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ABSTRACT: Magnetite nanoparticles present attractive properties including high magnetization, low toxicity, adsorption capacity,
and simple preparation, making them efficient in water purification processes, soil remediation, and biomedical applications. In this
sense, there is growing interest in the production of magnetite nanoparticles; therefore, evaluating the performance of this process on
a large scale gives relevant information to process designers. In this work, the simulation and exergy analysis of large-scale production
of magnetite nanoparticles via coprecipitation were performed using computer-aided tools. The process was modeled for the
production of 807 t/year of magnetite nanoparticles; the data for the simulation were obtained from the literature, and experimental
results were developed by the authors. The exergy efficiency of the process was estimated at 0.046%. The exergy of waste was
estimated to be 105 313 MJ/h, while the unavoidable exergy losses were 2941 MJ/h. Washing 2 and 3 represented the most critical
stages of the process, contributing 95.12% of the total irreversibilities due to the waste exergy, which corresponds to the water and
ethanol exergy discarded in these stages. These results show that the process must be improved from the energy point of view and
require the implementation of process optimization strategies to reach a more sustainable design.

■ INTRODUCTION

Iron oxide nanoparticles have attracted the scientific interest due
to their application in several fields, including biomedicine,
pharmaceuticals, and environment.1 Magnetite, maghemite, and
hematite are the most well-known and best-described iron
oxides in the literature; however, magnetite has received more
research and applications compared to other magnetic nano-
particles.2 Magnetite (Fe3O4) is characterized by a cubic inverse
spinel structure,3 which endows it with unique electrical
characteristics, high magnetization, low toxicity, and adsorption
strength among others,4,5 making them useful for photocatalytic,
sonocatalytic, antibacterial, and antifungal purposes.
Regarding magnetite nanoparticles, there is considerable

research on their application in the pharmaceutical industry,
agriculture,6 water purification processes, soil remediation,7 and
the biomedical field.8−10 Some of the most novel investigations
include the determination of the efficiency of magnetite

nanoparticles stabilized with surfactants in the adsorption of
heavy metals Cd2+, Pb2+, and Zn2+ from contaminated waters, as
reported by Fawzia et al.4 Moreover, in the petroleum industry,
magnetite nanoparticles tend to be of importance considering
that these can be used to treat spills due to their capacity to
recover oil. Elmobarak and Almomani11 reported that silica-
modified magnetite nanoparticles used as a demulsifier can be
recovered about 90% of oil by adding 10 mg of magnetite
nanoparticles per liter of emulsion; Debs et al.12 showed in their
work that magnetite nanoparticles prepared by the coprecipi-
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tation method have a removal capacity of over 55% for new
engine oil, used engine oil, and petroleum from water, which
corresponds to 218 g of oil/kg of nanoparticles. In the same
sense, works suggest the efficiency of these nanoparticles in the
elimination of organic dyes13 such as Congo red from aqueous
solutions of 79. 6 mg dye/g of magnetite nanoparticles, as
indicated by Taher et al.14 or methylene blue with a maximum
adsorption capacity of 13.54 mg/g, as shown by Anushree and
Philip in their work,15 or efficiency between 72 and 89% for the
removal of Optilan Blue dye from aqueous solutions, as
suggested by Stan et al.16 To improve heat transfer processes,
magnetite nanoparticles have also been studied. Bezaatpour and
Rostamzadeh17 concluded that employing an external magnetic
field withmagnetite nanoparticles increases the heat transfer rate
and results more efficiently compared to other methods.
Likewise, Asri et al.18 synthesized ferrofluids from magnetite
nanoparticles, which are used as working fluids in cylindrical
heat pipes, and found excellent thermal performance.
In this sense, the application of magnetite nanoparticles in

