
Cloud Computing for
COVID-19: Lessons
Learned From Massively
Parallel Models of
Ventilator Splitting
Michael Kaplan

Duke University School of Medicine

Charles Kneifel, Victor Orlikowski,

James Dorff, and Mike Newton

Duke University Office of Information Technology

Andy Howard

Microsoft

Don Shinn

CrossComm

Muath Bishawi, Simbarashe Chidyagwai,

Peter Balogh, and Amanda Randles

Duke University

Abstract—Apatient-specific airflow simulationwas developed to help address the pressing

need for an expansion of the ventilator capacity in response to the COVID-19 pandemic. The

computationalmodel provides guidance regarding how to split a ventilator between two or

more patientswith differing respiratory physiologies. To address the need for fast deployment

and identification of optimal patient-specific tuning, therewas a need to simulate hundreds of

millions of different clinically relevant parameter combinations in a short time. This task,

driven by the dire circumstances, presented unique computational and research challenges.

We present here the guiding principles and lessons learned as to howa large-scale and robust

cloud instancewas designed and deployedwithin 24 hours and 800 000 compute hourswere

utilized in a 72-hour period.We discuss the design choices to enable a quick turnaround of the

model, execute the simulation, and create an intuitive and interactive interface.

Digital Object Identifier 10.1109/MCSE.2020.3024062

Date of publication 21 September 2020; date of current

version 9 October 2020.

Theme Article: Computational Science in the Battle
Against COVID-19
Theme Article: Computational Science in the Battle
Against COVID-19

November/December 2020 Published by the IEEE Computer Society 1521-9615� IEEE 2020. This article is free
to access and download, along with rights
for full text and data mining, re-use and
analysis

37

& THE ABILITY TO quickly spin-up cloud instan-

ces that strategically match the presented

research question, alongside the increasing

availability of high-performance computing

resources, has resulted in an increased use of

cloud computing for critical computational sci-

ence research. A global pandemic, such as

COVID-19, naturally amplifies the need for rapid

development and deployment of tools that can

have an impact. The dire circumstances evolving

in spring of 2020 led to increased hospitalization

rates and estimates of shortages of ventilators

within the U.S. alone of between 45 000 and

160 000.1 Ventilators are an essential component

of life-preserving treatment for patients with

respiratory failure and a shortage of ventilators

was predicted,2 and in some cases realized,3

early in the global pandemic. As a result, consid-

erable effort has been focused on methods to

share one ventilator amongst multiple patient-

s.1;4;5 However, due to safety concerns6 with pre-

existing ventilator splitting strategies, ventilator

splitting in the past has not been recom-

mended.7 In collaboration with restor3D (a local

biotechnology company, https://www.restor3d.

com/), a large team of engineers and clinicians at

Duke University developed a ventilator splitter

and resistor system (VSRS) aimed at increasing

the safety profile of ventilator splitting by accu-

rately predicting the delivered tidal volumes and

pressures under the wide range of clinically rele-

vant situations. To achieve this task, it was nec-

essary to quickly develop and deploy new

strategies of ventilator splitting, combining 3-D

printed components designed to fit standard

ventilator tubing (see Figure 1: top) with exten-

sive computational modeling to ensure that

each patient would receive a safe degree of ven-

tilation (see Figure 1, bottom).

With the validated device in hand, the

remaining question was how to tune it for any

given patient pairing and, further, how to pro-

vide this decision support in an intuitive way to

the clinicians. Addressing these questions pre-

sented unique challenges in an environment

with significant time pressure. The entire pro-

cess, from design of a new computational model,

to architecting an appropriate computing envi-

ronment, to creating a user interface, presented

many challenging opportunities of interest to

high-performance computing and biomedical

researchers facing problems driven by short

turnaround times. This article summarizes our

design decisions and lessons learned during

model design, HPC resource procurement and

deployment, and execution of a massively paral-

lel solution using over 800 000 compute hours in

a 72 h period. The total time to create the initial

model, validate it against benchtop data, deploy

the model at scale, and to collate the simulation

results into an easy-to-use mobile app was less

Figure 1. Top: Three-dimensional (3-D) printed

splitter (in blue) connected to the resistor (silver).

Airflow from the ventilator comes into the VSRS from

the left and heads to the patient who requires the

resistor (top right) or without the resistor (bottom

right). Bottom: Example output from the numerical

model without a resistor for a PIP of 30, PEEP of 8,

and I:E of 1 (acronyms explained in Table 1),

demonstrating how predicted tidal volumes vary

greatly and nonlinearly from multiple parameters,

specifically pulmonary compliance, respiratory rate,

and endotracheal (ET) tube size. The result for two

different ET tube sizes are displayed, with an 8 mm

ET tube resulting in greater tidal volumes than a 6

mm ET tube. Red colors demonstrate potentially

highly dangerous tidal volumes.

