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ABSTRACT
Macrophage is essential for host anti-bacterial defense by directly eliminating invading
microbes and inducing a series of immune reactions. Here we identified a Streptococcus pneu-
moniae protein, PepO, as a TLR2/TLR4 bi-ligand. We found that PepO enhances macrophage
unspecific phagocytosis and bactericidal activity, which is related to the induction of autophagy
in macrophage, for the inhibition of autophagy significantly decreased the phagocytosis and
bactericidal activity of PepO-treated macrophage. We confirmed that these effects of PepO are
dependent on interacting with both TLR2 and TLR4. The tlr2 or tlr4 deficiency partially abolished
the effect of PepO while tlr2/tlr4 deficiency abolished it completely. In vivo study demonstrated
that PepO reduced the bacteria load in WT mice significantly, while the depletion of macro-
phage or tlr2/tlr4 deficiency abrogated the effect of PepO. Our findings suggested the ther-
apeutic potential of PepO and provided experimental evidence for immunotherapy against
infectious disease.
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Introduction

Manipulating host immune system to fight against
invading pathogen has a long history. There are several
immunomodulators applied in clinical practice for pre-
venting and treatment against bacterial infection [1,2].
However, these agents are usually lysate of multiple
bacteria, which made it hard to explain their mechan-
ism and thus restrained their application.

The best-characterized receptors participate in the elim-
ination of invading pathogen by innate immunocytes are
Toll-like receptors (TLRs) [3]. TLRs are essential pattern
recognition receptors expressed in innate immunocytes
such as macrophage and dendritic cells, which initiate
innate immune response by recognizing PAMPs, partici-
pate in multiple immune reactions including phagocytosis,
bacteria killing, antigen presentation, and cytokine produc-
tion [4]. Pharmaceutical agents targeting TLRs demon-
strated therapeutic potential for various diseases [5,6]. An
artificial lipid derivate mimics LPS specifically targeting
TLR2 to switch macrophage from pro-tumor M2 pheno-
type to anti-tumor M1 phenotype [7]. TLR7 agonist
Imiquimod [8] and TLR7/8 agonist Resiquimod [9] had
been used for virus infection treatment. As for bacterial

infection treatment, the artificial TLR4 ligand AGPs pro-
tect mice from Listeria monocytogenes and Yersinia pestis
infection [10]. TLR2/6 agonist MALP-2 promotes macro-
phage phagocytosis and significantly reduced the mortality
of the coinfection of influenza virus and S. pneumoniae
[11], while protected against P. aeruginosa infection [12].
These studies have proved the therapeutic potential of
TLRs agonist for bacterial infection.

Streptococcus pneumoniae endopeptidase O, PepO,
a 72kD virulence protein, was reported to be capable
of inducing strong innate immune response in a TLR2/
TLR4 dependent manner [13]. Thus, we assume that
PepO is a potential immunomodulator which is con-
ducive to host anti-infection defense. We reported in
our previous study that PepO enhances macrophage
phagocytosis through TLR2/miR155 pathway [14]. In
this study, we found that the PepO-induced phagocy-
tosis enhancement is also related to TLR4; however, the
underlying mechanism is not clear yet.

Autophagy is a universal existing, evolutionary con-
served physiology process in eukaryotes by which mal-
functioning organelles, misfolding protein, and
internalized microorganism are degraded [15]. Many
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research had revealed that the activation of autophagy
in macrophage is quite important in the elimination of
pathogen [16–18], while the crosstalk between TLRs
signaling and autophagy is also confirmed by accumu-
lating evidences [19–21]. TLR2 induces autophagy via
Lyn and NF-κB [22] while TLR4 induces autophagy via
Warburg effect mediated by AMPK [23]. It is notice-
able that different TLRs may activate autophagy
by different mechanisms, and those mechanisms may
be independent or synergistic. For example, MyD-88/
NF-κB [24] and PAI-2 [25] signaling is related to both
TLR2 and TLR4. Previously we reported that PepO
manipulates PI3 K/Akt signal pathway [13], a main
regulatory axis in autophagy regulation, in a TLR2/4
dependent manner, which inspired us the possibility
that PepO triggers macrophage autophagy.

In this study, we confirmed the interaction between
PepO with TLR2 and TLR4, respectively, which led to
the enhancement of macrophage phagocytosis and bac-
tericidal activity. In tlr2 or tlr4 deficiency macrophage,
the effect of PepO is partially abrogated while tlr2/tlr4
double-deficiency abrogated it completely. Further
investigation revealed that the enhanced macrophage
function is related to autophagy, which is induced by
the suppression of mTOR phosphorylation. In vivo
study showed that PepO unspecific reduced bacteria
load in pulmonary infection, which is dependent on
macrophage and TLR2/TLR4. Taken together, these
results suggested that PepO may be a potential thera-
peutic agent for pulmonary infection therapy and pro-
vided experimental evidence for infectious disease
immunotherapy by targeting TLRs.