large quantities is revealed, which raises interest in their
production on an industrial scale. However, there is no
information in the literature on the design, assembly, and
performance of a plant for the large-scale production of
magnetite nanoparticles. In the laboratory, methods developed
for the synthesis of these nanoparticles include the coprecipi-
tation method, hydrothermal synthesis, solvothermal synthesis,
sonochemical synthesis, and microemulsions.19 The synthesis
method strongly influences the properties of the magnetite
nanoparticles including size;20 however, the coprecipitation
method offers good control over nanoparticle size and a narrow
size distribution (>25 nm).21,22 Therefore, the conventional
method to prepare magnetite nanoparticles is via coprecipitation
of ferrous and ferric ions under highly basic conditions.23,24 Also,
this method allows the physical and chemical properties and size
of the nanoparticles to be easily controlled by varying
parameters such as pH, temperature, alkali type, and stirring
rate.25 However, large-scale technologies need to be evaluated to
ensure sustainable and economically viable processes.
On this point, the modeling and simulation of the process are

important, as they allow an approximation of reality;26 the
simulation allows us to study the effect of the modification of
variables and parameters with reproducible results,27 whose
objective is to achieve the best configuration of the process with
minimum costs, maximum efficiency, and productivity. Before
carrying out the simulation, it is important to specify the
objective of the model, define the mass and energy flows and the
internal structure, and develop the process flow diagram. The
process simulation contributes significantly to industrial
development by allowing the analysis and optimization of
existing processes and represents the first step in the evaluation
of emerging processes under sustainability criteria. Several
simulation tools or software are available, and the main ones are
Aspen Plus, Aspen HYSYS, ChemCAD, Unisim Desing,
SuperPro Designer, among others, which have been used
successfully by different authors. For example, Oregigioni et al.28

simulated the production of biomethane production from
agricultural and food industry waste, and Larbi et al.29 simulated
the production of chitin nanomaterials; both emerging processes
were simulated to analyze economic feasibility. On the other
hand, Mestre-Escudero et al. simulated existing processes such
as the amine treatment unit,30 mercaptan oxidation unit,31 and
sour water unit32 of a Latin American refinery to determine
improvement opportunities. Therefore, the simulation of

magnetite nanoparticle production is important for predicting
the technical behavior of the process at higher scales and
providing information to decision makers about its technical
behavior to show opportunities for improvement and to provide
a technical starting point for further evaluation of the process
under sustainability parameters.
It is also known that in chemical processes, exergy is destroyed

by the irreversibilities derived from the second law of
thermodynamics. The term exergy is defined as the maximum
amount of work that can be obtained when an energy flow is
moved from its initial state to the state of thermodynamic
equilibrium with a reference state through reversible pro-
cesses.33 Exergy analysis has been performed by other authors to
evaluate emerging technologies related to nanomaterials, for
example, Meramo et al.34,35 performed exergy analysis for the
production of TiO2 nanoparticles via green chemistry and a
process for the production of chitosan microbeads modified
with nanoparticles. In this work, the simulation and exergy
evaluation of large-scale production of magnetite (Fe3O4)
nanoparticles are carried out using computer-aided tools. The
information and data necessary for the simulation are obtained
from the literature and experimental results obtained by the
authors. The exergy analysis provides information for the
sustainable implementation of this process on a large scale.

■ RESULTS AND DISCUSSION
The simulation of the large-scale production of magnetite
nanoparticles via coprecipitation was carried out taking into
account the following considerations

• The process simulation was performed at the steady state
with fixed conditions such as processing capacity, process
stage pressure set at 1.01 bar, and environment temper-
ature at 301.15 K. The detailed operating conditions of
each stage are summarized in Table 1.

• The nonrandom two-liquid (NRTL) solution model for
electrolytesELECNRTILwas selected for the proc-
ess simulation, considering the polar and electrolytic
nature of the substances involved in the process.

• Themixing and solution preparation units were simulated
in stirred tanks.

• The reactor was simulated using an RStoic model for 98%
conversion.

Table 1. Operating Conditions for the Process Units of
Large-Scale Production of Fe3O4 Nanoparticles

stage temperature (K) mass flow (kg/h)

solution 1 301.15 2471.52
solution 2 301.15 2494.19
mixing 301.15 4965.71
solution 3 301.15 3505.59
heating 353.15 4965.71
reaction 353.15 8471.30
cooling 1 301.15 8471.30
separation 301.15 8471.30
washing 1 301.15 6733.04
washing 2 301.15 5928.39
washing 3 301.15 7787.79
drying 378.15 588.80
cooling 2 301.15 96.58
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• The magnetic separation stage was modeled as a
membrane to retain solid nanoparticles.