Computational Science in the Battle Against COVID-19

38 Computing in Science & Engineering

https://www.restor3d.com/
https://www.restor3d.com/

than one month. We expect that these experien-

ces can be applied by the computational science

community to future research questions requir-

ing rapid deployment.

DESIGN: MODEL DEVELOPMENT

Establishing a Numerical Model

A numerical model was established to aid

clinicians in their use of the VSRS, by calculat-

ing the airflow characteristics and distribution

through the system over a wide range of oper-

ating conditions. Under the dire circumstances

of a global pandemic, not only was time-to-

solution a driving design goal, but similarly

was minimal development time. In conven-

tional computational fluid dynamics research,

time would be taken to optimize the code and

the simulation setup so that the run-time of

each simulation was minimized. Such an effort

typically requires significant man-hours to

establish a validated and optimized computa-

tional model. The challenges in developing the

VSRS model were the competing needs of 1)

creating a robust, well-validated, and accurate

model to ensure that clinicians can deploy the

VSRS while minimizing harm to their patients,

and 2) the need to deliver results as quickly as

possible.

Due to a lack of well-established numerical

models available for ventilator splitting, we

developed our own model to explore the general

dynamics of a system where multiple patients

are connected to one ventilator. Specifically, we

approached the problem by using lumped

parameter models to solve the governing equa-

tions of mass, energy, and momentum conserva-

tion in order to simulate airflow from a

ventilator source to a patient’s lungs. The lungs

were modeled as a Hookean spring and viscous

dashpot in parallel to represent the pulmonary

compliance and resistance, respectively. The rel-

evant inputs to the model are described in

Table 1 and Figure 2, and the outputs are time-

series of delivered tidal volumes (which can be

condensed as displayed in Figure 1, bottom) and

pressures.

The ideal modeling tool for this task would

be one which can be run locally, is highly flexi-

ble to allow different configurations and

patient parameters, and is readily scalable and

computationally efficient so that it could even-

tually be deployed for a massive parameter

sweep. MATLABs Simscape has an easy-to-use

GUI, which allows for rapid generation of

highly flexible models that can run easily on a

laptop. This allows one to experiment with the

significance of different parameters and model

configurations, however, using a higher-level

proprietary software that requires a license to

run potentially meant that we would encounter

issues with scalability and efficiency when

deploying the model at scale. While we chose

MATLAB due to previous experience with the

modeling software in an effort to decrease

time to model generation, open source alterna-

tives, such as OpenModelica or Scilab, could

have been explored as well.

The initial models helped us make fundamen-

tal observations, which were key to designing our

large-scale parameter sweep. Of note, we discov-

ered that the one ventilator mode (pressure-con-

trolled ventilation) was inherently safer for

ventilator splitting than another (volume-con-

trolled ventilation). Additionally, the preliminary

models demonstrated that a decoupling occurs

when multiple patients are placed on pressure-

Table 1. Input parameters to the numerical model.

Parameter Name Units
Min

Value

Max

Value

Step

Size

of

Values

Peak Inspiratory

Pressure (PIP)
cmH2O 20 50 1 31

Positive

End-Expiratory

Pressure (PEEP)

cmH2O 5 20 1 16

Inspiratory to

Expiratory

Ratio (I:E)

ratio 1:3 1:1 fraction 7

Respiratory Rate

(RR)
breaths
min 10 30 1 21

Pulmonary

Compliance
ml

cmH2O
10 100 1-2 46-91

Endotracheal Tube

(ET) Diameter
mm 6 8.5 0.5 6

Resistor Radii mm 2.5 5.5 1 7

Final parameters, along with the minimum, maximum, and step size, and

discrete values explored, that were required for the large parameter

sweep. Step sizes were determined so that an incremental change

resulted in less than a 5% change in delivered tidal volumes. The top

four parameters are ventilator settings (PIP, PEEP, I:E, RR), the next two

are patient-specific considerations (Compliances and ET tube size), and

the final one is a circuit configuration parameter (Resistor size).

November/December 2020 39

controlled ventilation, such that there is no inter-

action between patients connected to the same

ventilator. This finding was important because it

fundamentally changed our computational task.

Namely, instead of simulating every possible com-

bination of ventilator parameters as well as both

patients’ individual characteristics, this permit-

ted the more tractable task of solving for every

possible combination of ventilator parameters

and a single patients characteristics.

This difference ultimately reduced the num-

ber of simulations we had to perform by several

orders of magnitude (270 million as compared to

125 billion) and turned an intractable task into a

large, but achievable computational challenge

given the time constraints.

A final important outcome from the initial

testing was to understand the sensitivity of our

outputs of interest, which are tidal volumes (see

Figure 1 bottom) and delivered pressures, to the

many input parameters (see Table 1). The mini-

mum and maximum values for various parame-

ters were known from clinical experience, but

how finely we would have to sample parameter

space was unknown. To overcome this, we per-

formed sensitivity tests to determine the granu-

larity with which we would have to sample

parameter space in order to guarantee precise

results within an acceptable level of uncertainty.

