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ABSTRACT Developing training sets for genomic prediction in hybrid crops requires producing hybrid
seed for a large number of entries. In autogamous crop species (e.g., wheat, rice, rapeseed, cotton) this
requires elaborate hybridization systems to prevent self-pollination and presents a significant impediment
to the implementation of hybrid breeding in general and genomic selection in particular. An alternative to
F1 hybrids are bulks of F2 seed from selfed F1 plants (F1:2). Seed production for F1:2 bulks requires no
hybridization system because the number of F1 plants needed for producing enough F1:2 seed for multi-
environment testing can be generated by hand-pollination. This study evaluated the suitability of F1:2 bulks
for use in training sets for genomic prediction of F1 level general combining ability and hybrid performance,
under different degrees of divergence between heterotic groups and modes of gene action, using quan-
titative genetic theory and simulation of a genomic prediction experiment. The simulation, backed by
theory, showed that F1:2 training sets are expected to have a lower prediction accuracy relative to F1
training sets, particularly when heterotic groups have strongly diverged. The accuracy penalty, however,
was only modest and mostly because of a lower heritability, rather than because of a difference in F1 and
F1:2 genetic values. It is concluded that resorting to F1:2 bulks is, in theory at least, a promising approach to
remove the significant complication of a hybridization system from the breeding process.
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Since the pioneering work of Shull (1908), hybrid breeding made
a significant contribution to increased productivity of globally im-
portant field (Duvick 1999) and horticultural (da Silva Dias 2010)
crops. The development of hybrid varieties rests on the ability to
evaluate general combining ability (GCA) of parental inbred lines in
earlier stages of the breeding cycle, as well as specific combining
ability (SCA), or hybrid performance in general, of particular com-
binations in stages leading up to release and commercialization
(Sprague and Tatum 1942).

Genomic prediction methodology (Meuwissen et al. 2001) has suc-
cessfully been applied to prediction of GCA (Albrecht et al. 2011;
Würschum et al. 2013; Jan et al. 2016) and hybrid performance
(Massman et al. 2013; Technow et al. 2014a). This has greatly
increased the scale, speed and accuracy of breeding operations
(Cooper et al. 2014) and promises an increased rate of genetic gain
(Heffner et al. 2010; Gaynor et al. 2017). Building accurate genomic
prediction models requires training data sets of hundreds or even
thousands of phenotyped and genotyped individuals (Jannink et al.
2010; Lorenz 2013; Hickey et al. 2014) which can put enormous strain
on resources. Promising approaches for increasing the efficiency and
throughput of phenotyping (Araus and Cairns 2014; Tardieu et al.
2017) and genotyping (Poland and Rife 2012; Gorjanc et al. 2017;
Technow and Gerke 2017) are currently being developed.

However, producing high-quality F1 testcross seed in sufficient
quantities for multi-environment field trials can be an enormous
challenge when done for hundreds or even thousands of training
individuals. This is the case particularly for autogamous species with
hermaphroditeflowers, a group that includes importantfield crops such
as wheat (Triticum aestivum), rapeseed (Brassica napus), cotton
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(Gossypium hirsutum), sugar beet (Beta vulgaris), rice (Oryza sat-
iva), and sunflower (Helianthus annuus), as well as many horticul-
tural species. Here, hybrid seed production requires elaborate
hybridization systems (Kempe and Gils 2011; Whitford et al.
2013) that add considerable complexity and cost to the breeding
process (da Silva Dias 2010; Longin et al. 2015). For example, cyto-
plasmic male sterility (CMS), one of the most widely used hybrid-
ization systems (Janick 1998; Kempe and Gils 2011; Bohra et al.
2016; Kim and Zhang 2018), requires (1) development of sterile
versions of inbreds (“A-lines”) from the female heterotic pool by
backcrossing them into a sterile cytoplasm source, (2) retaining
of fertile versions of the same inbreds for seed multiplication
(“B-lines”) and (3) introgression of effective fertility restoration
genes into the male inbred lines. The complexity and costs arising
from applying this and similar systems to hundreds or thousands of
individuals for training set development might be prohibitive, par-
ticularly when those individuals were chosen with regard to maxi-
mum informativeness for model building (Rincent et al. 2012) but
have no breeding purpose as selection candidates otherwise.

One possible solution for making large scale production of
testcross hybrid seed more feasible is to field test bulks of selfed
F1 seed (F1:2), instead of the F1 hybrids directly. There are examples
of commercial use of F2 hybrid seed in cases where F1 hybrid seed
production is not economically feasible (Janick 1998; Wu et al. 2004;
Bosland 2005). This option has also been considered for application
of classical mating designs such as Designs I and II (Comstock and
Robinson 1948, 1952) to autogamous species (Stuber 1970). The
idea is to test bulked F2 seed from selfed F1 plants obtained by hand
pollination (Figure 1). In this system, the seed is produced from
vigorous F1 plants instead of inbred lines and according to the
natural mode of fertilization (at least for autogamous species). Only
very few F1 plants would therefore be required for producing suf-
ficient seed quantities for multi-environment testing and those
could easily be produced by hand-pollination, without requiring
any form of pollination control such as CMS. Using F1:2 bulks in-
stead of F1 hybrids could therefore be a cost efficient option for
producing testcross seed for the hundreds or thousands of individ-
uals comprising training sets in genomic prediction. Under non-
additive gene action, however, F1 and F1:2 performance are
expected to differ. Using predictions obtained from F1:2 based
training sets could then negatively impact genetic gain at the F1
level, which remains the selection target. The objective of this study
is therefore to evaluate the prospects of using F1:2 bulks for genomic
prediction of F1 hybrid and GCA performance with quantitative
genetic theory and stochastic simulation of a genomic prediction
experiment.