• The washing stages were simulated as manipulator blocks.
• The drying of nanoparticles was simulated using a direct

contact oven.

The simulation of large-scale production of magnetite
nanoparticles is shown in Figure 1. FeCl3·6H2O (stream 2)
and FeCl2·4H2O (stream 3) are fed to SOL1 and SOL2 stages,
respectively. A 0.36 M solution of FeCl3·6H2O and a 0.16 M
solution of FeCl2·4H2O were prepared in these units. The two
solutions (streams 6 and 7) are mixed in a stage namedMIX and
then sent to a heating process in the heat exchanger EXC1. The
hot solution (stream 9) enters the reactor (RX) where sodium
hydroxide 3 M (stream 11) is added.
NaOH acts as a precipitating agent and increases the pH of

the medium to 12, allowing the formation of the magnetite
nanoparticles and NaCl. Stream 13 containing the magnetite
nanoparticles is sent to the EXC2 exchanger for cooling. Next,
the cold stream (stream 14) undergoes a purification process
comprising a separation unit (MAG), where the nanoparticles
are separated from the unreacted material and NaCl, and three
washing stages (WASH1, WASH2, and WASH3), in which
water and ethanol are used as washing fluids. Finally, the purified
nanoparticles (stream 23) are dried in DRYING and cooled in
EXC3.
Table 2 lists the mass flow for the main process streams of the

simulated process. For processing capacities of 1922.32 t/year
for FeCl3·6H2O and 694 t/year for FeCl2·4H2O, the simulation
reported a production rate of 847 t/year for magnetite
nanoparticles. Therefore, the total production yield was
estimated to be 0.44 kg Fe3O4/kg FeCl3·6H2O.

To validate the simulation results, some physicochemical
properties of the magnetite nanoparticles provided by Aspen
Plus software are compared with data reported in the literature;
the findings are presented in Table 3. The approximation of the

properties obtained with those reported in the literature is
higher than 98%, which shows that the strategies used to
perform the simulation, the data packages, and the thermody-
namic models selected were appropriate.
For the exergy analysis of the large-scale production of

magnetite nanoparticles, Aspen Plus software provided the
physical exergy of the streams, while the chemical exergy was
estimated through the chemical exergy of the components at
standard conditions of pressure and temperature.
The chemical exergy of the substances involved in the process

was calculated, as shown in eq 10, the exergy of the pure
elements was consulted in the literature, and the Gibbs energy
was obtained from the simulation. Table 4 shows the chemical
exergy calculated for the components involved in the process.

The physical exergy of the streams was obtained from the
process simulation, while the chemical exergy of the streams was
calculated by eq 9. The physical and chemical exergies of the
main process streams are presented in Table 5.
Figure 2 shows the overall results of the exergy analysis for the

large-scale production of magnetite nanoparticles via copreci-
pitation. The total irreversibilities were estimated to be 108 254
MJ/h. The highest contribution to the irreversibilities is due to
the amount of waste exergy, which represents approximately

Figure 1. Simulation of large-scale production of Fe3O4 nanoparticles.

Table 2. Operating Conditions and Mass Composition of the
Main Streams for Large-Scale Production of Magnetite
Nanoparticles

stream 6 7 11 13 28

T (K) 301.15 301.15 301.15 353.15 301.15
P (bar) 1.01 1.01 1.01 1.01 1.01
mass flow (kg/h) 2471.52 2494.19 3505.59 8471.3 96.58
mass fractions
water 0.911 0.968 0.962 0.966 0
FeCl3·6H2O 0.089 0 0 0.001 0.045
FeCl2·4H2O 0 0.032 0 0 0.001
NaOH 0 0 0.038 0.001 0
ethanol 0 0 0 0 0
magnetite 0 0 0 0.011 0.953
NaCl 0 0 0 0.022 0