With this knowledge, and initial speed tests of

the numerical model on local resources, we

were able to estimate the number of simulations

and compute hours that would be required,

assuming that we were able to efficiently scale

the model to larger systems.

Lesson Learned 1: Using low overhead tools,

such as MATLAB’s Simscape, for initial modeling

can enable rapid acquisition of baseline intuition

needed for design of the large-scale study.

Embarrassingly Parallel Design

The goal of this project was to provide a deci-

sion support tool to aid clinicians in their use of

the VSRS. To this end, we needed to precalculate

the expected airflow for any potential patient-

and ventilator-derived values, so that the result-

ing data could be made available in realtime to

help direct the choice of resistor. As described

in Table 1, there are seven parameters serving

as input to the simulation. For the four ventilator

settings in Table 1 (PIP, PEEP, I:E, RR) and ET

tube diameters, the step size was chosen to

allow clinicians to have an equal level of granu-

larity as they would with a standard ventilator,

with minimum and maximum values chosen

based on clinical experience for the range of real-

istic clinical scenarios. The compliance step size

was set such that a step change in compliance

would lead to less than a 5% change in tidal vol-

umes. Determining the number of values to

explore was derived from discrete subtraction of

the minimum from the maximum value, divided

by the step size.

Figure 2 displays the chosen hierarchy for

the parameter sweep. The batch submission

script generates two jobs (one for the model

with a resistor, one for the model without a

resistor) for each combination of PIP, PEEP, I:

Figure 2. Illustration of the directory structure, job

types, and output file structure for the 7-D

embarrassingly parallel parameter sweep. The

number of parameters at each level are in

parentheses. For each combination of PIP, PEEP, I:E,

and RR, two jobs were submitted, for the cases

without a resistor and one for cases with a resistor.

Those jobs then swept through the parameters of ET

Tube sizes, resistor sizes (if applicable), and

pulmonary compliances, totaling over 270 million

different simulations.

Computational Science in the Battle Against COVID-19

40 Computing in Science & Engineering

E, and RR. Each job then sweeps through the

different ET Tube sizes, Resistor sizes, and

Compliance values. Due to the embarrassingly

parallel nature of the parameter sweep, it was

possible to break up the number of simulations

into jobs in a variety of different ways. Ulti-

mately, a balance was chosen such that an

average job would last approximately 5 h and,

therefore, resubmitting a failed job would not

incur an undue strain on the allotment. Addi-

tionally, this results in a manageable number

of writes to disk, with a tolerable overhead

cost for each job.

With a cloud-based environment different

node counts can be running, and generally speak-

ing there is a lot of flexibility. This is well suited for

an embarrassingly parallel framework. We further

optimized the design by having each simulation

save the time-series data for pressures and tidal

volumes to the local disk. This was facilitated by a

hierarchy that identified where in parameter

space that simulation occurred, for ease of post-

processing and collating the results. In order to

not overwhelm the storage capacity on-node,

prior to completion the job would postprocess

the results by: 1) determining the tidal volume,

maximum pressures, and minimum pressures at

the steady state, 2) delete the time-series data,

and 3) create a reduced precision csv file with a

row for each simulation that was included in the

job. This configuration was designed to allow for

easy debugging and resilience against network

outages. Namely, one could look at the files on-

node to determinewhich specific simulation failed

by finding the last successful output in a parame-

ter sweep. In total 146 000 intermediate csv files

were created, for which subsequent scripts were

deployed to concatenate them along the directory

structure until the final data table was ultimately

produced.

Lesson Learned 2: Relying on an embarrass-

ingly parallel framework allowed us to match

to a dynamic cloud-based environment, to best

facilitate the required large-scale parameter

sweep.

DEPLOYMENT: DYNAMIC CLOUD
COMPUTING

With the initial modeling was complete, the

next step was to develop a method for deploying

the model at scale. In this section, we will dis-

cuss the unique opportunities provided by

deploying on a cloud platform, unexpected chal-

lenges with maintaining an embarrassingly paral-

lel code at scale, solutions we implemented, and

how the hundreds of millions of simulations

were synthesized into an intuitive and portable

interface for clinicians.

Problem-Oriented Architecture Design

To obtain access to high-performance comput-

ing resources on a scale similar to what was

required for this project, it is common practice to

submit an architecture-targeted proposal request-

ing compute hours on a specific resource. While

drafting such a proposal, care is taken to demon-

strate feasibility, run-time, and parallel perfor-

mance on the targeted system, since efficiency is

paramount on these precious resources. For our

project, however, the emphasis was the need for

haste in solving the problem, which led to us seek-

ing methods that were almost agnostic to the

underlying hardware. The COVID-19 HPC Consor-

tium (https://covid-19-hpc-consortium.org/) pro-

vided a unique opportunity for describing the

needs and constraints posed by the problem,

which could then be paired with an appropriate

and available resource allocation. In this case, we

had a working, validated code that could easily

run on a variety of different platforms. The embar-

rassingly parallel nature of the setup meant that

network connectivity was less of a consideration,

and that our primary need was a large core count

with sufficient memory (2–4 GB of memory-per-

core) so that each core could independently com-

plete a simulation without being bottlenecked by

shared memory. Most importantly, we needed

access to a high-throughput resource, where jobs

could be submitted and executed quickly.