Materials and methods

Animal model and treatment

tlr2−/- and tlr4−/- gene-deficient mice were purchased
from Jackson Lab. tlr2/4−/- gene-deficient mice were
obtained by tlr2−/- and tlr4−/- gene-deficient mice hybri-
dization. All gene-deficient mice were confirmed
according to the genotyping protocol provided by
Jackson Lab. Female WTC57/BL6 micebe between 7 ~
8 weeks old or gene-deficient C57/BL6 mice weighing
21 ~ 23 g were treated with PBS, PepO (0.33 mg/mL,
30 μL per mouse) or LytR (0.17 mg/mL, 30 μL per
mouse) intranasally 6 h before infection, the concentra-
tion of LytR was adjusted to equate the molarity of
PepO. For infection, mid-exponential phase cultures
of Streptococcus pneumoniae D39 and Pseudomonas
aeruginosa were pelleted, washed with PBS and then
resuspended with PBS. Treated mice were infected with
S. pneumoniae D39 (1 × 108) and P. aeruginosa

(5 × 107) intranasally, respectively. Twenty-four hours
after infection, the blood was obtained, lungs were
harvested and homogenized in 1 mL PBS with tissue
homogenizer. The blood and lung homogenate were
then diluted and seeded on Columbia blood agar. The
colony-forming unit (CFU) was counted on
the second day.

Bacterial strains and culture

S. pneumoniae D39 (NCTC 7466), P. aeruginosa PAK
and S. aureus 502A were preservation of our laboratory.
P. aeruginosa MDR strain was isolated in Children’s
Hospital of Chongqing Medical University. The strains
were seeded on Columbia Blood Agar plates and cul-
tured overnight at 37°C supplemented with 5% CO2,
single colony of S. pneumoniae D39 was then inocu-
lated into C + Y culture medium and other strains were
cultured in Luria Bertani broth at 37°C supplemented
with 5% CO2. Bacteria were harvested at mid-log phase
for subsequent procedure.

Construction of D39ΔpepO mutants

The D39ΔpepO mutant is constructed according to the
protocol described in our earlier research [26]. Briefly, the
cassette containing pepO upstream sequence, erythromy-
cin-resistant encoding sequence, and pepO downstream
sequence is generated by Long Flank Homology-PCR
using the primers listed in Supplemental Table.1. The
constructed fragment is transformed into S. pneumoniae
D39 according to the established protocol [27]. The ery-
thromycin-resistant colonies were selected and identified
with PCR and gene sequencing.

Primary macrophage harvest and cell culture

For primary peritoneal derived macrophage harvest,
1 mL sterilized liquid paraffin was injected to mice
6 ~ 8 weeks old C57/BL6 mice. The treated mice were
sacrificed by cervical dislocation on the 4th day after
injection. The peritoneal cavity was rinsed by cold PBS
supplemented with 0.1% EDTA-Na2, and the lavage
was centrifuged to collect cells. After removing erythro-
cytes by Red Cell Lysis Buffer, the macrophage was
seeded into appropriate plated or dish and cultured in
DMEM (High Glucose,10% FBS). Culture medium was
refreshed after 30 min to remove unwanted cells.

Phagocytosis and bactericidal activity assessment

The macrophages were treated with S. pneumoniae D39
(MOI = 100), S. aureus 502A (MOI = 100) and
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P. aeruginosa PAK (MOI = 100) for 30 min. The extra-
cellular bacteria were removed by Gentamycin
(200 μg/mL) treatment for 30 min and washing. The cells
were then lysed with ddH2O and scrapping, and the lysate
was diluted and seeded on Columbia Blood Agar for CFU
counting. For bactericidal activity assessment, the proce-
dure is similar to the phagocytosis assay with 2 h of infec-
tion. The percent of bacteria killed by macrophage is
calculated by the equation: Rkilled = 1-B2 h/B30 min, where
Rkilled represents the ratio of bacteria eliminated by macro-
phage, B2 h represents the number of intracellular bacteria
after 2-h infection and B30 min represents the number of
intracellular bacteria after 30 min infection.

