed in the simulated digestion. SSF: salivary fluid;
SGF: gastric fluid; SIF: intestinal fluid.

Volume (mL)

Simulated
Digestion Fluid pH KCl (0.5 M) KH2PO4 (0.5 M) NaHCO3 (1 M) NaCl (1.5 M) MgCl2(H2O)6

(0.15 M) Na2CO3 (0.5 M)

SSF 7 15.1 3.7 6.8 - 0.5 0.06

SGF 3 6.9 0.9 12.5 11.8 0.4 0.5

SIF 7 6.6 0.8 42.5 9.6 1.1 -

2.3. In Vitro Simulated Digestion
2.3.1. Oral Digestion

To mimic the oral digestion, 25 g of T. spicata dried and powdered aerial parts were
mixed with 25 mL SSF and 3 mL (stock 75 U/mL) α-salivary amylase (from human saliva),
0.2 mL CaCl2, and 5.8 mL distilled H2O and then incubated for 2 min at 37 ◦C on a
magnetic stirrer.

2.3.2. Gastric Digestion

To mimic the gastric digestion, 40 mL SGF, 7 mL pepsin (stock 25,000 U/mL), 0.03 mL
CaCl2, and 3 mL distilled H2O were added to the oral outcome and the pH was lowered to
3.0 by HCl; the mixture was incubated for 2 h at 37 ◦C on a magnetic stirrer, and the pH
was checked regularly.

2.3.3. Intestinal Digestion

To mimic the intestinal digestion, 50 mL of gastric outcome was mixed with 50 mL of
SIF, 20 mL of pancreatin (stock 100 U/mL), 10 mL bile salt (stock 10 mM), 0.024 mL CaCl2,
6 mL distilled H2O, and 0.7 mL of 1 M HCl to neutralize the pH to 7.0.

2.3.4. Extract Preparation

The obtained mixture was incubated for 2 h at 37 ◦C on a magnetic stirrer. Then, the
mixture was heated to 90 ◦C for 10 min to inactivate the enzymes used in the digestion
process. At the end, the samples were centrifuged for 20 min at 7000 rpm. The pellet was
incubated with ethanol (96%) at room temperature for 24 h with agitation. The solution was
centrifuged for 20 min at 7000 rpm, obtaining a precipitate (TE) that was discharged, and
the ethanol in the digested ethanolic extract (TE-dig) was removed using a rotavapor before
the lyophilization of the residue. The supernatant obtained from the digestion process was
divided into two parts. One part was lyophilized, obtaining the crude digested aqueous
extract (TW-dig); the other one was dialyzed with membrane cut-off 3.5 kDa (Spectra/Por
molecularporous membrane tubing, Thermo Fisher Scientific, Milan, Italy) against 250 mL
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of water for 24 h at 4 ◦C to separate the low molecular weight (mw) fraction (<3.5 kDa) and
the high mw fraction (>3.5 kDa). The solutions inside the dialysis tube (>3.5 kDa) and out
of the tube (<3.5 kDa) were lyophilized.

To prepare the undigested aqueous and ethanolic extracts (TW and TE, respectively),
the same procedure was followed for extraction without the first part of enzymatic diges-
tion. The detailed scheme of in vitro digestion and the obtained extracts and fractions is
illustrated in Figure 1.
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Figure 1. A schematic presentation describing the steps of the simulated digestion in the three phases:
mouth, stomach, and intestine, in order to obtain the digested ethanolic (TE) and aqueous (TW)
extracts. The same procedure was followed for preparation of crude extracts without the use of
enzymatic digestion. The TW and TW dig were subjected to a membrane dialysis with a cut-off of
3.5 kDa to obtain low and high mw fractions.

2.4. Total Carbohydrate Content (TCC)

TCC was determined by the phenol-sulfuric acid colorimetric method [21]. Briefly,
0.5 mL of sample (1 mg/mL) was mixed with 0.5 mL 5% aqueous phenol and 2 mL of
H2SO4 (96%). After incubation for 30 min at room temperature, the absorbance was read at
320 nm using a UV–VIS microplate reader (FLUOstar Optima, BMG Labtech, Ortenberg,
Germany). The results were derived from a glucose calibration curve (0–200 µg/mL).
Values are expressed as µg/mg extract.
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2.5. Total Protein Content (TPrC)

The protein content was determined by Bradford colorimetric method, using bovine
serum albumin (BSA) as standard [22]. Briefly, 0.5 mL from each extract (1 mg/mL) was
mixed with 0.5 mL of Bradford reagent; after 30 min incubation, the absorbance was
measured at 595 nm using a UV–VIS microplate reader (FLUOstar Optima, BMG Labtech,
Ortenberg, Germany). Data are expressed as µg/g.