MATERIALS AND METHODS

Theory
Assume a heterotic pattern formed by two populations (“heterotic
groups”), arbitrarily labeled “male” (Pm) and “female” (Pf ). Themem-
bers of both populations are fully homozygous inbred lines, either pro-
duced as doubled haploids (DH), the method of choice in many crop
species (Dwivedi et al. 2015), or by repeated selfing to a degree that
residual heterozygosity is negligible. Consider further two biallelic, in-
dependent loci in linkage equilibrium, with alleles B1 and B2 and C1

and C2, respectively. A superscript m or f will be used to indicate the
origin of the allele (e.g., Bf

1 when the allele B1 originates fromPf ). The
alleles are assumed identical in state (i.e., biological function) in both
populations (e.g., Bm

1 is identical in state with Bf
1). Let pBm

1
and pCm

1
and

pBf1
and pCf

1
denote the frequencies of the Bm

1 and Cm
1 alleles inPm and

of the Bf
1 and Cf

1 alleles in Pf , respectively. The frequencies of the
alternate alleles are, for example, pBm

2
¼ 12 pBm1 . Allele frequencies

might differ in Pm and Pf .
When the populations Pm and Pf are intermated strictly at ran-

dom, the resulting set ofPm ·Pf F1 hybrids forms a “gene-orthogonal
population” (Schnell 1965; Melchinger et al. 2005). With two biallelic
loci and alleles defined according to their origin, there are 16 distinct
genotypes, indexed asHF1

Bm
i ;B

f
j ;C

m
k ;C

f
l

. For notational simplicity this will be

shortened to HF1
ijkl. In a gene-orthogonal population the genotype fre-

quencies of HF1
ijkl follow from the products of the allele frequencies in

Pm and Pf , e.g., the frequency of HF1
1112 is pBm1 � pBf1 � pCm

1
� pCf

2
. These

frequencies will be denoted by Pijkl.
Selfing each member of HF1

ijkl and “bulking” the progeny results in a
set of F1:2 bulks denoted by HF1:2

ijkl (i.e., the F2 seed from each F1 is
bulked separately for each member of HF1

ijkl). With alleles defined
according to origin, each individual HF1:2

ijkl bulk comprises 16 distinct
genotypes, each with genotype frequency of 1=16 when assuming ab-
sence of segregation distortion. The frequencies of the different HF1:2

ijkl
bulks themselves are also Pijkl.

Consider a three by three matrix U with elements uxy equal to the
genotypic value of the two-locus genotypes formed by the xth genotype
of the ’B’ locus and the yth at the ’C’ locus. The homozygous B1B1

genotype thereby corresponds to row x ¼ 1, the heterozygous B1B2 or
B2B1 genotype to x ¼ 2 and the alternate homozygous to x ¼ 3, cor-
respondingly for the C locus (see below for examples). Because alleles
are assumed to be identical in state in both populations, it is not
necessary to distinguish them by origin for the purpose of describing
possible genotypic values. Let GF1

ijkl denote the genotypic values of the

members of HF1
ijkl. The rows x and columns y of U corresponding to

elements in GF1
ijkl are x ¼ iþ j2 1 and column y ¼ kþ l2 1.

Similarly, let GF1:2
ijkl denote the average genotypic values of the F1:2

bulks HF1:2
ijkl . Those can also be obtained from U as the average geno-

typic value of the possible genotypes in the bulk, weighted by their

Figure 1 Schematic visualization of creation of F1:2 bulks of F1
interpopulation hybrids. The individual steps are (1) making a F1 cross
between a male and a female inbred line by hand pollination (2) selfing
the resulting F1 plant (3) creating F1:2 bulks by harvesting the seed
from each selfed F1 plant and bulking it.
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frequencies, when assuming absence of segregation distortion. For this
purpose, the origin of the allele is again not distinguished. For example,
GF1:2
2212 would equal 0:25u31 þ 0:5u32 þ 0:25u33.
The correlation between GF1

ijkl and GF1:2
ijkl (corhybrids), a measure for

the similarity between both, was calculated according to the stan-
dard statistical definition (e.g., Mood et al. 1973), with the mean of
GF1
ijkl being

mF1 ¼
X2
i

X2
j

X2
k

X2
l

GF1
ijklPijkl

and the variance

s2
F1 ¼

X2
i

X2
j

X2
k

X2
l

�
GF1
ijkl

�2
Pijkl 2m2

F1

and with mF1:2 and s2
F1:2 obtained analogously. Thus,

corhybrids ¼
P2

i

P2
j

P2
k

P2
l G

F1
ijklG

F1:2
ijkl Pijkl 2mF1mF1:2ffiffiffiffiffiffiffiffi

s2
F1

q ffiffiffiffiffiffiffiffiffiffi
s2
F1:2

q

These and all other equations developed here are implemented in a
worksheet that is available as supplemental material (File S1).

The GCA of a male inbred with genotype BiCk was evaluated as

gmikðF1Þ ¼
1

pBm
i
pCm

k

X2
j

X2
l

GF1
ijklPijkl 2mF1

with the corresponding values for the other population and those for
the F1:2 bulks (gm

ikðF1:2Þ) being defined accordingly. The correlation
between gm

ikðF1Þ and gm
ikðF1:2Þ was used to assess the similarity of GCA

effects evaluated in F1 hybrids and F1:2 bulks and will be denoted as
corGCAðmÞ and corGCAðf Þ for Pm and Pf , respectively. These correla-
tions were obtained analogously to corhybrids and according to their
standard statistical definition (e.g., Mood et al. 1973). The variances of
gm
ikðF1Þ etc., which are required for computing the correlations, will be

denoted as s2
GCAmðF1Þ etc. Because populations Pm and Pf are inter-

mated at random, the male and female effects are uncorrelated with
each other. The variance of SCA effects can then be calculated as
s2
SCAðF1Þ ¼ s2

F1 2s2
GCAmðF1Þ 2s2

GCAf ðF1Þ, similarly for HF1:2
ijkl .