Immunoprecipitation

2 × 107 Primary murine macrophage was seeded in 9 cm
dishes 1 day before PepO treatment. The macrophage was
incubated with recombinant PepO (10 μg/mL) for 1 h to
ensure the binding of PepO to TLR2 or TLR4. The culture
medium was discarded, and macrophage was washed with
cold PBS for 3 times. The macrophage was then incubated
with cell lysis buffer for Western and IP (Beyotime) sup-
plemented with Protease Inhibitor Cocktail (Bimake) for
1 min followed by collecting with cell scrapper and trans-
ferring into microcentrifuge tubes. The macrophage lysate
was incubated with Protein-G coupled agarose beads
(Millipore) to exclude unspecific interaction. Then, the
lysate was incubated with anti-His-Tag antibody
(Beyotime) and Protein-G coupled agarose beads at 4°C
overnight with mild shaking. The beads were collected by
centrifuging and then subjected to Western Blot.

Immunoblot

The cell lysate was subjected to appropriated SDS-PAGE.
The separated protein was then transferred to PVDFmem-
brane in ice bathing. The membrane was blocked by 5%
BSA in TBS buffer (137 mM NaCl,20 mM Tris, pH = 7.6)
and then incubated with corresponding antibodies at 4°C
overnight with slow shaking. The membrane was then
washed with TBS supplemented with 0.5% Tween-20 and
incubated with appropriated HRP-conjugated second anti-
body. The image was obtained by ECL.

NOS assessment

The macrophages were treated with PepO or pre-treated
with Bafilomycin A1 (Selleck) before PepO treatment, and
then the cells were treated with NOS assay kit (Beyotime)
according to the instruction of the manufacturer.

Preparation of recombinant PepO protein and its
truncated mutant

CDS sequence of pepO in S. pneumoniae D39 was ampli-
fied by PCR and cloned to pet28a plasmid. The constructed
plasmid is transformed into E. coli BL21 (DE3) after con-
firming by sequencing. The expression of PepO recombi-
nant protein is induced by IPTG (0.4 mM) and PepO
protein is collected and purified by affinity chromatogra-
phy with Ni2+/NTA column. The purified protein is
subjected to ToxinEraser™ Endotoxin Removal Kit
(Genescript) to remove the residual endotoxin. The LytR,
PepO 1–430, and PepO 431–630 mutant was constructed
in the same manner. The primers used in this study are
listed in the Supplementary materials.

Reagents

Antibodies against LC3 I/II, p70S6 K, ULK, and beclin 1
were purchased from Cell Signaling Technology.
Antibodies against GAPDH and His-Tag were purchased
from Beyotime. Antibodies against TLR2 and TLR4 were
purchased from Abcam. Antibody against p-mTOR was
purchased from Santa Cruz. Protein-G coupled agarose
beads and RapidStep™ ECL Reagent were purchased from
Millipore. Ni2+-NTA column was purchased from GE
lifesciences. DMEM High glucose culture medium was
purchased from Hyclone. Cell lysis buffer for Western
and IP and Nitric Oxide Synthase Assay Kit was pur-
chased from Beyotime. Protease Inhibitor Cocktail is pur-
chased from Bimake. Red Cell Lysis Buffer was purchase
from Tiangen. Rapamycin and Bafilomycin A1 were pur-
chased from Selleck. Clodronate Liposomewas purchased
from Liposoma.

Statistical analysis

Data are presented as mean with SEM. Student’s t-test
was employed. A p-value of less than 0.05 was consid-
ered significant.

Results

PepO triggers autophagy in macrophage

We previously reported that PepO enhances macro-
phage phagocytosis and manipulated the phosphoryla-
tion of Akt, a major signal molecule in autophagy
regulation. Since autophagy participates in the interna-
lization of pathogen in phagocytes [16], we assumed
that PepO may be involved in macrophage autophagy.
After PepO treatment, the autophagy marker LC3
showed a significant turnover of LC3I to LC3II, while
autophagy-related protein marker ULK-1 and beclin 1
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increased consistently (Figure 1(a)). To rule out the
effect of impurity in the recombined protein, e.g. LPS
from E. coli, we treated macrophage with recombined
LytR, a S. pneumoniae protein which produced in the
same process, and detected no significant alteration in
LC3 expression (SFigure 2). The formation of autopha-
gosome was monitored by immunofluorescent micro-
scopy. PepO significantly increased the number of LC3
puncta, indicating the formation of autophagosome
(Figure 1(b,d)). To further confirm the autophagy
induced by PepO, we constructed a ΔpepO mutant by
replacing pepO gene with an erythromycin-resistant
coding sequence. WT S. pneumoniae D39 infected peri-
toneal derived macrophages (PDMs) showed oblivious
aggregation of LC3 puncta, while D39ΔpepO::Pcerm
infected PDM showed significantly lower amount of
LC3 puncta (Figure 1(c,e)), taken together, these results
confirmed that PepO induces macrophage autophagy.