Although time-to-solution was important, the con-

straints allowed some flexibility. For example,

individual job run-time was not a concern, nor

was the order of completion; if some jobs took lon-

ger to run than others, that was acceptable. The

overriding need was to turnaround completion of

all of the jobs within a few days so that the data

were available for FDA review of the device and

associated clinical support software. Rather than

requesting a set number of core hours corre-

sponding to jobs on set architecture and node

November/December 2020 41

sizes, the Consortium afforded us the ability to

describe the problem, needs, and constraints.

This flexible, problem-oriented design process

facilitated a more efficient and effective matching

of resources to problem that played a critical role

in our ability to successfully accomplish our

stated research goals.

The shift to a problem-driven approach was

further enhanced through being paired with the

Microsoft team for computing resource coordina-

tion and administration. The Consortium pro-

vided resources through the Microsoft cloud

computing infrastructure, Azure. The use of a

cloud-based architecture was a strong fit for our

needs based on the ability to configure the infra-

structural aggregate to suit the problem at hand.

Thus, as we were leveraging an embarrassingly

parallel setup, there was no necessity for the node

count to remain fixed over the course of the simu-

lations. Throughput, resilience, and resource

availability could be balanced in a dynamicway as

node counts assigned to the jobs could fluctuate

throughout the execution duration. In the initial

meetings between the Duke and Microsoft teams,

we were able to outline the problem and associ-

ated resource needs to allow a cloud instance to

be configured and tuned specifically to meet our

need. As mentioned, we opted for an implementa-

tion that left each parameter-based simulation

contained in an independentmannerwithminimal

data collection and analysis handled between

small groups of tasks. Therefore, rather than a

tightly coupled, MPI-basedmodel, wewere able to

employ a minimal communication, embarrass-

ingly parallel framework. This design choice

resulted in the processor selection being of far

more consequence than choice of interconnect,

so we searched for an Azure cloud configuration,

which would allow for the largest core count at

the lowest cost per core. The goal of maximizing

throughput and minimizing wall-time could only

be accomplished by taking advantage of as many

nodes as was economically feasible. Shared

storage requirements were relatively minimal,

since individual compute nodes did not need

to reference considerable shared data and post-

processing was designed to be performed on the

local node; requirements were limited to those

necessary for job submission—Slurm configura-

tion and the users home directory. In order to

scale the NFS filesystem on the head node to sup-

port hundreds of nodes connecting back to it, a

managed premium disk was attached to the head

node to use as the NFS export. With these consid-

erations, the team was able to define a rough

architecture using the Azure HB-series VMs, a

basic NFS filesystem, and a Slurm front-end to

manage job scheduling, all orchestrated by Azure

CycleCloud. Slurmwas chosen as the cloud sched-

uler to allow a seamless transition from our local

cluster, which also used Slurm, to the cloud, yet

another benefit of being able to fully customize

the cloud architecture to meet the needs of the

project. As a result, wewere able to rapidly deploy

our model with minimal time spent altering

the code.

With an architecture defined, the next step

was calculating the number of cores needed to

meet the timeline. Based on this architecture

and the desired timeframe, 24 000 cores were

estimated to be needed to complete the project

in 2 days (24 000 cores � 48 h gave a total of

1 152 000 core hours). Alternatively, if we

attempted to complete this task with only local

resources (for example, by having unrestricted

access to 1000 cores), the total time to solution

(over a month) would have delayed our ability

to combat the initial surge in COVID cases. Due

to the computations not requiring communica-

tion between compute nodes and the capabili-

ties of Azure, it would have been possible to

secure the necessary number of cores by com-

bining allocations from several geographically

distinct locations—with some jobs running in

Europe, for example, while others might run in

South America. In order to simplify the debug-

ging of failed jobs and minimize administrative

overhead, however, all nodes were allocated

within the same datacenter in Western Europe;

thus, 24 000 cores (using the Azure individual

node type “HB60s”) were made available by

Saturday.

Lesson Learned 3: By configuring the cloud

architecture to match the needs of the problem (a

problem-oriented approach) instead of manipulat-

ing the problem to fit the constraints of the platform

(an architecture-oriented approach), we were able

to be prepared to rapidly deploy our model.

Lesson Learned 4: By mimicking the feasibility

testing environment, and thereby minimizing the

Computational Science in the Battle Against COVID-19

42 Computing in Science & Engineering

need to rework scripts, we were able to rapidly

implement our model at scale.