2.6. Total Phenol Quantification (TPC)

TPC was determined using the Folin–Ciocalteu method [23]. Briefly, 25µL aliquots of
sample (1 mg/mL) were incubated with 125 µL of 10% (w/v) Folin–Ciocalteu reagent for
5 min; after adding 125 µL of Na2CO3 (10% w/v), the sample was incubated for 30 min in
darkness at room temperature, and the absorbance was read at 320 nm using a UV–VIS
microplate reader (FLUOstar Optima, BMG Labtech, Ortenberg, Germany). The results
were derived from a gallic acid calibration curve (0–1000 ug/mL) prepared from a stock
solution (1 mg/mL in ethanol). Values are expressed as mg of gallic acid equivalents (GAE)
per gram of dried weight extract (mg of GAE/g extract).

2.7. Total Flavonoid Quantification (TFC)

TFC was determined using the aluminum chloride colorimetric method [24]. Briefly,
a 1 mL aliquot of sample (1 mg/mL) was mixed with 0.2 mL of 10% (w/v) methanolic
AlCl3 solution, 0.2 mL (1 M) potassium acetate, and 5.6 mL distilled H2O. After incu-
bation at room temperature in darkness for 30 min, the absorbance was read at 320 nm
using a UV–VIS microplate reader. The results were derived from a calibration curve of
quercetin (0–200 µg/mL) prepared from a stock solution (5 mg/mL in methanol). Values
are expressed as mg of quercetin equivalent (QE) per gram of dried weight extract (mg of
QE/g extract).

2.8. Total Hydroxycinnamic Acid Content (THAC)

HCA was determined using the method by Custódio et al. [25]. Briefly, in a 96-well
plate, 20 µL of sample (5 mg/mL) was mixed with 20 µL of 95% ethanol containing 0.1%
HCl. After the addition of 160 µL of 2% HCl and 10 min incubation, the absorbance was read
at 320 nm using a UV–VIS microplate reader. The results were derived from a calibration
curve of rosmarinic acid (0–500 µg/mL) prepared from a stock solution (1 mg/mL in
ethanol). Values are expressed as mg of rosmarinic acid equivalents (RAE) per gram of
dried weight extract (mg of RAE/g extract).

2.9. HPLC–MS Analysis

High-performance liquid chromatography coupled with tandem mass spectrometry
(HPLC–MS/MS) was performed using an Agilent 1100 HPLC-MSD Ion Trap XCT sys-
tem, equipped with an electrospray ion source (HPLC-ESI-MS) (Agilent Technologies,
Santa Clara, CA, USA). Separation of extracts was performed on a Jupiter C18 column
1 × 150 mm with 3.5 µm particle size (Phenomenex, Torrance, CA, USA). As eluents, we
used water (eluent A) and MeOH (eluent B), both added with 0.1% formic acid. The
gradient employed was 15% eluent B for 5 min, linear to 100% eluent B in 35 min, and
finally hold at 100% eluent B for another 5 min. The flow rate was set to 50 µL/min with a
column temperature of 30 ◦C. The injection volume was 8 µL. Ions were detected in the
positive and negative ion mode, in the m/z 100–800 range, and ion charged control with
a target ion value of 100,000 and an accumulation time of 300 ms. A capillary voltage of
3300 V, nebulizer pressure of 20 psi, drying gas of 8 L/min, dry temperature of 325 ◦C,
and 2 rolling averages (averages: 5) were the parameters set for the MS detection. MS/MS
analysis was conducted using an amplitude optimized time by time for each compound.
From the chromatograms, the percentage of PC for each extract was calculated on the basis
of the peak area.
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2.10. Radical Scavenging Activity Assays

The radical scavenging activity was measured using the 1,1-diphenyl-2-picrylhydrazyl
(DPPH) method [26]. In a 96-multiwell plate, 50 µL aliquot of sample (0–2 mg/mL) or of
the standard Trolox (0–100 mg/mL) was added to 200 µL of DPPH solution (0.1 mM in
methanol). After incubation in darkness for 30 min at 37 ◦C, the absorbance was measured
at 490 nm using a UV–VIS microplate reader against DPPH solution as a blank. Values are
expressed as half maximal inhibitory concentration IC50 (µg/mL) and Trolox equivalent
(µg TE/mg dry extract).

The radical cation scavenging activity of each extract was measured using the 2-2′-
azino-bis (3-ethylbenzo-thiazoline-6-sulphonate) diammonium salt (ABTS) method [27]. In
a 96-multiwell plate, 50 µL aliquot of sample (0–2 mg/mL) was added to 200 µL of ABTS
solution (5 mM). ATBS solution was prepared by oxidizing ABTS with MnO2 in distilled
water for 30 min in the dark, and then the solution was filtered through filter paper. After
20 min incubation in darkness at room temperature, the absorbance was determined at
734 nm using a UV–VIS microplate reader against ABTS solution as a blank. Values are
expressed as half maximal inhibitory concentration IC50 (µg/mL) and Trolox equivalent
(µg TE/mg dry extract).