PepO-induced autophagy contributes to the
elimination of bacteria

Autophagy is known as a self-defense process, andmultiple
researches had revealed the relationship between

macrophage autophagy and bacteria clearance [16]. Since
the formation of LC3-associated structure is critical for
autophagic clearance of bacteria, we then investigated the
spatial relationship of internalized bacteria and LC3 puncta
by immunofluorescent microscopy to verified if PepO-
induced autophagy is related with phagocytosis. We
found that the longer PepO treated the macrophage, the
more S. aureus was internalized into macrophage
(Figure 2(a,b)), while the partial of LC3-co-localized bac-
teria is increased after PepO treatment (Figure 2(a,c)),
suggesting that PepO-induced autophagy is related to the
enhanced phagocytosis. Meanwhile, the ratio of bacteria-
colocalized LC3 puncta to total LC3 puncta is significantly
increased with longer treatment time (4 h or 6 h)
(SFigure 4), suggesting the internalized bacteria are likely
to be eliminated by process related with PepO-induced
LC3 puncta formation. Thus, we assume that PepO-
induced autophagy contributes to the elimination of bac-
teria by macrophage. For further confirming, we inhibited
macrophage autophagy by Bafilomycin A1 before PepO
treatment and S. aureus infection. As shown in Figure 2
(d,e), Bafilomycin A1 significantly decreased PepO-
induced phagocytosis and bactericidal activity enhance-
ment. Nitric oxide synthase (NOS) is an enzyme which

Figure 1. PepO triggers macrophage autophagy. (a) PepO induced the elevation of autophagy marker ULK and beclin 1 and the
turnover of LC3 I to LC3 II after 6 h of PepO treatment (10 μg/mL). (b) WT macrophage was differently treated and the LC3 was
monitored by immunofluorescent microscopy. Recombinant PepO protein (10 μg/mL) induced obviously LC3 puncta aggregation
comparing to PBS treated macrophage. (c) WT D39 infected macrophage showed significantly higher amounts of LC3 puncta than
D39ΔpepO infected macrophage after 6 h of infection (MOI = 100). (d) and (e) The cells with numerous LC3 puncta of differently
treated macrophage were counted (n = 100) in three independent experiments. Images were representative of three independent
experiments. (d) and (e) were the statistical analyzation of (b) and (c), respectively. Data were shown as mean + SEM (n = 3) and are
representative of three independent experiments. **p < 0.01; ***p < 0.001. Student’s t-test was employed for statistical analysis.
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controls the production of nitro oxide, a bactericidal-
related smallmolecule effector. Consistently, the autophagy
inhibition reduced the activity of NOS (Figure 2(f)). We
noticed that PepO still promoted macrophage bacterial
clearance after Bafilomycin A1 blocked autophagy, indicat-
ing there is other mechanisms involved in this process.

PepO-induced autophagy relies on both TLR2 and
TLR4

We reported in our earlier research that PepO-elicited
innate immune response is related to both TLR2 and
TLR4 [13], thus we confirmed if PepO induces autophagy

via TLR2/TLR4. By treatingWTor deficient macrophages
respectively with PepO, we found that regardless of single
or double deficiency of tlr2 or tlr4, the autophagy level
is significantly lower than that of WT macrophage
(Figure 3(a,b)), indicating that PepO-induced autophagy
is dependent on both TLR2 and TLR4.

As reported before, PepO manipulates Akt signaling
in a TLR2/TLR4-dependent manner [13], thus we con-
firmed if PepO induces autophagy via mTOR. We
treated WT and tlr2/tlr4 double deficient macrophage
respectively with PepO for different time, and it is
found that PepO suppressed mTOR and its down-
stream signaling molecule p70SK6 K phosphorylation

Figure 2. PepO-induced macrophage autophagy is related to the enhanced phagocytosis and bactericidal activity. (a) The co-
localization of S. aureus and LC3 puncta was monitored by immunofluorescent microscopy. The longer PepO treated macrophage,
the more co-localization of FITC-labeled S. aureus (green) and LC3 (red) was observed. (b) The phagocytosis index was calculated
(n = 100) in three independent experiments. (c) S. aureus co-localized with LC3 puncta was counted (n = 100). (d) The macrophages
were treated with Bafilomycin A1 (100 nM) for 1 h before PepO (10 μg/mL) treatment for 6 h, and the phagocytosis against S. aureus
was assessed. (e) The bactericidal activity against S. aureus of Bafilomycin A1 and PepO-treated macrophages was assessed. (f) The
relative NOS activity of different macrophages treated with PepO (10 μg/mL, 6 h) or with Bafilomycin A1 (100 nM, 1 h) before PepO
treatment was assessed. Images were representative of three independent experiments. Data were shown as mean + SEM (n = 3)
and are representative of three independent experiments. ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001. Student’s t-test
was employed for statistical analysis.
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in WT macrophage (Figure 3(c)), while the phosphor-
ylation of these two-signal molecules is unaffected in
tlr2/tlr4−/- macrophage (Figure 3(d)). Consistent with
signaling alteration, PepO failed to induce autophagy in
tlr2/tlr4−/- macrophage, indicating that PepO-induced

autophagy relies on TLR2 and TLR4. We found that the
initiation of autophagy has not occurred at the same
time as mTOR dephosphorylation; thus, we assumed
that there could be other mechanisms involved in this
process. We found that PepO manipulates mTOR