EXECUTION: COMPLETING 800 000
COMPUTE HOURS OF SIMULATION
IN 72 H

In order to successfully complete the com-

puting challenge, it was important to anticipate

issues before they arose and to design the sys-

tem architecture accordingly. However, some

issues with underlying dependencies and hid-

den performance bottlenecks only arose when

the model was deployed at the full scale. Solv-

ing these issues rapidly was paramount to

being able to complete the computational task

without depleting the allotment of compute

hours.

Identify Underlying Dependencies

While initial performance testing on the

cloud behaved as expected, significant slow-

downs were observed while attempting to spin

up all of the nodes and deploy the model. This

eventually reached the point where job submis-

sion became infeasible and performance levels

were significantly below expectations (both in

terms of concurrently running jobs and comple-

tion rates).

To investigate this, we identified all com-

munication channels, storage locations used,

and potential hidden bottlenecks in the archi-

tecture and configuration of the supporting

software. In this manner, a number of issues

were addressed, including network addressing

and Slurm scheduler tuning. The most significant

issue identified was that file I/O from the head

node slowed and eventually stopped. The cause

was identified as the shared NFS filesystem being

written to by all the running jobs, but only mini-

mally; the I/O load was not commensurate with

the slowdown being experienced. The underlying

reason was a MATLAB-specific setting associated

with the simulation execution, related to the loca-

tion of the preferences directory. While unrelated

to the simulation itself, this emphasizes the impor-

tance of running full-scale tests to identify hidden

infrastructure interactions.

Lessons Learned 5: Beyond initial perfor-

mance testing, full-scale tests deploying the model

helped to identify hidden dependencies causing

severe performance degradation.

Look for Hidden Performance Bottlenecks

Hidden performance bottlenecks at scale

can create significant increases in necessary

compute hours. For example, MATLAB is based

on run-time compilation, and the time to com-

pile the code was several factors larger than the

time necessary to simulate the model for a

given set of parameters. As a result, a primary

consideration to maintain efficiency was to min-

imize time spent compiling. Fortunately, there

is built-in functionality in MATLAB to perform a

parameter sweep without recompiling the code

for each iteration of a parameter sweep. This

was only possible to implement, however, for

sweeps over patient parameters; this was not

easily achievable for sweeping through ventila-

tor settings or changes in the circuit architec-

ture. We took advantage of this by organizing

the simulations into separate jobs for which

only one compilation was required per job. This

resulted in the 270 million simulations being

handled by 146 000 jobs, which drastically

jminimized wall-time by reducing run-time

recompilation.

Use of a folder directory architecture (see

Figure 2) whereby files are stored across multi-

ple directories, reduced slow-down associated

with reading and writing to disk compared with

single-directory storage. This was an important

consideration given the significant I/O associ-

ated with the Oð105Þ files associated with the

146 000 jobs. An additional advantage of storing

both the submission scripts and output in this

separated-directory structure was the triviality

of generating auxiliary scripts for detecting fail-

ures in either the job submissions or model out-

put generation; this allowed problematic jobs to

be easily found and resubmitted.

To decrease data storage and transfer require-

ments, all postprocessing was performed on-node

immediately after each simulationwas completed,

with intermediate results deleted. This converted

the time-series output into three values (the

steady-state tidal volume, maximum delivered

pressure, and minimum delivered pressure),

which were stored only at the clinically relevant

precision. As a result, what would have required

November/December 2020 43

over 100 TB of storage space was decreased to

approximately 10 GB.

Lesson Learned 6: Job organization with a

run-time compilation code like MATLAB is impor-

tant to minimize recompilation and, thus, maintain

the embarrassingly parallel characteristic.

Lesson Learned 7: I/O, data storage, and trans-

fers can be improved through specific usage of

directory structures and on-node postprocessing.

TRANSLATION: ESTABLISHING AN
INTUITIVE INTERFACE

With simulations completed, the remaining

challenge was how to provide this data back to

the clinician in a way that is simple, intuitive,

up-to-date, and minimizes the chance of error.

A mobile app, both for iOS and Android, that

can run on low-end mobile phones as well as

high-end tablets maximizes portability of the

VSRS to global health scenarios as well as high-

tech ICUs. Using a mobile app allows for a

native, performant user interface (see Figure 3)

and the ability to save and retrieve deidentified

input value sets locally on the device. As the

final data table, which stores all of the precom-

puted results, is larger than 10 GB, it is unlikely

to be easily stored on low-end mobile phones.

Consequently, it was decided to have the

mobile app connect to a cloud-based API to

receive the input values and return the corre-

sponding results from the indexed database.

While an Internet connection is necessary to

retrieve new results, the installed app approach

also leaves the door open to potentially pre-

caching the data on high-capacity mobile devi-

ces should a no-Internet version be necessary

in the future. An advantage of the cloud-based

API is that it allows for clinicians to have the

most up-to-date and accurate results at their

fingertips. While the VSRS exclusively makes

use of a mobile app, a remote webform is a rea-

sonable alternative that could deliver similar

functionality as the mobile app.