Table 3. Comparison of the Properties of Magnetite
Nanoparticles Obtained in Aspen Plus with Properties
Reported in the Literature

property this work literature accuracy (%)

heat capacity (Cal/(mol K)) 36.31 36.1636 99.5
relative density (g/cm3) 5.20 5.2037 100
thermal conductivity (kW/(m K)) 0.052 0.05138 98.1

Table 4. Standard Chemical Exergy for Process Components

component chemical exergy (kJ/kg)

water 50.00
FeCl3·6H2O 843.89
FeCl2·4H2O 1542.39
magnetite 502.30
NaCl 244.70
ethanol 27 152.16
NaOH 1875.00
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97% of the total exergy destroyed, while the unavoidable exergy
losses were estimated to be 2941 MJ/h. These findings indicate
that the processing units have less unavoidable exergy
destruction; therefore, it is possible to achieve a thermodynami-
cally more efficient process through the utilization of waste.
The global exergy efficiency was calculated to be 0.046%, a

significantly low value for a chemical process. However, these
results are related to those obtained for other emerging
technologies evaluated such as large-scale production of TiO2
nanoparticles34 that reached an exergy efficiency of 0.27%,
production of chitosan microbeads modified with TiO2
nanoparticles,39 and production of thiourea-modified chitosan
microbeads35 with exergy efficiencies of 0.044 and 3%,
respectively.
The low exergy efficiency of the process is mainly attributed to

the exergy destroyed with waste. Therefore, it is important to
implement strategies for technological improvements, redesign
of the stages, and inclusion of additional units for waste recovery
to obtain a more efficient process from the exergy point of view.
Figure 3 presents the results of the exergy analysis per stage for

the large-scale production of magnetite nanoparticles via
coprecipitation. The results reveal that the most critical units
of the process are washing 1 and 3 for reaching the highest
irreversibilities (74 214 and 28 754 MJ/h, respectively). The
irreversibilities in these stages are given mainly by the exergy of
waste; therefore, it is stated that the destruction of exergy in the
washing units is due to the amount of water and ethanol
discarded. Moreover, the input exergy of washing 2 represents
approximately 96% of all of the input exergy, which can be
explained by the entrance of a large amount of ethanol, whose
chemical exergy is notably higher compared to the other
chemical substances involved in the process; therefore, this stage
has a higher significance on the overall exergy efficiency.
Water and ethanol can be treated for reuse as washing fluids,

thus reducing irreversibilities and achieving energy improve-

ment in the process. On the other hand, it was found that the
exergy for industrial services is significantly low in all of the units,
which indicates low heat and work required in the processing
stages.
As shown in Figure 4 the stages with the highest exergy

efficiency are the heating and cooling units and solution 1

(65%), solution 2 (60%), mixing (73%), and solution 3 (71%).
These results indicate that there is no destruction of exergy by
waste; therefore the exergy destroyed is only related to the
unavoidable exergy losses. On the other hand, the lowest exergy
efficiencies are identified in the drying, washing 3, washing 1, and
washing 2 stages with efficiencies of 1.96, 6.45, 10.05, and
28.97%, respectively.
Figure 5 shows the Sankey diagram for the large-scale

production process of magnetite nanoparticles by the
coprecipitation method. This figure shows the contribution of
each stage to the total irreversibilities (percentage of exergy
destroyed) and the influence of each stage on the overall exergy
efficiency. For the magnetite nanoparticle production process, it
is found that the stage that contributes the most irreversibilities
is washing 2 (68.55%) followed by washing 3 (26.562%), which
confirms the results of the exergy analysis per stage. The stages
with minimum contribution to irreversibilities are solution 1
(0.131%), solution 2 (0.113%), solution 3 (0.142%), and mixing
(0.152%). To reduce the irreversibilities of magnetite nano-
particle production via coprecipitation, the reuse of washing
fluids is mainly recommended or else elimination of the use of
ethanol.