The quantities gm
ikðF1Þ, etc., are statistical effects that depend on the

allele frequencies in both populations. Thus, two members of Pm and
Pf with identical genotypes will have different GCA values (e.g.,
gm
11ðF1Þ 6¼ g

f
11ðF1Þ), unless both populations have identical allele fre-

quencies, even though the alleles are assumed to be identical in state
in both populations (Schnell 1965; Stuber and Cockerham 1966).
Therefore also corGCAðmÞ 6¼ corGCAðf Þ in general. For simplicity, how-
ever, the average across both, denoted as corGCA will be used, where
appropriate.

Models of genetic architecture and population structure: Several
models of gene action will be considered, all encoded through U . The
first involves only additive and dominant gene action (“dominance
model”), here U is

C1C1 C1C2 C2C2

B1B1 aB þ aC aB þ dC aB 2 aC
B1B2 dB þ aC dB þ dC dB 2 aC
B2B2 2aB þ aC 2aB þ dC 2aB 2 aC

where homozygous effects for the B and C locus, aB and aC , and
heterozygous effects dB and dC are defined according to Falconer
and Mackay (1996). A purely “additive model” follows by setting
dB ¼ dC ¼ 0. Here, however, GF1

ijkl ¼ GF1:2
ijkl in the absence of segrega-

tion distortion and so corhybrids and corGCA are equal to one. The same
is the case for the “additive by additive” epistatic model without
dominance or epistatic interactions involving dominance (Hill et al.
2008):

C1C1 C1C2 C2C2

B1B1 2z z 0
B1B2 z z z
B2B2 0 z 2z

where z is an arbitrary constant. The “duplicate factor model” in-
volving additive and dominant gene action as well as all forms of
epistatic interactions (Hill et al. 2008) is

C1C1 C1C2 C2C2

B1B1 z z z
B1B2 z z z
B2B2 z z 0

and the “complementary model”, also involving all forms of gene
action (Hill et al. 2008), is

C1C1 C1C2 C2C2

B1B1 z z 0
B1B2 z z 0
B2B2 0 0 0

Biological interpretations and examples for the latter two models are
given by Holland (2001).

For the duplicate and complementary epistasis models, the quan-
tities corhybrids, corGCA, s2

F1, s
2
F1:2 as well as the proportion of SCA to

total genetic variance (%scaF1 ¼ s2
SCAðF1Þ=s

2
F1 and %scaF1:2 ¼

s2
SCAðF1:2Þ=s

2
F1:2) were evaluated across a dense grid of degree of

allele frequency differences between Pm and Pf for the B and C
locus. This difference will henceforth be referred to as “allele di-
vergence” and defined as the difference between, e.g., pBm

1
and pBf

1
,

with the midpoint being 0.5. Thus, at a divergence of 0.20, pBm1 ¼ 0:6
and pBf1

¼ 0:4, for example. For both models, z ¼ 1 was used. Only
one locus was considered for the dominance model (i.e.,
aC ¼ dC ¼ 0) and in addition to the allele divergence, the degree
of dominance was varied from 0.0 to 3.0 (the homozygous effect was
kept constant at aB ¼ 1).

Simulation of genomic prediction experiments
A comprehensive simulation of genomic prediction experiments was
carried out to evaluate the accuracy of genomic models fitted from
training data sets of F1 hybrids and F1:2 bulks for the purpose of
predicting hybrid and GCA performance at the F1 level.

Parental inbred line genomes: Theobservedgenotypes at 35,478single
nucleotidepolymorphism(SNP)markersof 209maize inbred lines from
the Dent (123) and Flint (86) heterotic groups of the maize breeding
program of the University of Hohenheim in Germany formed the
starting point of the simulation. This data set is available publicly as
supplemental material to a publication by Technow et al. (2014a). This
datawere chosen to ensure that the simulated experiments are reflective
of the genome properties (allele frequency distribution, linkage pattern
and population structure) of an applied hybrid breeding program. The
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genome properties as well as the history of these populations and the
heterotic pattern they form were described in previous studies
(Technow et al. 2014a,b). For consistency sake, the Dent and Flint
populations will arbitrarily be referred to as “male” and “female”,
respectively.

In-silico biparental populations: Biparental families of DH lines de-
rived from elite inbred parents are the predominant population type
encountered in early stages of breeding programs (Mikel and Dudley
2006; Riedelsheimer et al. 2013; Hickey et al. 2015). In the simulation,
each heterotic group was represented by 40 biparental families. The
process of how those were created will be described for the male group
but was followed analogously for the female group. Five of the 123male
inbred lines were assigned to the “high importance” group, twenty to
the “medium importance” group and the remaining 98 to the “low
importance” group. This assignment was done at random. The “high
importance” inbreds were given a weight of 0.1, the “medium impor-
tance” inbreds a weight of 0.0125 and the remaining inbreds a weight of

0.00255 (the weights of all inbreds sum to 1.0). Then all

�
123
2

�

possible biparental crosses among those 123 inbreds were assigned
weights equal to the product of the weights of the corresponding par-
ents. The 40 biparental families were then drawn at random from all
possible families with probabilities proportional to the weights previ-
ously assigned. This results in an unbalanced contribution of inbred
lines to the breeding populations and reflects that often just a few, very
successful inbred lines are used disproportionately by breeders (Mikel
and Dudley 2006; Technow et al. 2014b).