Figure 3. PepO-induced macrophage autophagy is dependent on TLR2 and TLR4. (a) WT, tlr2−/-, tlr4,−/- and tlr2/tlr4−/- macrophage
were treated with PepO (10 μg/mL, 6 h) respectively, and the LC3 was monitored by immunofluorescent microscopy. (b) The cells
with numerous LC3 puncta of PepO-treated different macrophages were counted (n = 100) in three independent experiments. (c)
PepO inhibited the phosphorylation of mTOR and downstream signaling molecule p70S6 K, while inducing the turnover of LC3 I to
LC3 II in WT macrophage. (d) PepO did not affect the mTOR signaling and autophagy in tlr2/tlr4−/- macrophage. Images were
representative of three independent experiments. (e) PepO (10 μg/mL) induced a 2-phase alteration of mTOR phosphorylation, while
AMPK phosphorylation is upregulated at the initial phase and decreased in longer time of treatment. The ULK-1 and LC3 II level is
upregulated after PepO treatment. **p < 0.01; ***p < 0.001. Student’s t-test was employed for statistical analysis.
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phosphorylation in a 2-phase manner (Figure 3(e)). In
the initial phase of PepO stimulation, PepO upregulates
mTOR phosphorylation, however, in the later phase
PepO inhibited the phosphorylation of mTOR. Thus,
we assume that there may be other mechanisms
involved in PepO inducing autophagy. It was reported
that ULK-1 is regulated by AMPK, and we observed the
upregulation of phosphorylation of AMPK by PepO in
the initial phase of PepO stimulation. The time that
ULK-1 elevation is consistent with AMPK phosphory-
lation. Besides, AMPK also regulates mTOR activation,
thus we assume that AMPK activation is the key factor
in autophagy induction while mTOR is more essential
in the later phase.

TLR2 and TLR4 both contribute to PepO-induced
macrophage function enhancement

Since PepO induces macrophage autophagy in a TLR2/
TLR4 dependentmanner, we confirmed the interaction of
PepO with TLR2 or TLR4 by co-immunoprecipitation

(Figure 4(a)). To identify the binding site of TLR2 and
TLR4 in PepO, we constructed two truncated mutants of
PepO, PepO 1–430, and PepO 431–630 according to the
conserved domain prediction (SFigure5), and the Co-IP
result showed that both TLR2 and TLR4 bind to PepO in
the M13_N domain of PepO (Figure 4(a)). The phagocy-
tosis of WT or gene-deficient macrophage was also
assessed. tlr2−/- and tlr4−/- macrophage still reacted to
PepO stimulation, though higher dose was required to
promote macrophage phagocytosis (Figure 4(b,c)).
However, the tlr2/tlr4 double deficiency abrogated the
ability of macrophage responding to PepO completely
(Figure 4(d)), indicating that TLR2 and TLR4 both con-
tribute to PepO promoting phagocytosis. Next, we iden-
tified the role of TLR2 and TLR4 in this process in vivo by
gene deficiency mice model. As shown in Figure 4(e),
PepO failed to decrease the lung bacteria load in tlr2/tlr4
double deficient mice while PepO-treated wild mice bore
significant lower bacteria load than PBS treated wild mice
(Figure 6(a)), indicating that the enhancement of bacteria
clearance induced by PepO is TLR2 and TLR4 dependent.