2.11. Ferric Reducing Antioxidant Power (FRAP) Assay

The reducing power was evaluated according to the ferric reducing antioxidant power
(FRAP) assay [28]. In a 96-multiwell plate, 25 µL aliquot of sample (0–2 mg/mL) or of
standard Trolox (0–100 µg/mL) was added to 175 µL of FRAP working solution containing
300 mmol/L acetate buffer (pH 3.6), 20 mmol/L ferric chloride, and 10 mmol/L TPTZ (2,4,6-
tri (2-pyridyl)—S-triazine) made up in 40 mmol/L HCl. The three solutions were mixed at
a 10:1:1 ratio (v:v:v). The mixture was incubated in darkness for 30 min at 37 ◦C and then
the absorbance was determined at 593 using a UV–VIS microplate reader against FRAP
solution as a blank. Values are expressed as Trolox equivalent (µg TE/mg dry extract).

2.12. Cell Culture

The human cancer cell lines MDA-MB-231 (breast adenocarcinoma), A375 (Melanoma),
and HCT116 (colorectal carcinoma) were gently supplied from Prof. Bramucci (Laboratory
of Physiology, University of Camerino). The cancer cells were routinely maintained in
Dulbecco’s modified Eagle’s minimum essential medium (DMEM) or in RPMI-1640 (Sigma-
Aldrich, Beirut, Lebanon) supplemented with 10% heat-inactivated fetal bovine serum
(FBS), 2 mM glutamine, and 1% P/S at 37 ◦C in a humidified incubator containing 5% CO2.

2.13. Cell Proliferation Assay

The cytotoxicity of T. spicata extracts was assessed by the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) method [29]. Stock solution (50 mg/mL) of
extracts were prepared in dimethyl sulfoxide (DMSO) or in sterile distilled water. In
addition, the pure Carvacrol was used as positive control. Briefly, cells were seeded in
a 96-well plate (104 cells per well), and after 24 h, they were treated with increasing
concentrations (0, 50, 100, and 200 µg/mL) of each extract for 24 h. At the end, 20 µL of
MTT reagent (5.0 mg/mL) was added, and the mixture was incubated for 3 h at 37 ◦C. After
removing the unreacted MTT dye, 100 µL DMSO was added to solubilize purple formazan
crystals, and the absorbance was recorded at 570 nm. The IC50 value (concentration that
causes 50% growth inhibition) was estimated as that leading to 50% absorbance decrease
as compared to the control. Cell viability was expressed in percentage with respect to
the control.

2.14. Quantification of ROS Production

2′,7′-Dichlorodihydrofluorescein diacetate (H2DCF-DA; molecular probe) was em-
ployed to assess ROS generation [30]. Briefly, cells were seeded on a 96-well plate
(105 cells/mL) and incubated overnight. After the treatments, cells were washed twice
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with PBS and then incubated with 10 µM of H2DCF-DA (in PBS) for 30 min at 37 ◦C.
Then, ROS production level was measured fluorometrically using a microplate reader
(lex = 495 nm; lem = 525 nm).

2.15. Quantification of Nitrite/Nitrate Levels

The nitric oxide NOx (nitrites and nitrates) level was measured by spectrophotometric
measurement using the Griess reaction [31]. Briefly, 105 cells/mL were seeded on a
96-well plate and incubated overnight. After the treatments, NOx level in the medium was
calculated using NaNO2 as a standard curve. Spectrophotometric analyses were performed
at 546 nm using a microplate reader.

2.16. Statistical Analysis

All results were expressed as mean ± SD of at least three independent experiments.
GraphPad Prism 8.0.1 software was used for statistical evaluation. Comparisons between
different conditions were performed using ANOVA with Tukey’s post-test. Difference
between percentages was calculated by chi-squared test. The possible correlation between
the measured parameters was tested by a two-tailed Pearson’s correlation coefficient
analysis. All statistical analysis were performed by GraphPad Software Prism 8.0.1, Inc.
(San Diego, CA, USA).

3. Results
3.1. Characterization of T. spicata Extracts before and after Simulated Digestion

We characterized the aqueous and ethanolic extracts from T. spicata aerial parts before
(TW and TE) and after (TW-dig and TE-dig) the simulated digestion. For TW, we also
assessed the low (<3.5 kDa) and the high (>3.5 kDa) mw fractions obtained by dialysis.