Then, 25 recombinant DH lines were generated in-silico from
each family by simulatingmeiosis between the gametes of the parents
followed by a chromosome doubling step. Meiosis was simulated
according to theHaldanemapping function with the software package
“hypred” (Technow 2013). Thus, each heterotic group comprised
1,000 DH lines from 40 biparental families. A random sample of
15,000 of the SNP markers was used for these simulations to facilitate
computations. Because simulation of meiosis requires a genetic linkage
map, the physicalmap positions of the SNP loci where rescaled linearly to
the chromosome lengths of the genetic map reported by Fu et al. (2006).

Simulation of genetic architecture: 200 loci were defined to be QTL
with direct influence on a generic complex trait. Those loci were chosen
from the set of 15,000 SNP included in the simulation according to two
population structure scenarios: “convergent” and “divergent”. In
the convergent scenario, the QTL had similar allele frequencies in
both heterotic groups with a maximum absolute difference of 0.05
(i.e., pm 2 pfj j, 0:05). This corresponds to a newly formed hybrid
breeding program before the establishment of distinct heterotic
groups (Melchinger 1999; Fischer et al. 2009). In the divergent sce-
nario, both populations had very different allele frequencies with
a minimum absolute difference of 0.60 (i.e., pm 2 pfj j. 0:60), which
corresponds to a well established hybrid breeding program in which
heterotic groups have diverged as a result of many cycles of reciprocal
recurrent selection (Labate et al. 1999; Reif et al. 2007; Technow et al.
2014a; Larièpe et al. 2017). The definitions of the convergent and di-
vergent heterotic group scenarios correspond to those in Technow et al.
(2012). An additional requirement was that loci used as QTL had to
have a minimum minor allele frequency of 0.025 in each heterotic
group to ensure that theywere contributing to genetic variation.Within
those constraints, the 200 QTL were drawn at random.

They were then randomly separated into 100 two-loci pairs. Each
pair was assigned a matrix U describing the genotypic values. On

average, 5% of the loci were assigned to the additive and another 5%
to the additive by additive gene action models. The dominance model
was assigned to 10% of the pairs. The remaining 80% of pairs were
assigned to the complementary and the duplicate factor gene action
models in equal proportion. Thus, on average 90% of the QTL gave rise
to non-additive gene action effects that affect F1 and F1:2 genetic values
differently. Note, however, that the latter three gene action models
contain all types of gene action effects, including additive and additive
by additive.

The homozygous effects a (used for the additive and dominance
models) were drawn from a Normal distribution with mean zero and
standard deviation of 0:25=

ffiffiffiffiffiffiffiffi
2=p

p
(throughout, the Normal distribu-

tion will be parametrized by its mean and standard deviation). Their
absolute values then have an expectation of 0.25. The heterozygosity
gene effects d were drawn from N ðjaj; jaj ffiffiffiffiffiffiffiffiffiffiffiffiffi

0:6084
p Þ, resulting in an

average degree of dominance of one, which is consistent with experi-
mental results in hybrid crops (Gardner 1963; Radoev et al. 2008; Schön
et al. 2010; Larièpe et al. 2012). Using jaj ffiffiffiffiffiffiffiffiffiffiffiffiffi

0:6084
p

as standard deviation
ensures that 90% of the sampled heterozygosity effects are above zero.
This was done because dominance effects for traits showing hybrid
vigor tend to be positive (Semel et al. 2006; Bennewitz and Meuwissen
2010; Huang et al. 2015). For the additive by additive model, the value
of z was drawn from N ð0; 0:25= ffiffiffiffiffiffiffiffi

2=p
p Þ and for the duplicate and

complementary gene action models from N ð0; 1= ffiffiffiffiffiffiffiffi
2=p

p Þ. The abso-
lute values of z thus have expectations of 0.25 and 1.00, respectively.
Those settings for the distributions of a, d, and z were chosen to ensure
that the various gene action effects have the samemagnitude in all gene
action models. For example, with z ¼ 1, a ¼ d ¼ 0:25 in the duplicate
and complementary gene action models and hence equal to their
expected values in the additive and dominance gene action models.
Gene action effects for arbitrary U can be calculated with File S1
according to definitions byHolland (2001). Because interaction systems
among loci can rarely be cleanly assigned to a particular model
(Holland 2001), a small amount of “genetic noise” was added to the
elements of each U matrix. Those values were drawn from a Normal
distribution with mean zero and standard deviation equal to
ð1=90Px

P
y

��uxy��Þ= ffiffiffiffiffiffiffiffi
2=p

p
. The mean absolute value of those devia-

tions was thus expected to be equal to 1/10th of the mean absolute value
of the elements of a particular instance of U . All U matrices thus
slightly deviated from their assigned models of gene action and as a
result, even pairs assigned the simple additive model will give rise to
small amounts of variation due to dominance and epistatic gene action.

In-silico population of hybrids: The genotypic values of all F1 hybrids
from the full factorial of 1; 000 · 1; 000 ¼ 1; 000; 000 interpopulation
hybrids were calculated by summing the genetic effects across all
100 two-loci pairs according to the QTL genotypes of the hybrids.
Because the parents were fully homozygous DH lines, the QTL geno-
types of the hybrids follow directly from the genotypes of their parents.
This full factorial was defined as the reference population of hybrids.
The true GCA values of all 1,000 male and 1,000 female DH lines were
calculated from the row and column means of the full factorial table
(Sprague and Tatum 1942). Accordingly, the true SCA effects of all
hybrids were obtained as the difference between the performance of the
individual hybrids and the parental GCA effects.