Figure 4. TLR2 and TLR4 both participate in PepO inducing macrophage function enhancement. (a) The PDMs were incubated with
PepO, PepO 1–430, and PepO 431–630, respectively, the cell lysates were subjected to His-Tag IP and the interaction of different
proteins with TLR2 and TLR4 were identified by TLR2 or TLR4 immunoblot. GAPDH was used as loading control. (b) PepO enhanced
the phagocytosis of tlr2−/- macrophage, though higher dose was required. (c) PepO enhanced the phagocytosis of tlr4−/- macro-
phage. (d) tlr2/tlr4−/- macrophage did not respond to PepO stimulation. (e) PepO failed to reduce the bacterial load of S. pneumoniae
in tlr2/tlr4−/- mice (n = 6 mice/group). (f) The macrophages were treated with Bafilomycin A1 before PepO treatment, and the
phagocytosis against S. aureus was assessed. (g) The bactericidal activity against S. aureus of Bafilomycin A1 and PepO-treated
macrophages was assessed. (h, i, and j) The relative NOS activity of different macrophages treated with PepO or with Bafilomycin A1
before PepO treatment was assessed. Data are shown as mean + SEM (n = 3) and are representative of three independent
experiments. ns: not significant; **p < 0.01. Student’s t-test was employed for statistical analysis.
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To further elucidate the correlation between TLR2/
TLR4 and autophagy, we blocked autophagy with
Bafilomycin A1 in gene-deficient macrophage. After inhi-
bition of autophagy, PepO failed to promote phagocytosis
in tlr2−/- and tlr2/tlr4−/- macrophage, while tlr4 deficiency
did not completely abolish the reaction of macrophage to
PepO (Figure 4(f)), suggesting that there is other TLR2-
involved mechanisms, distinguished from autophagy, reg-
ulating PepO-induced phagocytosis, e.g. miR155 mediated
phagocytosis enhancement. Consistent with phagocytosis,
in autophagy blocked macrophage, PepO enhanced bac-
teria killing in tlr4−/- macrophage, while tlr2−/- and tlr2/
tlr4−/- macrophage did not react to PepO stimulation
(Figure 4(g)). PepO-induced NOS activity elevation was
not compromised by the blockade of in tlr2/tlr4−/- macro-
phage (Figure 4(j)). However, out of expectation, autop-
hagy blockade impaired PepO-induced NOS activation
in tlr2−/- macrophage (Figure 4(h)) but not in tlr4−/-

(Figure 4(i)) and tlr2/tlr4−/-macrophage (Figure 4(j)). It
was reported that TLR4/IFNR2 signaling is involved in
NOS production [28]; thus, we assume that the tlr4 defi-
ciency inhibited PepO-induced NOS production, while
tlr2−/- macrophages react to the PepO stimulation.

PepO promotes macrophage unspecific
phagocytosis and bactericidal activity in a
dose-dependent manner

Since PepO-induced macrophage autophagy is an intrinsic
process without the contribution of adaptive immunity, we
assume that PepO enhanced phagocytosis and bactericidal
activity in an unspecific manner. Thus, we invested the
reaction of PepO-treated macrophage against different
bacteria. When treated with PepO, the phagocytosis of
murine peritoneal derived macrophage (PDM) is signifi-
cantly elevated compared to PBS treated macrophage in
a dose-dependent manner (Figure 5(a)). Although no sig-
nificant difference was found in lower dose (2–4 μg/mL)
PepO-treated PDM, higher dose PepO (over 6 μg/mL)
enhanced the bactericidal activity of PDM (Figure 5(b)).
Consistent with S. pneumoniae, PepO also promoted
macrophage phagocytosis and bacteria killing of S. aureus
(Figure 5(c,d)) and P. aeruginosa (Figure 5(e,f)). These
results indicated that PepO enhances macrophage phago-
cytosis and bactericidal activity in a species-independent
manner, for it altered the intrinsic response pattern of
macrophage.

PepO promotes bacteria clearance in pulmonary
infection

Pulmonary infection is a major cause of death worldwide,
especially in children and people in developing countries

[29]. Macrophage is the first immunocyte that participates
in bacteria clearance in pulmonary infection [30]. Since
PepO enhanced the phagocytosis and bactericidal activity
of macrophage, we next investigated if PepO protects
against pulmonary bacterial infection. PepO was admini-
strated to C57/BL6 mice intranasally 6 h prior to bacterial
infection. To rule out the unspecific effects of microorgan-
ism protein, the recombinant S. pneumoniae protein LytR
prepared in the same manner was set as control. We first
infected the mice with S. pneumoniae D39 strain intrana-
sally. Comparing to PBS or LytR, the bacteria load in the
lung of PepO-treated mice significantly decreased at 24-h
post-infection (Figure 6(a)), indicating that PepO strongly
enhances host anti-bacteria defense. Consistently, when
infected with another typical gram-negative bacteria,
P. aeruginosa, PepO-treated mice bore lower bacteria load
comparing to PBS or LytR treated mice (Figure 6(b)). In
particular, we used a multidrug-resistant clinical isolated
P. aeruginosa strain in this experiment, the satisfying result
suggested the potential of PepO for MDR bacterial infec-
tion treatment.