The aqueous and ethanolic crude extracts exhibited a similar content of carbohydrates.
The simulated digestion significantly reduced the TCC in the ethanolic extract (from 26.4
in TE to 19.2 µg/mg in TE-dig), without affecting the aqueous extract. However, upon
simulated digestion, we observed a different distribution of carbohydrates between the
two fractions: TCC was reduced in the high mw fraction (from 40.4 in TW to 17.6 µg/mg
in TW-dig) and increased in the low mw fraction (from 25.2 in TW to 33 µg/mg in TW-dig)
(Figure 2A). Moreover, the protein content was roughly similar in the crude extracts, and
the simulated digestion did not affect it considerably. However, the aqueous extract showed
a redistribution of the protein content between the two mw fractions, leading to a TPrC
reduction in the high mw fraction (from 10.8 in TW to 2.4 µg/g in TW-dig) and an increase
in the low mw fraction (from 22.7 in TW to 33.9 µg/g in TW-dig) (Figure 2B).

As expected, the ethanolic extract was richer in phenolic compounds compared to the
aqueous one (353 vs. 201.4 mg GAE/g). After simulated digestion, the TPC significantly
decreased in both the ethanolic (250 mg GAE/g) and the aqueous (138.9 mg GAE/g)
extracts. For the aqueous extract, the simulated digestion reduced the TPC in the high mw
fraction (from 148.7 to 81.6 mg GAE/g). By contrast, the aqueous extract was richer in
flavonoids than the ethanolic extract (172.88 vs. 123.84 mg QE/g).

After simulated digestion, the TFC significantly decreased in both the ethanolic (to
85.18 mg QE/g) and aqueous (to 111.26 mg QE/g) extracts, as well as in both the high
(from 117.03 to 25.75 mg QE/g) and low mw fractions (from 278.13 to 236.24 mg QE/g)
(Figure 2D). The hydroxycinnamic acid content was higher in the ethanolic than in the
aqueous extract (89.2 vs. 35.4 mg RAE/g, respectively). The simulated digestion reduced
the THAC in the crude ethanolic extract (76.5 mg RAE/g in TE-dig), while in the aqueous
extract, the digestion redistributed the THAC between the two mw fractions (from 101.6
to 95.2 mg RAE/g for low mw fraction, and from 31.4 to 17.8 mg RAE/g in the high mw
fraction) (Figure 2E).
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All the contents were quantified spectrophotometrically and expressed as µg/mg of the dry extract,
µg/g of dry extract, mg of gallic acid equivalent per g of dry powder extract (mg GAE/g dry extract),
mg of quercetin equivalent per g of dry powder extract (mg QE/g dry extract), and mg of rosmarinic
acid equivalents (RAE) per gram of dried weight extract (mg of RAE/g extract), respectively. Samples
were measured in triplicate, and significant differences between digested and undigested extracts are
denoted by symbols: * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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3.2. HPLC–MS Characterization of the Phenolic Compounds

Both the extracts were characterized by HPLC–MS/MS analysis before and after
digestion (Figure 3). In the ethanolic extract, we detected 14 PCs in both the undigested and
digested preparations. The most abundant PCs were monoterpenoic phenols (carvacrol),
polyphenolic acids (rosmarinic acid), flavonoids, and their derivatives (rutin, thymusin,
and eriodictyol derivative, etc.). The aqueous extract contained less PCs; 19 PCs were
detected in both the undigested and digested preparations, which can be classified into
three main groups: phenolic acids, phenolic monoterpenoids, and flavonoids. Carvacrol is
the most abundant PC in the ethanolic extract (34.8% in TE and 52.9% in TE-dig), rosmarinic
acid in TW (57.4%), and salvalonic acid in TW-dig (42.3%).
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Figure 3. HPLC–UV chromatographic profiles for both ethanolic and aqueous extracts of Thym-
bra spicata before and after digestion wherein their pure polyphenols were recorded at 280 nm:
(A) Chromatogram of the ethanolic extract (TE and TE-dig) showing the following peaks: 1: carvacrol;
2: thymusin; 3: rosmarinic acid; 4: eriodictyol. (B) Chromatogram of the aqueous extract (TW and
TW-dig) showing the following peaks: 1: salvalonic acid I; 2: rosmarinic acid; 3: carvacrol; 4: vicenin;
5: rutin.

To compare the chromatograms of the two extracts, we normalized them for their
TPC. The analysis revealed some differences in the percentages of the major PCs (Table 2).
The simulated digestion led to an enrichment in carvacrol abundance in the ethanolic
extract (from 34.8 to 52.9%; p ≤ 0.01) and to a reduction in rosmarinic acid abundance in
the aqueous extract (from 57.4% to 18.8%; p ≤ 0.01). In TW, the reduction in rosmarinic
acid was almost balanced by the increase in salvalonic acid (from 19.5% to 42.3%; p ≤ 0.01).
Moreover, a redistribution in phenols, flavonoids, and hydroxycinnamic acids was observed
between the two mw fractions, with the low mw fraction being enriched in both TPC (from
1.53 to 2.06) and TFC (from 1.61 to 2.12), balanced by a reduction in the high mw fraction of
TFC (from 0.68 to 0.23) and THAC (from 0.89 to 0.54) (Figure 4).
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Table 2. Phenolic compounds identified in TE (A) and TW (B) before and after digestion using
HPLC–MS/MS in the negative ionization mode.