Genomic prediction training set: TheDH from 20male and 20 female
families, chosenat randomfromthe40male and female families created,
were used for building the training set. Each of the 500 DH from the
20 families fromone heterotic groupwas paired at randomwith oneDH
from the 20 families of the opposite heterotic group, resulting in a set of
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500 hybrid combinations (Figure 2). This design is similar to the re-
ciprocal testcrossing design used by Kadam et al. (2016). The 500 male
and 500 female DH lines as well as the 500 hybrid combinations among
them will henceforth also be referred to as “tested”. The 500 hybrid
combinations comprising the training set are a subset of the total
population of hybrids and the genotypic performance values of the
F1 versions were calculated as described before. Phenotypic values were
obtained by adding a Gaussian noise term with standard deviation
chosen in such a way that the broad sense heritability was 0.5. This
training set will also be refered to as F1 training set. The alternative F1:2
training set was made up of F1:2 bulks created from the same hybrids
that were used for the F1 training set. For this, each F1 was selfed
in-silico and 100 F2 individuals generated by simulating meiosis as
described before. The true genetic values of each of the 100 F2s was
calculated similarly as for the F1s and then averaged to arrive at the
genetic performance of the F1:2 bulk. Phenotypic values were generated
according two scenarios. In the first, the residual variation used for the
F1 training set was assumed constant (“constant residual variation”
scenario), in the second a constant heritability of 0.5 was assumed also
for the F1:2 estimation set by adjusting the residual variation accord-
ingly (“constant heritability” scenario).

Prediction model: The following mixed model was fitted to the data

yi ¼mþ am
i þ ðaaÞmi þ a

f
i þ ðaaÞfi þ di þ ðadÞmi þ

ðadÞfi þ ðddÞi þ ei

where yi is the scaled and centered phenotypic value of the ith training
set entry (either a F1 hybrid or a F1:2 bulk, depending on the training
set). The intercept is denoted by m. Male and female additive main
and additive by additive epistatic interaction effects are am

i and
ðaaÞmi , and a

f
i and ðaaÞfi , respectively, which together constitute

the GCA of a fully homozygous male and female parents of the ith

hybrid combination (Falconer and Mackay 1996, p. 276). Dominance
effects are denoted by di, interaction effects between male and female
additive and dominance effects are ðadÞmi and ðadÞfi , respectively, and
ðddÞi denote the dominance by dominance interaction effects. To-
gether, those effects constitute the SCA effect of the ith hybrid com-
bination. The residual associated with yi is ei and was modeled as iid
N ð0; ffiffiffiffiffi

s2
e

p Þ. The other effects were modeled byMultivariate-Normal
distributions with mean vectors of zero and covariance matrices de-
fined as

KTT
am

        ¼ ð1=camÞAm
TTs

2
am

KTT
ðaaÞm ¼

�
1
.
cðaaÞm

�
Am
TT∘A

m
TTs

2
ðaaÞm

KTT
af

¼
�
1
.
caf

�
Af
TTs

2
af

KTT
ðaaÞf ¼

�
1
.
cðaaÞf

�
Af
TT∘A

f
TTs

2
ðaaÞf

KTT
d ¼ ð1=cdÞAm

TT∘A
f
TTs

2
d

KTT
ðadÞm ¼

�
1
.
cðadÞm

�
Am
TT∘A

m
TT∘A

f
TTs

2
ðadÞm

KTT
ðadÞf ¼

�
1
.
cðadÞf

�
Af
TT∘A

f
TT∘A

m
TTs

2
ðadÞf

KTT
ðddÞ ¼

�
1
.
cðddÞ

�
Am
TT∘A

m
TT∘A

f
TT∘A

f
TTs

2
ðddÞ

following Stuber and Cockerham (1966), where Am
TT and Af

TT are the
additive genomic relationship matrices of the tested male and female
parents, respectively, of the training set hybrids and ’∘’ indicates ele-
ment-wise multiplication. These matrices were calculated from the
marker data following VanRaden (2008) as Am

TT ¼ WmWm9=Mm,
where Mm is the number of markers and wuv ¼ ðxuv 2 2pvÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pvð12 pvÞ

p
(with u indexing the parent and v the marker), xuv

coding the number of reference alleles (taking values of 0 or 2), and
pv being the allele frequency of the reference allele in the male pop-
ulation. The genomic relationship matrix of the female parents was
obtained analogously. Both matrices were calculated from the
same set of 5,000 marker loci, which were obtained by randomly
sampling from the initial set of 15,000 loci but excluding the
200 loci defined as QTL. The terms cam etc. are normalization
factors equal to cam ¼ mean½diagðAm

TTÞ�, etc. and help to bring
the estimated variance components onto a comparable scale with
the residual variance (Xu 2013). This model is similar to the one
used by Massman et al. (2013) and Technow et al. (2014a) except
that these authors did not consider epistatic effects. The model was
fitted using the R package ‘BGLR’ (Pérez and Campos 2014) and its
default settings for prior distributions and hyperparameters. A
total of 1,000 samples were obtained from a chain of length
100,000, with a burn-in of 50,000 and a thinning interval of 50.
The posterior means of the variance components and of the in-
tercept were used as point estimates.