Since PepO significantly enhances macrophage phago-
cytosis and bactericidal activity in vivo, and macrophage
is a key effector cell in the pulmonary tract, we wondered
if the main effector cell in this process is macrophage. By
eliminating macrophage in C57/BL6 mice with
Clodronate Liposomes before PepO treatment [31], we
confirmed this hypothesis. Unsurprisingly, the bacteria
load in macrophage deficient mice is significantly higher
than WT mice. What is more important is that macro-
phage deficiency completely abrogated the ability of PepO
enhancing host defense (Figure 6(c)), suggesting that
PepO promotes bacteria clearance by regulating macro-
phage activity.

Discussion/conclusion

Due to the widespread of multidrug resistance bacteria
and novel found pathogens, existing antibiotics are
already very hard to meet the need of clinical practice.
World Health Organization listed antimicrobial resis-
tance as one of the ten threats to global health in 2019
[32]. Thus, new agents to solve this problem is urgently
required. However, what concerning is that the develop-
ment of novel antibiotics is far from satisfying clinicians
for this moment. The only two novel classes of antibiotics
discovered in the past two decades, lipopeptides and
oxazolidinones, cannot cover gram-negative bacteria.
Up to 2017, among the 44 novel antibiotic agents under
clinical trial, only 15 is effective against gram-negative
bacteria, and only 5 derived from existing antibiotics in
the 15 had entered phase 3 clinical trial [33]. While the
detection rate of gram-negative bacteria is rising horribly
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fast [34] and gram-positive bacteria causes mass loss [35],
it is not wise to put all the odds on the development of
novel antimicrobial agents. Thus, we should look for
a new strategy to meet the challenge of bacterial infection.

Immunomodulators against bacterial infection are
a potential strategy [1,2,12]. By avoiding drug resistance
risk, these agents may have advantage in some way
comparing to antibiotics. However, most of these
agents are small molecules, which development has

come to a bottleneck period [36]. In the past decades,
the rate of increase of novel small molecule drugs had
slowed down, indicating that their development is
restrained. The development of small molecular agents
relies on the establishment of molecular library and
large-scale screening [37], and the relatively low speci-
ficity of small molecular agents is a limitation hard to
overcome. Benefit from the development of gene engi-
neering, the advantage of protein drugs had shown

Figure 5. PepO enhanced unspecific phagocytosis and bactericidal activity of macrophage. Murine primary macrophages were
treated with PepO and then infected with S. pneumoniae (MOI = 100), S. aureus (MOI = 100), and P. aeruginosa, respectively
(MOI = 50). (a, c and e) PepO enhanced macrophage phagocytosis against S. pneumoniae, S. aureus, and P. aeruginosa, respectively,
in a dose-dependent manner. (b, d, and f) PepO enhanced macrophage bactericidal activity against the three species referred above.
Data were shown as mean with SEM (n = 3) and are representative of three independent experiments. ns: not significant; *p < 0.05;
**p < 0.01. Statistically significant differences were carried out by Student’s t-test.
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their advantage. The function and activity of a certain
protein are usually known, and its high specificity
decreased the risk of uncertain side effect [38].
Moreover, protein drug is relatively economical effi-
cient in production. These advantages made the protein
agent a new strategy in drug development. However,
there is few protein immunomodulator existing.

In this research, we reported a novel identified TLR2/
TLR4 bi-ligand protein, PepO, which promotes host anti-
bacterial defense by promotingmacrophage function. The
species-independent effect of PepO on macrophage pro-
vides a broad-spectrum anti-bacterial effect, indicating
the therapeutic potential of PepO. In vivo, PepO reduced
the bacteria load and protected C57/BL6 mice against two
major causes of pulmonary infection, S. pneumoniae and
P. aeruginosa, representing gram-positive and gram-
negative bacteria, respectively. It is noticeable that the
P. aeruginosa strain we used in this research is an MDR
strain, and the satisfying results indicated the possibility
of PepO as an immunotherapy agent against pulmonary
bacterial infection.

TLR4 is a cell surface receptor critical for phagocytosis
of macrophage. TLR4 ligand, e.g. LPS and E6020, pro-
motes macrophage phagocytosis by multiple mechanisms
[39,40]. ΔA146Ply [41] and GAPDH [42] are also TLR4
interacting proteins; however, they failed in promoting
macrophage phagocytosis [14]. Though TLR4 is the first
functionally characterized and the best-characterized
TLRs member, the function of TLR4 is mostly described
in a model of LPS stimulation. TLR4 recognizes and
triggers downstream signal transduction requires
a complex consist of other three proteins: LPS-binding
protein (LBP), CD14, and MD-2, referred as the lipopo-
lysaccharide-multireceptor complex [3]. They act subse-
quently to treat LPS and participate in endosome
generation. Different TLR4 interacting molecules, includ-
ing exogenous (e.g. LPS and several proteins derived from