As the data were precalculated, the end-user

would need to query precalculated results based

on a diverse but fixed number of input possibili-

ties. Taking advantage of this and with an intent

to reduce possible user-error, we followed a

selection-based UI paradigm (akin to tabs and

drop-down menus). This ensured that clinicians

would only be able to input values that were con-

sistent with the precomputed results and that no

errors, such as confusion with unit conventions,

would occur.

Lessons Learned 8: A cross-platform mobile

app with a selection-based UI maximizes usability

in various hospital settings, while minimizing user

error.

CONCLUSION
Multiple lessonswere learned in the process of

rapid development and deployment of a parallel

numerical model to support the clinical use of the

VSRS in the event of ventilator shortages. Unlike

conventional research projects that are designed

and executed over months or years, a unique set

of challenges arise for projects requiring rapid

and agile development and deployment. The bal-

ance of developer time versus compute time

under severe time-to-solution constraints leads to

substantively different design choices. This article

is an attempt to organize and articulate the valu-

able lessons learned in the process of generating

Figure 3. Illustration of themobile app’s input (left) and output

(right) displays. Note that the inputs are fromadrop-downmenu and

are not free text fields to reduce the possibility of clinician error. The

displayed output is for the case of the user querying the results for a

3mm resistor.

Computational Science in the Battle Against COVID-19

44 Computing in Science & Engineering

the data necessary to guide resistor choice when

using the VSRS to split ventilators between two or

more patients.

For example, utilizing physical intuition

gleaned from preliminary modeling can assist in

the development of an embarrassingly parallel

numerical model, which is advantageous for per-

forming large-scale parameter sweeps in HPC

environments. A cloud architecture as the HPC

environment allows for platform customization to

match the needs of the problem, instead of having

to coerce the problem into functioning on the

platform, which leads for rapid deployment. In

order to avoid significant slowdowns when an

embarrassingly parallel code is deployed at a

massive scale, it is important to analyze the code

and communication channels for hidden depen-

dencies and performance bottlenecks. Last, for

the results of the hundreds of millions of simula-

tions to be utilized to help combat COVID-19, it is

essential to create an intuitive user interface, with

effort placed to minimize the potential user error.

These lessons learned from rapidly deploying

almost one million compute hours in a cloud-

based infrastructure for a COVID-19 target are

applicable to other situations where researchers

have maximal motivation to minimize time-to-

solution.

ACKNOWLEDGMENTS
The authors would like to thank many con-

tributors who provided assistance, often at odd

hours, to help complete this project with a fast

turnaround. In particular, they would like to

thank the COVID-19 HPC Consortium for both

the compute hours and fast turnaround time

and the broader Microsoft team for all of the

support. They would like to thank T. Milledge for

connecting us with the larger Research Comput-

ing team at OIT and assisting with MATLAB

licensing issues, T. Lonergan for acting as the

licensing liaison between Mathworks and Azure,

and J. Hopkins and S. Rich for technical assis-

tance with CycleCloud authorization tokens. The

team would also like to thank the assistance of

Microsoft and the Microsoft team. They pro-

vided assistance, insight, and funding all on

short notice and with full commitment to the

success of the project.

APPENDIX
Airflow Numerical Model

Air flow was simulated as a lumped parameter model
using MathWork’s Simscape pipe flow dynamics pack-
ages, which solve the laws of mass, momentum, and
energy to determine the pressure, velocity, density, and
temperature of gas as it travels through a network of pipes.
The ventilator was modeled as either a volume or pressure
source with a specified waveform representing the user-
defined ventilator settings (PIP, PEEP, I:E, RR). Gas flow is
then simulated for the travel though standard ventilator
tubing, where it then interacts with the splitter, resistor of set
diameter, endotracheal tube of a given size, and the
patient’s lungs. The lungs were modeled as a Hookean
spring, representing the inverse of the compliance of the
lungs, and a viscous dashpot, representing the resistance
of the lungs, in parallel.8 The range of input parameters to
the model were chosen based on simulating the wide
range of ventilator settings, endotracheal tube sizes, and

pulmonary characteristics that clinicians could encounter
when treating patients with respiratory failure. Models were
simulated until the gas flow to the lungs reached the
steady state. Sensitivity tests were conducted to determine
the granularity of the parameter sweep necessary to
ensure that a change in tidal volume of less than 5%
occurred for a given step size.

The model was validated against benchtop data.
Using an anesthesia care station ventilator, standard tub-
ing, the 3-D printed splitter and resistor system, standard
endotracheal tubing, and artificial test lungs, experiments
were performed to determine the delivered pressures and
tidal volumes to the artificial test lungs for different ventila-
tor settings. When these same settings were used as inputs
to the numerical model, the predicted tidal volumes were
found to be in excellent agreement with those from the
benchtop experiments.