(A): Ethanolic Extract (TE)

a RT (min) Measured m/z MS/MS Fragments Proposed Compound TE
Area (%)

TE-Dig
Area (%)

TE
Peak Area

TE-Dig
Peak Area

1 14.1 593 575, 503, 473, 383, 353 Vicinin 2 0.34 2.89 46 137

2 14.5 303 285, 177, 125 Dihydroquercetin (taxifolin) 7.19 1.87 982 89

3 17.1 417 371, 287, 263 Eriodictyol derivative 8.69 2.84 1187 135

4 18.5 609 301 Rutin 2.04 4.04 278 192

5 19.1 359 223, 197, 179, 161, 133 Rosmarinic acid 5.73 10.53 782 500

6 19.7 287 269, 151, 135, 107 Eriodictyol 6.09 4.07 831 193

7 21.5 329 314 Thymusin 21.20 14.64 2894 695

8 23 285 257, 243, 151 Apiginin 0.85 0.63 116 30

9 22.8 269 201, 181, 149 Luteolin 6.64 2.40 906 114

10 23.3 343 328, 313, 300, 285 Unknown 0.97 0.93 132 44

11 24 165 149 P-Cymene-2,3-diol 2.23 1.14 305 54

12 24.3 343 328, 313 Cirsilineol 1.38 0.82 189 39

13 25.7 – – Carvacrol 34.81 52.94 4752 2513

14 27.3 329 314, 299, 286, 271
3,4,3′ ,4′-Tetrahydroxy-5,5′-

diisopropyl-2,2′-
dimethylbiphenyl

1.85 0.25 253 12

(B): Aqueous Extract (TW)

a RT (min) Measured m/z MS/MS fragments Proposed Compound TW
Area (%)

TW-Dig
Area (%)

TW
Peak Area

TW-Dig
Peak Area

1 8.1 305 225 Gallocatechin 2.35 1.16 114 33

2 12.2 387 369, 225, 207, 163 Tuberonic acid glucoside 0.00 0.00 0 0

3 14 593 575, 503, 473, 383, 353 Vicenin 2 5.68 8.40 275 239

4 15 637 461, 351, 285 Luteolin-O-diglucuronide 0.00 0.00 0 0

5 15.4 537 493, 339 Salvalonic acid I 19.51 42.27 945 1203

6 15.7 477 397, 373, 343, 301 Quercetin-glucuronide 0.00 0.00 0 0

7 16.3 595 473, 429, 287 Eriodictyol-rutinoside 0.62 2.14 30 61

8 16.5 623 433, 287 Luteolin-glucuronide-hexoside 0.23 0.88 11 25

9 17 717 537, 519, 475, 365, 339 Salvalonic acid E\B 1.94 3.34 94 95

10 17.4 461 285 Luteolin 7-O-glucuronide 0.00 0.00 0 0

11 17.6 593 285 Luteolin-O-rutioside 0.00 0.00 0 0

12 17.9 441 418, 405, 373, 305, 225, 175 Unknown 0.00 0.00 0 0

13 18.1 521 359, 179, 161 Rosmarinic acid-glucoside 0.00 0.00 0 0

14 18.5 609 301 Rutin 7.80 7.48 378 213

15 19.1 359 223, 197, 179, 161, 133 Rosmarinic acid 57.41 18.80 2781 535

16 19.7 549 387 Tuberonic acid derivate 1.09 1.09 53 31

17 19.8 607 559, 427, 299, 284 Methyl kaempferol
O-rutinoside 1.03 1.65 50 47

18 21.6 491 443, 311, 267 Salvalonic acid C 1.09 2.57 53 73

19 25.7 – – Carvacrol 1.24 10.22 60 291
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Figure 4. Normalized total phenol content (TPC), total flavonoid content (TFC), and total hydroxycin-
namic acid content (THAC) of high and low mw fractions of the aqueous extract by the TPC of the
corresponding extracts. Significant differences between digested and undigested extracts are denoted
by symbols: *** p < 0.001 and **** p < 0.0001.

3.3. Effect of Simulated Digestion on Antioxidant Proprieties

The antioxidant potential of each extract before and after the simulated digestion was
evaluated by three different spectrophotometric assays. A higher antioxidant activity was
observed for the ethanolic extract compared to the aqueous one. Both extracts showed
significant changes in the antioxidant potentials upon digestion, as well as between the
mw fractions obtained by dialysis before and after digestion (Table 3A).