Genomic prediction accuracy: The performance of all F1 hybrids from
the full factorialwaspredictedusingBLUPasCPTV21

TT ðy2mÞ following
Henderson (1973), where CPT is the genetic covariance matrix of pre-
dicted and tested hybrid combinations and VTT the phenotypic co-
variance matrix of the data. The elements of CPT and VTT were
computed according to Bernardo (1996), with the addition of the co-
variance matrices of epistatic effects not considered there. Specifically,

Figure 2 Schematic visualization of reciprocal crossing design used to
build the training set.
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VTT ¼ KTT
am

þ KTT
ðaaÞm þ KTT

af
þ KTT

ðaaÞf þ KTT
d þ KTT

ðadÞm þ KTT
ðadÞf þ

KTT
ðddÞ þ Is2

e . Further, CPT ¼ KPT
am
þ KPT

ðaaÞm þ KPT
af
þ KPT

ðaaÞf þ KPT
d þ

KPT
ðadÞm þ KPT

ðadÞf þ KPT
ðddÞwith KPT

am
etc., calculated analogously to the

corresponding KTT
am

etc. but using additive relationship matrices Am
PT

and Af
PT , which represent the additive relationships of the parents

of the 1,000,000 hybrid combination to be predicted and the parents
of the training set hybrids. The normalization constants calculated
previously were used to normalize these matrices, too. Predictions for
SCA effects were obtained by limiting CPT to the covariance matrices
of the effects contributing to SCA. Following Technow et al. (2012),
hybrids for which both the male and the female parent were tested
were assigned to the “T2” prediction set, hybrids for which either the
male or the female parent were tested (but not both) were assigned to
the “T1” set and hybrids without any tested parent were assigned to
the “T0” set. The tested hybrids themselves were assigned to the “T3”
set. Prediction accuracy of total hybrid performance and SCA effects
was defined as the Pearson correlation coefficient between predicted
values and the corresponding true values of the F1 hybrids. To em-
phasize, the true performance and SCA effects of the F1 hybrids were
used as reference values also when assessing the accuracy of the model
fitted from the F1:2 training set.

When predicting the GCA of DH lines, CPT ¼ KPT
am

þ KPT
ðaaÞm for

males and CPT ¼ KPT
af

þ KPT
ðaaÞf for females. The matrices KPT

am
etc.,

were computed as before but fromAm
PT andAf

PT which for this purpose
contained the relationshipsbetween all 1,000maleor femaleparents and
the male or female parents of the estimation set hybrids. Prediction
accuracy of GCA effects was defined as the Pearson correlation co-
efficient between predicted and true GCA effects obtained from the full
factorial of F1 hybrids. Thus, the prediction accuracy evaluates the
ability to predict F1 basedGCA, even when the F1:2 training set is used.
The prediction accuracy was calculated separately for tested and un-
tested DH lines and within and across families. The within family
accuracies were averaged across families. To simplify the results further,
all accuracies were averaged across male and female heterotic groups.

The whole simulation was repeated independently 2,500 times for
eachheritability and population structure scenario and results averaged.
All computations were conducted within the R statistical computing
environment (R Core Team 2018).

Data Availability
The SNP genotypes of the Dent and Flint inbred lines used as the initial
populationand thephysicalmapof theSNPareavailable fromtheonline
supplement of Technow et al. (2014a). Supplemental material available
at Figshare: https://doi.org/10.25387/g3.7493996.

RESULTS

Theoretical models
The correlation between F1 hybrids and F1:2 bulks (corhybrids) was
mostly high (above 0.9) in the dominance (Figure 3A) and both epi-
static models (Figures 4A and 4G). The widest range of values was
thereby observed for the duplicate model, where corhybrids reached be-
low 0.5 when allele divergence was extreme (Figure 4A). In the dom-
inance model corhybrids decreased with increasing degree of dominance,
but remained high throughout. In the complementary model it was
lowest when divergence was high at both loci, but again only slightly
below the highest values, which were achieved when none or only one
of the loci were strongly diverged (Figure 4G). The correlation between
GCA effects obtained from F1 or F1:2 (corGCA, average across male and
female correlations) in the duplicate model followed a similar trend as

corhybrids (Figure 4B) but remained considerably higher also under ex-
treme divergence. In the complementary model corGCA was high and
confined to a narrow range, similar to corhybrids (Figure 4H). The highest
values were observed when divergence was either similar at both loci or
very different. However, minimum and maximum values were only
marginally different. With just a single locus, corGCA in the dominance
model is either 1.0 or 0.0, depending on the combination of allele di-
vergence and degree of dominance (Figure 3B). More specifically,
corGCA ¼ 0:0 is a result of the correlation being 1.0 in the population
with higher allele frequency and21:0 in the other. Values of21:0 are
thereby observed within a narrow band defined by particular combi-
nations of allele divergence and degree of dominance. The genetic
variance of F1 hybrids (s2

F1) in the dominance model increased with
increasing degree of dominance and decreasing divergence (Figure 3C).
In the epistatic models, it decreased with increasing divergence at one
or both loci (Figures 4C and 4I). Under the dominance and comple-
mentary models, the ratio s2

F1:2=s
2
F1 was below one throughout, in-

dicating that F1 hybrids are expected to have a greater genetic variance
than F1:2 bulks (Figures 3D and 4J). In the duplicate model the oppo-
site was the case, and s2

F1:2 could be considerably larger than s2
F1 when

allele divergence became extreme (Figure 4D). The proportion of SCA
to total genetic variance in the F1 hybrids (%scaF1) followed similar
trends as the total genetic variance under all models, i.e., it decreased
with increasing allele divergence and decreasing degree of dominance
(Figures 3E, 4E and 4K). Finally was the ratio %scaF1:2=%scaF1 below
one throughout for all three models, indicating that relatively less ge-
netic variation can be attributed to SCA effects in F1:2 bulks than in F1
hybrids (Figures 3G, 4G and 4L).