November/December 2020 45

& REFERENCES

1. S. Srinivasan et al., “A rapidly deployable individualized

system for augmenting ventilator capacity,” Sci. Trans.

Med., vol. 9401, no.May, 2020, Art. no. eabb9401, doi:

10.1126/scitranslmed.abb9401.

2. B. Rosenthal and A. Feuer, “Coronavirus in N.Y.:

Astronomical surge leads to quarantine warning,”

pp. 3–7, 2020. [Online]. Available: https://www.

nytimes.com/2020/03/24/nyregion/coronavirus-new-

york-apex-a ndrew-cuomo.html

3. J. R. Beitler et al., “Ventilator sharing during an acute

shortage caused by the COVID-19 pandemic,” Amer.

J. Respiratory Crit. Care Med., vol. 15, pp. 600–604,

2020. [Online]. Available: http://www.ncbi.nlm.nih.gov/

pubmed/32515988

4. B. K. Lai, J. L. Erian, S. H. Pew, and M. S. Eckmann,

“Emergency open-source three-dimensional printable

ventilator circuit splitter and flow regulator during the

COVID-19 pandemic,” Anesthesiology, vol. 133,

pp. 246–248, 2020.

5. A. Clarke, A. Stephens, S. Liao, T. Byrne, and

S. Gregory, “Coping with COVID-19: ventilator splitting

with differential driving pressures using standard

hospital equipment,” Anaesthesia, vol. 75,

pp. 872–880, Apr. 2020, doi: 10.1111/anae.15078.

6. A. D. Cherry, J. Cappiello, M. Bishawi, M. G. Hollidge,

and D. B. MacLeod, “Shared ventilation: Toward safer

ventilator splitting in resource emergencies,”

Anesthesiology, vol. 133, pp. 681–683, Sept. 2020.

7. “Joint Statement on Multiple Patients Per Ventilator,”

pp. 12–14, 2020. [Online]. Available: https://www.

asahq.org/about-asa/newsroom/news-releases/2020/

03/joint-st atement-on-multiple-patients-per-ventilator

8. M. Schmidt et al., Computer Simulation Measured

Respiratory Impedance Newborn Infants Effect

Measurement Equipment, vol. 20. Amsterdam, The

Netherlands: Elsevier, 1998, no. 3.

Michael Kaplan is currently a medical student with

Duke University, Durham, NC, USA, conducting

research in the Biomedical Engineering Lab of Prof. A.

Randles. He plans to start residency in Anesthesiology

in 2021 and to continue to conduct research in basic

and translational sciences, in fields ranging from

computational hemodynamic modeling, machine

learning, surgical optimization, vascular growth, and

imaging of the microvasculature. He received the

Ph.D. degree in geophysics from the University of

Southern California, Los Angeles, CA, USA. Contact

him at mike.kaplan@duke.edu.

Charles Kneifel is currently the Senior Technical

Director with Duke OIT, Durham, NC, USA. He man-

ages Dukes central technology infrastructure and

Software Defined Networking Project. He has coordi-

nated several technology grants with Duke including

the National Science Foundations Data Infrastructure

Building Blocks (DIBBS) grant to build campus

cyberinfrastructures. Prior to Duke, he was a Chief

Information Officer with the American Kennel Club

for nine years. He has also held multiple technical

positions at the NC State University. He received the

Ph.D. degree in chemistry from the State University

of New York at Stony Brook, Stony Brook, NY, USA.

Contact him at charley.kneifel@duke.edu.

Victor Orlikowski is currently a Research Soft-

ware Developer and Systems Administrator with

Duke Research Computing, Stony Brook, NY, USA.

He is a Senior IT Analyst focused on automation. He

is experienced in networked storage devices and vir-

tual machines. He has been a key member of

research teams that have pioneered the tools regu-

larly used by researchers at Duke. He has been with

Duke for more than eight years in the Departments of

Computer Science, Pratt School of Engineering and

OIT. He regularly teaches Dukes Introduction to

Linux seminars. Contact him at vjo@duke.edu.

James Dorff is currently an IT Senior Manager with

Duke University, Durham, NC, USA. He specializes in

Unix System Administration and computational phys-

ics. Contact him at jdorff@duke.edu.

Mike Newton is currently the Senior IT Analyst with

Duke Universitys Office of Information Technology

(OIT), Durham, NC, USA. He is the Primary System

Administrator for OITs High Performance Computing

(HPC) cluster. Contact him at jmnewton@duke.edu.

Andy Howard is currently a Senior Program Man-

ager on the Azure Compute team focused on HPC

and Azure CycleCloud. After spending almost a

decade helping architect, build, and manage on-

premises HPC systems for companies such as Pur-

due University, Cray, and the Department of Defense,

he has spent the last seven years helping transition

HPC workloads to the cloud. At Microsoft, he draws

on this industry experience to help customers plan

cloud HPC implementations and guide Microsoft’s

HPC product offerings. He received the B.S. degree

in electrical and computer engineering technology

fromPurdueUniversity,West Lafayette, IN, USA. Con-

tact him at Howard.Andy@microsoft.com.