After normalizing the Trolox equivalent values for the TPC in each extract, we appre-
ciated a higher antioxidant activity for the digested extracts than for the crude ones. Briefly,
in the ethanolic extract, DPPH increased from 0.25 (TE) to 0.37 (TE-dig), and in the aqueous
extract from 0.44 (TW) to 0.60 (TW-dig).

Regarding the FRAP assay, ethanolic extract showed an increase in the reducing
capacity after digestion from 0.26 (TE) to 0.35 (TE-dig). Conversely, the ABTS assay of the
aqueous extract showed a reduction in the high mw fraction from 3.06 (TW-dig > 3.5 kDa)
to 1.68 (TW-dig > 3.5 kDa) (Table 3A).

Finally, the correlation analysis between the phytochemical contents (in terms of TPC,
THAC, and TFC) and the three antioxidant activities (evaluated as DPPH, ABTS, and
FRAP) for all the extracts showed a significant and strong correlation between DPPH and
TPC (r2 = 0.7612). Moreover, a good correlation was calculated between FRAP and the
phytochemical contents: FRAP and TFC (r2 = 0.8952), FRAP and THAC (r2 = 0.8913), and
FRAP and TPC (r2 = 0.7755) (Table 3B). These results indicate that the phenolic compounds
contained in the extracts are the major contributor for the antioxidant capacity.
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Table 3. (A) The radical scavenging activity of the T. spicata extracts before and after digestion.
Values are reported as Trolox equivalent (µg TE/mg dry extract). (B) Pearson correlation (two-tailed)
between TFC, THAC, TPC, and antioxidant parameters (DPPH, ABTS, and FRAP). All values are
mean ± SD from at least three independent experiments. Samples were measured in triplicate for
each experiment. Significance is denoted by symbols: * p < 0.05, ** p < 0.01, and *** p < 0.001.

(A) Radical Scavenging Assays

Assays DPPH ABTS FRAP TPC

Samples Trolox
Equivalent ± SD

Trolox
Equivalent/

TPC ± SD/TPC
Trolox

Equivalent ± SD
Trolox

Equivalent/
TPC ± SD/TPC

Trolox
Equivalent ± SD

Trolox
Equivalent/

TPC ± SD/TPC

TW (total) 90 ± 12.3 0.447 ± 0.061 210.6 ± 32.4 1.046 ± 0.161 73.5 ± 15.6 0.365 ± 0.077 201.4

TW < 3.5 kDa 90.8 ± 9.8 0.295 ± 0.032 234 ± 25.9 0.761 ± 0.084 146.1 ± 18.9 0.475 ± 0.061 307.4

TW > 3.5 kDa 80.3 ± 7.9 0.540 ± 0.053 250 ± 32.4 1.681 ± 0.218 78.5 ± 10.8 0.528 ± 0.073 148.7

TW dig 83.8 ± 9.5 * 0.603 ± 0.068 173.7 ± 19.1 1.251 ± 0.138 62.8 ± 9.2 0.452 ± 0.066 138.9

TW
Dig < 3.5 kDa 86.4 ± 11.1 0.302 ± 0.039 182.4 ± 17.5 0.637 ± 0.061 140.9 ± 16.1 0.492 ± 0.056 286.3

TW
Dig > 3.5 kDa 65.1 ± 7.9 * 0.798 ± 0.097 250 ± 32.4 * 3.063 ± 0.397 42.3 ± 7.6 0.518 ± 0.093 81.6

TE 89.5 ± 12.1 0.254 ± 0.034 250 ± 32.4 0.708 ± 0.092 92.2 ± 6.1 0.261 ± 0.017 353

TE dig 94 ± 12.4 * 0.376 ± 0.05 210.7 ± 23.9 0.843 ± 0.096 88.3 ± 7.9 * 0.353 ± 0.032 250

(B) Pearson Correlation (Two-Tailed)