Simulation results

Quantitative genetic parameters: Because these parameters are not
affected by the heritability scenario, only results for the “constant
residual variation” scenario will be shown. The F1 hybrids had a
larger genetic variance than F1:2 bulks (Table 1). The difference
between the two was relatively larger under the divergent heterotic
group structure, where s2

F1:2 was less than half of s2
F1. Overall, ge-

netic variance was larger in the convergent structure than in the
divergent structure, for both F1 and F1:2. The proportion of SCA to
total genetic variation was larger in the convergent than the diver-
gent structure by almost 10 percentage points (Table 1). This quan-
tity could only be assessed for the F1 hybrids for which the full
factorial was created. Finally, the correlation between F1 hybrids
and F1:2 bulks was largest in the convergent heterotic group struc-
ture and very close to 1.00 (Table 1). However, this correlation was
with 0.91 very high in the divergent scenario, too.

GCA prediction: Under constant residual variation, the prediction
accuracy obtained from the F1 training set was higher than that for
the F1:2 training set throughout (Table 2). Under a convergent heterotic
group structure, the differences were small and did not exceed 0.04
points. Differences under the divergent structure were in themagnitude
of 0.10 points. When the heritability of the F1:2 bulk phenotypes was
made equal to that of the F1 hybrids (constant heritability scenario), the
GCA prediction accuracy from the F1:2 training set increased consid-
erably and nowwas close to (divergent structure) or even slightly higher
(convergent structure) than that of the F1 training set. (The heritability
of the latter was 0.5 in both cases and so the accuracy values were not
expected to change.) Overall, prediction accuracy was higher for DH
lines that contributed to the training set (“tested”) than for DH lines
that did not (“untested”) and lower within families than across.
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Hybrid prediction: Under constant residual variation, the prediction of
hybrid performance was more accurate when using the F1 training set
than for the F1:2 training set (Table 3). The difference between the two
thereby was largest for the divergent heterotic group structure, where it
reached from 0.15 points for T3 hybrids to 0.06 points for T0 hybrids.
Under the convergent heterotic group structure, the differences reached
from 0.09 points (T3) to 0.01 points (T0).With constant heritability the
accuracy of the predictions from the F1:2 training set increased mark-
edly and now were similar (divergent structure) or even slightly higher
(convergent structure) than for the F1 training set. In general, the
performance of T3 hybrids was predicted with highest accuracy, fol-
lowed byT2, T1 andT0 hybrids. The prediction accuracy of SCA effects
was considerably lower than that of total hybrid performance through-
out (Table 3). Similar trends held, however, with the exception that
even under constant heritability the F1:2 training set was considerably
less accurate than the F1 training set.

DISCUSSION
UsingF1:2bulks for genomicprediction trainingsetsandmoregenerally
testcross and hybrid evaluation is an alternative when production of
large quantities of seed of F1 hybrids is expensive, significantly increases
the complexity of a breeding program or is impossible altogether. The
objective of this study was to assess the promise of this approach from a
theoretical point of viewwith thehelpofquantitativegenetics theoryand
stochastic simulation.

Quantitative genetic properties
Both the simulation as well as the theoretical results indicate that the
correlation between F1 hybrids and F1:2 bulks can be expected to be
high across a wide range of scenarios (Table 1, Figures 3 and 4). A few
exceptions should be pointed out, however. Lower values, particularly
for corhybrids, were observed for increasing divergence between the allele

frequencies in the two heterotic groups, particularly for the duplicate
epistatic model (Figure 4A). Here, most of the F1 hybrids are expected
to have genotypic value of z, and only a small fraction a value of zero
(those homozygous for the ’2’ allele at both loci). F1:2 bulks derived
from F1 hybrids heterozygous at one or both loci, however, will exhibit
an average performance that is intermediate between z and 0.0. With
increasing allele frequency divergence, relatively more F1 hybrids are
heterozygous at one or both loci, leading to a greater frequency of cases
with differing F1 and F1:2 performance and hence a lower correlation.

Two factors will lessen the impact of strongly diverged pairs of loci
with duplicate gene action on the overall correlation for complex traits.
First, is the genetic variance generated by loci pairs with duplicate gene
actionconsiderable lower than forpairsof lociwithcomplementarygene
action but similar divergence and magnitude of gene action effects
(compare figures 4C and 4I). Second, does the generated variance de-
crease with increasing divergence (Figure 4C). Thus, when a trait is
influenced by both duplicate and complementary epistasis and by loci
with different degrees of divergence, the impact of strongly diverged
loci exhibiting duplicate epistasis on the overall correlation between F1
and F1:2 genetic effects will be relatively minor.

Under dominant gene action, the correlation between F1 and F1:2
GCA effects in the heterotic group with lower frequency of the allele
that increase genetic value can take values of -1 within a narrow band
defined by particular combinations of allele divergence and degree of
dominance (Figure 3B). An explanation for this phenomenon is
provided in the supplemental file S2. For brevity it should suffice
here to state that for degrees of dominance below one (i.e., partial
dominance), the correlation is always +1 and that very high degrees
of dominance are required to reach this “band” for low or moderate
divergence of allele frequencies. As can be seen from the example in
File S2 (and from File S1) as well, loci that exhibit this behavior will
contribute relatively little to the variance of GCA effects in the

Figure 3 Expected values of corhybrids (A), corGCAðf Þ (B), s2
F1 (C), s2

F1:2=s
2
F1 (D), %scaF1 (E) and %scaF1:2=%scaF1 (F) under the “dominance” model

as a function of allele frequency divergence and degree of dominance. Note that the color scale is not constant across sub-figures.