different viruses [43,44]) and endogenous (e.g. HMGB1
[45], β-defensins [46] and LDL [47]), employ these acces-
sory molecules (all or in part) to induce the signal trans-
duction. TLR4 signals were conducted from both cell
membrane and endosomes, mediated by TIRAP/MyD88
and TRAM/TRIF, respectively, and led to NF-κB and
IRF3 activation [3]. However, most of these events are
described in LPS-stimulation, since different TLR4 ligand
interacting with LPS-multireceptor complex differently, it
is important to clarify how a certain ligand bind to this
complex and triggered downstream signal transduction.
As a TLR2/TLR4 bi-ligand, how PepO interacts with these
receptors and activates intracellular signaling to promote
phagocytosis requires further investigation.

Autophagy has been shown to be essential for innate
immunity by degrading internalized microorganism.
Accumulating evidence had shown that autophagy con-
tributes to bacterial clearance [48]. Investigations into
L. monocytogenes [49,50], M. tuberculosis [51] and
S. typhimurium [21,52] highlighted the critical role of
autophagy in restricting bacterial intracellular replication
and controlling infection. Besides these traditional intra-
cellular bacteria, the activation of autophagy also
enhances the internalization and elimination of extracel-
lular bacteria, including S. aureus [53], P. aeruginosa
[54,55] and E. coli [50]. In macrophages, xenophagy is
the most detailed described autophagy process associated
with bacteria clearance, targeting internalized microbes in
macroautophagy pathway [17,56,57]. Recently, research-
ers found that a noncanonical autophagy process named
LC3-associated phagocytosis (LAP) also contributes to
the clearance of bacteria by macrophage [17,56,58].
Though there is still overlap in the molecular mechanism
with macroautophagy, LAP is characterized by some spe-
cial features, including the difference in membrane struc-
ture, the requirement for ROS and the formation time of
LC3-associated vesicles [59,60]. LC3 on the LAPosome

Figure 6. PepO promotes pulmonary bacterial clearance in C57/BL6 mice. Mice were treated with 10 μg rPepO 6 h before bacterial
infection. PBS and LytR were employed as control. (a) PepO significantly reduced the bacteria load of S. pneumoniae D39-infected
mice. (b) PepO significantly reduced the bacteria load of an MDR P. aeruginosa-infected mice. (c) In macrophage depleted mice,
PepO failed in reducing the bacteria load of D39 infected mice. Data were expressed as mean with SEM (n = 6 mice/group). ns: not
significant; *p < 0.05; **p < 0.01; ***p < 0.001. Statistically significant differences were carried out by Student’s t-test.
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can be detected as early as 10 min and it usually reaches
a peak point at 1 h, while macrophage autophagosome
requires several hours to form. We found in our results
that the co-localization of LC3 puncta and bacteria
reaches a peak point at 4 h (SFigure 4), which is consistent
with canonicalmacroautophagy rather than LAP. In addi-
tion, since the recombinant PepO is sufficient to induce
macrophage autophagy, it is more likely to induce non-
specific autophagy which is beneficial for the bacteria
clearance rather than selective bacteria-specific one, but
further investigation is required for confirmation.

By contributing in antigen processing and presentation
of antigen-presenting cells including macrophages and
dendritic cells, autophagy linked innate immunity to adap-
tive immunity [61]. Therefore, autophagy is redeemed as
a potential target for anti-infection treatment. Several stu-
dies had demonstrated that manipulating autophagy could
enhance host anti-microorganism defense and treat the
infection. Levine et al. identified an autophagy inducing
peptide, Tat-beclin 1, which promotes the clearance of
multiple pathogens including bacteria and viruses [62].
Carbamazepine has been reported to protect against
M. tuberculosis infection by enhancing autophagic killing
[63]. On the other hand, researches have revealed that
autophagy prevents over-inflammation, which is the big-
gest obstacle of TLR agonists application [64]. Autophagic
elimination of damaged mitochondria caused by invading
bacteria limits the inflammation injury in vivo and in vitro
[65], and the deficiency in atg7 results in the dysregulation
of IL-1β and pyroptosis [66]. As an autophagy inductive
protein, PepO may be more safely in use than the existing
agents, but further investigation is required for confirming
the advantage in the safety of PepO.

In conclusion, we identified PepO as an immuno-
modulator that interacts with both TLR2 and TLR4. By
initiating autophagy, PepO promotes macrophage pha-
gocytosis and bactericidal activity, leading to enhanced
pulmonary bacteria clearance and anti-bacterial immu-
nity. In this study, we provided evidence for PepO’s or
TLR agonists’ therapeutic potential and a new strategy
for anti-bacterial infection treatment.
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