TFC THAC TPC ABTS DPPH FRAP

TFC 0.6797 0.6274 0.3923 0.5646 ** 0.8985

THAC 0.6797 *** 0.9375 0.4215 0.6726 ** 0.8913

TPC 0.6274 *** 0.9375 0.5867 * 0.7612 * 0.7755

3.4. In Vivo Effects: Cytotoxic Activity and Oxidative Stress in Cancer Cells

The anti-proliferative effects of the different extracts before and after digestion were
assessed using three human cancer cell lines representative of the most common human
cancers, i.e., MDA-MB 231, HCT116, and A375 cells (Figure 5). No significant cytotoxic
effects were observed for the aqueous extract (data not shown). By contrast, all the ethano-
lic extracts, both undigested and digested, significantly reduced the cell viability of all
cancer cell lines in a concentration-dependent manner. Carvacrol is the most abundant
component of the ethanolic extract, and it was employed as a positive control. After 24 h
of treatment at the highest concentration (200 µg/mL), both the extracts (TE and TE-dig)
and carvacrol dramatically reduced the cell viability in MDA-MB 231 (to 20.1%, 28.8%, and
17.9%; respectively), in HCT116 cells (to 22.3%, 41.1%, and 7.8%, respectively), and in A375
cells (to 38.2%, 26%, and 21.6%, respectively). From the IC50 values listed in Table 4, we
can deduce that carvacrol is the most cytotoxic agent for A375 cells at 24h (IC50 of about
19.912 µg/mL), as well as for MDA-MB 231 cells (IC50 about 23.278 µg/mL) and HCT
116 cells (IC50 about 59.625 µg/mL), and other intermediate inhibitory effects have been
exhibited on the other cell lines.

Table 4. IC50 values (50% cell viability inhibitory concentration) determined for T. spicata ethanolic
extracts (TE and TE dig) and Carvacrol (CVL) in the three cell lines over a long-term (24 h) period
under analysis.

Cell Lines TE TE-Dig CVL

MDA-MB 231 58.447 112.103 23.278
HCT116 110.238 147.51 59.625

A375 31.443 107.067 19.912
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Figure 5. Antiproliferative activity of TE, TE-dig, and CVL on three representative human cancer
cell lines: breast (MDA-MB 231), colon (HCT 116), and melanoma (A375) cells. The cell viability was
expressed as a percentage (%) with respect to the control. Data represent the mean of at least five
independent experiments. Statistical analysis for cell viability data was performed using two-way
ANOVA followed by Tukey’s post-test ** p < 0.01, *** p < 0.001, **** p < 0.0001).

In attempt to decipher the mechanisms sustaining the cytotoxic effects, we assessed
the oxygen and nitrogen radical production. A dose-dependent increase in ROS production
was detected in the breast cancer cell line MDA-MD 231 treated with either the crude or
digested extracts. At the highest concentration (200 µg/mL), ROS production increased to
+158.1% for TE-dig and +154.1% for TE, but carvacrol was more efficient in inducing ROS
production (+238.8%). Similar results were recorded for the colon cancer cell line.

On HCT116, carvacrol stimulated ROS production (+253.8%) more than the crude and
digested extracts (TE +151.9% and TE-dig +163.6%) at the highest concentration. Moreover,
for the melanoma cancer cell A375, carvacrol stimulated ROS production (+293.4%) more
than the crude and digested extracts (+191.7% for TE-dig and +142.7% for TE) at the highest
concentration (Figure 6A).
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Figure 6. Pro-apoptotic effects of TE, TE-dig, and CVL on three cell lines: MDA-MB 231, HCT116,
and A375, were assessed by measuring the ROS (A) and NO production (B) using spectrophotometric
and fluorometric analyses, respectively. Values are expressed as % of control. Data represent the
mean of five independent experiments. Statistical analysis for cell viability data was performed using
two-way ANOVA followed by Tukey’s post-test (* p < 0.05, ** p < 0.01, **** p < 0.001).

An opposite trend was observed in terms of NO release. In this case, the extracts,
at the highest concentration (200 µg/mL), were stronger than carvacrol in triggering the
NO release in MDA-MB231 (+283.% for TE-dig, +310.4% for TE, and +251.6% for CVL), as
well as in HCT116 and A375 cells, where the release was maximum for TE (+242.7% and
+292.6%, respectively) followed by TE-dig (+190.4% and +250.4%, respectively) and by CVL
(+165.3% and +151.7%, respectively) in the three cell lines (Figure 6B).
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4. Discussion

Although many studies emphasized the uncountable positive effects on human health
of the phenolic compounds contained in certain edible or medicinal plants, only a few
reports have investigated the possible influence of the gastrointestinal digestion on their
efficacy. The main finding of our study using a simulated in vitro GI digestion is that
the digestion boosters the antioxidant activity of T. spicata extracts, while it reduces the
antiproliferative potential. We may attribute these differences in the biological activity of
the extracts to the modifications in the phenolic profile caused by the simulated digestion.

To our knowledge, no studies have previously documented the possible changes in
bioactivity of T. spicata extracts or preparations after transit in the gastrointestinal tract. In
this context, we assessed the content of the main macromolecules and the phenolome in
ethanolic and aqueous extracts from T. spicata leaves, and for the aqueous extract, we also
distinguished between the low and high mw fractions.

Regarding the ethanolic extract, the simulated digestion led to a significant decrease
in almost all components, while in the aqueous extract, it led to a reduction of only phenols
and flavonoids. Although the simulated digestion reduced the carvacrol content in the
ethanolic extract in absolute terms, carvacrol became the most abundant PC in relative
terms. On the other hand, in the aqueous extract, the simulated digestion significantly
increased the content of salvalonic acid, which became the most abundant PC in relative
terms (Table 2). The increase in salvalonic acid content likely depends on the reduction in
the RA upon digestion, taking into consideration the fact that salvalonic acid derives form
condensation of two units of RAs, and this compound appears to be the precursor to many
related salvianolic acid derivatives [32]. Therefore, we could hypothesize that the reduction
in the rosmarinic acid (RA) upon digestion had been balanced by the increase in the SA.