Table 5. Chemical and Physical Exergy of the Main Streams
of the Large-Scale Production of Magnetite Nanoparticles

stream physical exergy (MJ/h) chemical exergy (MJ/h)

2 0.00 185.06
3 0.00 77.85
6 0.26 263.98
7 0.27 184.47
11 1.42 374.66
13 171.08 440.65
15 0.08 66.65
23 0.11 1981.67
28 0.00 49.88

Figure 2. Overall exergy analysis for the production of magnetite
nanoparticles via coprecipitation.

Figure 3. Exergy analysis per stage for the large-scale production of
magnetite nanoparticles via coprecipitation.

Figure 4. Exergy efficiency per stage for the large-scale production of
magnetite nanoparticles via coprecipitation.
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■ CONCLUSIONS
In this work, large-scale production of magnetite nanoparticles
via coprecipitation was simulated and the exergy analysis was
developed to identify improvement opportunities from the
exergy point of view. The route was simulated using Aspen Plus
software for an annual production of 807 tons of magnetite
nanoparticles. The exergy efficiency of the process was estimated
to be 0.046%, suggesting that the process is inefficient. The
irreversibilities of the process were due to the exergy destroyed
with the residues. Washing units 2 and 3 represent the most
critical stages with a contribution of 95.12% to the total
irreversibilities attributable to water and ethanol discarded in
these stages. Unavoidable losses in the process were estimated to
be 2,941 MJ/h, considerably low compared to the exergy of
waste. Therefore, it is mainly recommended to evaluate
strategies for the utilization of washing fluids.

■ MATERIALS AND METHODS

This section covers the modeling and simulation of the large-
scale production of magnetite (Fe3O4) nanoparticles based on
the data obtained by the authors during the synthesis of the
nanoparticles at a laboratory scale, and the exergy analysis of
large-scale production of magnetite nanoparticles according to
the methodology presented by Peralta-Ruiz et al.40

Process Modeling and Simulation. A large-scale process
was developed for the production of 807 t/year of magnetite
nanoparticles. The production capacity was established by
taking into account the limitations in the availability of the
limiting rawmaterial of the alternative process to coprecipitation
(synthesis of magnetite nanoparticles by the green chemistry
method)41 to establish a common basis for the comparison of
both processes in further studies.
The process simulation is performed using Aspen Plus

software following the steps listed below.

1. The chemicals involved in the process are selected from
the database of the software. Aspen Plus software is
characterized by an extensive, flexible, and reliable
property database containing a large collection of
properties of many chemicals.34 For this case, all of the
chemicals were available in the software database.

2. An appropriate thermodynamic model and equation of
state are chosen to provide an accurate estimate of the
physicochemical properties of the chemicals.

3. Input parameters such as mass/energy flow rates,
temperature, pressure, and stoichiometry of the reactions
are introduced.42

Process Description. Figure 6 shows the process diagram
for the large-scale production of magnetite nanoparticles via
coprecipitation. A 0.36 M solution of FeCl3·6H2O and a 0.16 M
solution of FeCl2·4H2O are fed to the process in a 2:1 molar
ratio.43 The solutions are mixed and undergo a heating process
to increase the temperature to 80 °C.44 Next, the mainstream
goes to the reactor where a 3 M solution of NaOH is added;
NaOH acts as a precipitating agent and increases the pH of the

Figure 5. Sankey diagram of irreversibilities for the large-scale
production of magnetite nanoparticles via coprecipitation.

Figure 6. Process diagram of large-scale production of Fe3O4 nanoparticles via coprecipitation.
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medium to 12, leading to the magnetite nanoparticle formation
reaction (see Scheme 1).

+ + → + +FeCl 2FeCl NaOH Fe O 8NaCl 4H O2 3 3 4 2

The stream from the reactor is cooled to room temperature and
sent to a magnetic separator where the magnetite nanoparticles
are collected and separated from the remaining material. Next,
the nanoparticle stream is washed in three stages using water and
ethanol45 and finally dried. Magnetite nanoparticles obtained via
coprecipitation usually have a size distribution in the 25−500
nm range with high purity.46

Exergy Analysis. Exergy analysis is an important tool for
evaluating existing and emerging processing pathways from
energetic and thermodynamic viewpoints.47 Exergy analysis
provides key indicators such as exergy losses, irreversibilities,
percentage of exergy destroyed, and exergy efficiency that allow
implementing process improvements;48 these indicators can be
calculated for each stage or the entire system.
The exergy analysis is governed by eqs 1−15. The

irreversibilities indicate the unused potential work and
correspond to the exergy destroyed with the waste and the
unavoidable exergy losses according to the second law of
thermodynamics. The irreversibilities associated with the exergy
of waste can be avoided using the waste as an additional product
or byproduct of the process. The destroyed exergy or
irreversibilities are calculated by eq 1.