Computational Science in the Battle Against COVID-19

46 Computing in Science & Engineering

http://dx.doi.org/10.1126/scitranslmed.abb9401
https://www.nytimes.com/2020/03/24/nyregion/coronavirus-new-york-apex-a ndrew-cuomo.html
https://www.nytimes.com/2020/03/24/nyregion/coronavirus-new-york-apex-a ndrew-cuomo.html
https://www.nytimes.com/2020/03/24/nyregion/coronavirus-new-york-apex-a ndrew-cuomo.html
http://www.ncbi.nlm.nih.gov/pubmed/32515988
http://www.ncbi.nlm.nih.gov/pubmed/32515988
http://dx.doi.org/10.1111/anae.15078
https://www.asahq.org/about-asa/newsroom/news-releases/2020/03/joint-st atement-on-multiple-patients-per-ventilator
https://www.asahq.org/about-asa/newsroom/news-releases/2020/03/joint-st atement-on-multiple-patients-per-ventilator
https://www.asahq.org/about-asa/newsroom/news-releases/2020/03/joint-st atement-on-multiple-patients-per-ventilator

Don Shinn is currently the Founder and CEO of

CrossComm—an award-winning mobile, web, and

immersive app development studio with a 20+ year

history of deploying innovative technologies to solve

the toughest problems and challenges. Under

Mr. Shin’s leadership, the Durham, NC-based com-

pany has been recognized as one of the leading

mobile and AR/VR app developers in the region by

clutch.co, and has been nationally recognized as the

Minority Technology Firm of the Year (2015) by the US

Department of Commerce. He has been a passionate

advocate for human-centric user interfaces through-

out his career, and is currently interested in exploring

the future of spatial computing and leveraging app

innovation to advance social good. Contact him at

don.shin@crosscomm.com.

Muath Bishawi is currently a Cardiothoracic Sur-

gery resident with Duke University, Durham, NC,

USA and a Ph.D. Research Scientist in biomedical

engineering also at Duke. His translational and bio-

medical engineering research focuses on studying

cardiovascular function and end-stage heart fail-

ure. He has experience in 3-D printing, novel cath-

eter design, tissue engineered blood vessels, and

ex-vivo modification of donor hearts to improve

cardiac transplantation outcomes. His clinical

research is focused on clinical outcomes after

adult cardiac surgery with a focus on end-stage

surgical heart failure and transplantation. He is a

serial inventor and entrepreneur. Contact him at

muath.bishawi@duke.edu.

Simbarashe Chidyagwai is currently working on

the Ph.D. degree in biomedical engineering with

Duke University, Durham, NC, USA. His research

involves computational fluid dynamics modeling of

blood flow in congenital heart diseases. He received

the B.S.E. degree in mechanical engineering from

Michigan State University, East Lansing, MI, USA.

Contact him at simbarashe.chidyagwai@duke.edu.

PeterBalogh received the Ph.D. degree inmechan-

ical engineering from Rutgers University in 2018. He

developed a method for modeling blood cells flowing

through complex capillary networks in 3D, for which

he was awarded the Acrivos Dissertation Award in

Fluid Dynamics from the American Physical Society.

He is currently a postdoctoral associate in the Depart-

ment of Biomedical Engineering at Duke University.

His research interests include computational fluid

dynamics modeling of biological flows, numerical

methods for complex fluid-structure interfaces, and

code development for high performance computing.

His current research is focused on modeling cancer

cells and their transport through the circulatory sys-

tem, and on investigating the remodeling of microvas-

culatures through comparisons with experiments.

Contact him at peter.balogh@duke.edu.

Amanda Randles is currently the Alfred Winborne

Mordecai and Victoria Stover Mordecai Assistant Pro-

fessor of biomedical engineering with Duke Univer-

sity, Durham, NC, USA. She was a Lawrence Fellow

with the Lawrence Livermore National Laboratory

from 2013 to 2015. Prior to graduate school, she

worked with IBM on the Blue Gene supercomputer.

She has been the recipient of the ACM Grace Murray

Hopper Award, the LLNL Lawrence Fellowship, the

NIH Early Independence Award, and named as a

2017 MIT TR35 Visionary. She is a Senior Member of

the National Academy of Inventors. Her research in

biomedical simulation and high-performance com-

puting focuses on the development of new computa-

tional tools that she uses to provide insight into the

localization and development of human disease. She

has contributed more than 40 peer-reviewed papers,

more than 120 granted US patents, and has more

than 100 pending patent applications. She received

the bachelor’s degree in physics and computer sci-

ence from Duke University, and the master’s degree

in computer science and the Ph.D. degree in applied

physics and from Harvard University, Cambridge,

MA, USA. Contact her at amanda.randles@duke.edu.

November/December 2020 47

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