We wish to emphasize as the biotransformation of parental phenolic compounds
during the digestive process could mainly depend on the enzymes and the physiological
environment of the GI tract (pH, temperature, and electrolytes) [33]. Indeed, Karas et al. [34]
suggested that about 10% of the PCs remain undigested in the plant matrix, with only
90% of them being digested and released. However, the effects of digestion might vary
according to the plant materials, and in the literature, we found two different outcomes: one
stating the increase in phenolic compounds upon digestion [35], and the other one showing
a reduction [36]. Indeed, our data are in accordance with reports showing a reduction such
as those showing a reduced PC content in Brassica oleracea [37], as well as in Chilean white
strawberry [38] upon digestion.

The idea is that the GI digestion may be unable to release all PCs, leaving a consid-
erable amount of non-extractable polyphenols (NEPs) being trapped by dietary fibers,
macromolecules (i.e., proteins), or polysaccharides through hydrophobic, hydrogen, and
covalent bonds [39]. Therefore, NEPs reach the colon nearly intact [40]; however, only the
phenolic components released from the matrix are absorbable from the GI barriers, and
this could explain the enrichment in the secondary metabolites that we observed in the
low mw fractions (mainly carbohydrates and proteins). NEPs may be released from the
food matrix in the colon by the action of microbiota thus becoming bioavailable, absorbed,
and bioactive [41], and this point specifically will inform our upcoming investigations. In
conclusion, our findings indicate that the effect of digestion was greater on the ethanolic
extract, and this was likely to due to degrees of solubility of different phyto-constituents.

In a previous paper [15], we demonstrated the great antioxidative potential of the T.
spicata ethanolic extract, being higher than the aqueous one. Interestingly, the antioxidant
potential of both the ethanolic and aqueous extracts was boosted by the simulated digestion.
This could be related to the noticeable enrichment of each extract in terms of bioactive
compounds, namely, carvacrol in the digested ethanolic extract, and salvalonic acid in the
aqueous digested extract according to previous scientific reports [42].

Although polyphenols are generally considered as antioxidant compounds, at very
high concentrations, they are known to play a prooxidant effect that might promote apop-
tosis, especially in highly proliferative cells such as cancer cells [43,44]. A previous study
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of our group reported remarkable antiproliferative and pro-apoptotic effects on tumor cell
lines for the ethanolic extract from T. spicata when tested at a rather high concentration
(100 mg/mL) [17]. In the present study, we verified that the in vitro cytotoxic activity of the
ethanolic extract on cancer cell lines was maintained after the simulated digestion, but with
lower efficacy compared with the crude extract. As widely reported, the antiproliferative
activity of a plant is firmly correlated with the PCs [45]. Accordingly, we observed a
decreased antiproliferative potency for the digested extract compared to the crude one,
and this result parallels well with the reduced PC content upon digestion, in particular the
reduction in carvacrol, which is the most potent antiproliferative agent in our study.

We evaluated the free radical production to clarify the mechanisms sustaining the
anti-proliferative activity of the ethanolic extract before and after digestion. The results of
the present study showed that the pro-oxidant property of the ethanolic extract was not
only maintained after the digestion, but it was even bigger in terms of ROS production
when compared to TE-dig. On the other hand, the NO release was higher in the crude
extract compared to the digested one.

Interestingly, we observed that both the crude and digested ethanolic extracts were less
potent in ROS production compared to carvacrol, while in terms of NO release, the extracts
were more potent than carvacrol. This can indicate that the antiproliferative potential
of T. spicata is exerted by acting as ROS-mediating apoptosis and inducing the release of
cytotoxic mediators. Nevertheless, further studies should be performed at this level to have
a clear idea about the mechanistic mode of action.

5. Conclusions

In summary, although we observed a reduction in the PCs and modulation in the
phenolome of both ethanolic and aqueous T. spicata extracts upon the simulated GI diges-
tion, the antioxidant activity was significantly enhanced. However, the antiproliferative
potential of the ethanolic extract was reduced. Accordingly, we can come to an assumption
that the digestion process had an impact on the nutritional value of T. spicata, but it kept its
biological effectiveness.

As a final word, we can confidently say that T. spicata can represent a good and
considerable source of PCs with potent antioxidant and antiproliferative bioactivities. In
particular, the detected panel of bioactive compounds in T. spicata makes this edible plant a
potent candidate to be used as a dietary supplement for different therapeutic purposes.
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