∑̇ = ̇ − ̇Ex Ex Exdestroyed total,in product (1)

The unavoidable exergy losses correspond to the irreversibilities
derived from the entropy increase of the thermodynamic
systems; these are calculated as the difference between the total
input exergy and the total output exergy, as shown in eq 2.

̇ = ̇ − ̇Ex Ex Exloss total,in total,out (2)

The total exergy input to a system is associated with the mass
flows entering the system (process streams) and the industrial
services required (mechanical work, heating, cooling, among
others). The total input exergy is calculated by eq 3.

∑ ∑̇ = ̇ + ̇Ex Ex Extotal,in mass,in utilities (3)

The total exergy output of a system is associated with the mass
flows of the product and waste streams and is defined by eq 4.

∑ ∑̇ = ̇ + ̇Ex Ex Extotal,out product wastes (4)

The exergy related to mass flow in the absence of electrical,
magnetic, nuclear, and surface tension effects is calculated by eq
5. Kinetic exergy (Ėxkin) and potential exergy (Ėxpot) tend to be
neglected due to the low contribution to the total exergy.

̇ = ̇ + ̇ − ̇ − ̇Ex Ex Ex Ex Exmass phy chem pot kin (5)

Physical exergy (Ėxphy) is defined by eq 6, relating enthalpy (Ḣ)
and entropy (Ṡ) to the operating conditions and enthalpy (Ḣ0)
and entropy (Ṡ0) to the reference conditions. For gases and the
solid−liquid mixture, this equation is transformed into eqs 7 and
8, respectively.

̇ = ̇ − ̇ + ̇ − ̇H H T S SEx ( ) ( )phy 0 0 0 (6)

̇ = − − −
i
k
jjjjj

y
{
zzzzzC T T T C
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Ex ( ) ln lnphy P 0 0 P
0 0 (7)

̇ = − − − −−
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(8)

where CP is the heat capacity, vm is the molar volume, P is the
operating pressure, and P0 is the reference pressure.
The chemical exergy (Exchem) is calculated by eq 9, where

Exch, i
0 is the chemical exergy of component i in the mixture, yi is

the mole fraction of component i, and R is the universal constant
of the gases. The chemical exergy of each component is
calculated by eq 10, where nj is the number of atoms of element j
in component i, Exch,i

0 is the chemical exergy of element j, and
ΔGf,i

0 is the Gibbs free energy.

∑ ∑= +y RT y yEx Ex ln( )
i

i i
i

i ichem ch,
0

0
(9)

∑= Δ +G nEx Exi f i
j

j jch,
0

,
0

ch,
0

(10)

The exergy of utilities is defined by eq 11. The exergy by heat
(Ėxheat) is calculated by eq 12 and involves the Carnot efficiency
that represents the fraction of the energy transferred from a heat
source at temperature T that can be converted into work in an
environment at reference temperature To. The exergy by work
(Ėxwork) in a system where there is no change in volume is equal
to the work of the system itself (w), as indicated by eq 13.

̇ = ̇ + ̇Ex Ex Exutilities heat work (11)

̇ = − ̇i
k
jjj

y
{
zzz

T
T

QEx 1heat
0

(12)

̇ = ẆEx work (13)

To calculate the exergy efficiency of a process, the exergy
destruction and the total exergy inputs to the system are taken
into account, as shown in eq 14; the percentage of exergy
destroyed at stage i can be calculated by eq 15.

η = −
i

k
jjjjj

y

{
zzzzz1

Ex

Exexergy
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total,in (14)
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