Figure 4 Expected values of corhybrids (A,G), corGCA (B,H), s2
F1 (C,I), s2

F1:2=s
2
F1 (D,J), and %scaF1 (E,K) and %scaF1:2=%scaF1 (F,L) under the

duplicate model (top row) and complementary model (bottom row) as a function of allele frequency divergence at both loci. Note that the color
scale is not constant across sub-figures. The values in sub-figure D were transformed to lnðs2

F1:2=s
2
F1Þ to aid visibility.
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affected heterotic group. Thus, to have an impact on the overall
GCA correlation, the vast majority of loci controlling a complex
trait must be within the specific combinations of allele divergence
and degree of dominance defining this “band” and the alleles in-
creasing genotypic value must consistently have a lower frequency
in the same heterotic group. This seems unlikely for a complex trait
controlled by hundreds or thousands of genes. The low contribution
to GCA variance in the heterotic group in which corGCA is -1 also
explains why corhybrids remains high even then.

The theoretical results show that to the degree that corhybrids (and
corGCA) did decrease, it largely did so as a function of increasing allele
divergence. This explains that corhybrids was lower in the divergent
heterotic group structure, characterized by strong differences in male
and female frequencies of QTL alleles, than in the convergent structure,
where QTL alleles were constrained to have similar frequency in both
heterotic groups.

The observation that the genetic variance is lower among F1:2 bulks
than among F1 hybrids (Table 1) is also in line with the theory, which
further predicts that this difference increases as allele frequencies di-
verge. This again is observed in the simulation results, in which the F1:2
had approximately 61% of the variation of the F1 in the convergent
heterotic group structure but only about 48% in the divergent structure.
Duplicate epistasis again presents somewhat of an exception, because
here the F1:2 actually had a larger variance than the F1 (Figure 4D) and
the more so the more the alleles diverged. As mentioned before, how-
ever, the weight of loci with duplicate epistatic effects on determining
overall genetic trends for complex traits is considerably lower than that
of loci with other types of gene action.

Finally, the theoretical results show that the proportion of SCA to
total genetic variation in the F1 hybrids decreases with increasing
interpopulation divergence for the dominance (Figure 3E), the dupli-
cate (Figure 4E) and the complementary model (Figure 4K). This was
also observed in the simulation, where the relative amount of SCA
variation was almost 10 percentage points higher in the convergent
than in the divergent population structure scenario. Reif et al. (2007)
previously showed that increasing interpopulation divergence reduces
the proportion of SCA variance when considering only dominance. For
random mating populations in Hardy-Weinberg equilibrium it was
further shown that genetic variance generated by the epistatic and
dominance models considered here is largely additive when allele fre-
quencies are at extreme values (Hill et al. 2008). Theoretical results also
imply that the contribution of SCA to total variance is expected to be
relatively lower for F1:2 bulks than F1 hybrids. This is easiest to see
under dominant gene action, where d is in essence halved because only
50%of the segregants within a F1:2 bulk derived fromaheterozygous F1
will have a genetic value of d and the genetic values of the homozygous

segregants will cancel in the determination of the mean value of the
bulk.

The theorydevelopedhere inprinciple applies also toQTLwith large
effects on the trait of interest.Anexception,however, aremajorQTLthat
affect plant stature andmorphology. A prime example of such QTL are
“dwarfing genes” (Hedden 2003). Their segregation in the F1:2 bulks
would result in uneven plant stands as well as increased plant to plant
competition, which would add to the differential performance between
F1 hybrids and F1:2 bulks in a way not accounted for by the theory or
simulations developed here. It could also result in an increased residual
variance for the F1:2 bulks and hence a lower heritability, the adverse
effects of which will be discussed below.

Genomic prediction of GCA effects
Based on the developed theory, F1:2 bulks are expected to have a lower
genetic variance than F1 hybrids. With constant residual variation, i.e.,
F1 and F1:2 training sets phenotyped with same number of locations
and replications, the latter is thus expected to have a lower heritability.
Prediction accuracy is expected to decrease with decreasing heritability
of the training set phenotypes (Daetwyler et al. 2010; Lorenz 2013). The
reduced prediction accuracy coming from the F1:2 training set in the
“constant residual variation” scenario (Table 2) thus was in part due to
the lower heritability of the F1:2 phenotypes. Indeed, when both train-
ing sets had the same heritability, accuracy was similar, too. In the
convergent heterotic group scenario the accuracy of the F1:2 training
set was then even slightly higher than that of the F1 training set. SCA
effects essentially act as noise and even modeling them is unlikely to
completely remove their confounding effects on the estimation of GCA
effects. This surprising result can therefore be explained by the relative-
ly lower amount of SCA variation in the F1:2 training set, as indicated
by the theoretical results (Figures 3F, 4F, and 4L). SCA variation is
expected to be relatively less important under a divergent heterotic
group structure, as shown by theory and simulation results obtained
here and elsewhere (Reif et al. 2007) as well as in practice (Fischer et al.
2009). The relatively lower amount of SCA variation in the F1:2 train-
ing set will therefore be less of a benefit in this case.

Even if the genomic model fitted could explain 100% of the genetic
variation in the F1:2 bulks, the prediction accuracywould have an upper
bound proportional to the correlation between F1 and F1:2 genetic
effects. It was shown here that this correlation is expected to decrease
with increasing allele divergence between heterotic groups andobserved
to be lower lower in the divergent heterotic groups structure than in the

n Table 1 Average simulation results of total genetic variance,
proportion of SCA variance and correlation between F1 hybrids
and F1:2 bulks

Convergent Divergent

F1 F1:2 F1 F1:2

Variancea 20.34 12.36 15.89 7.63
%SCAb 0.24 – 0.15 –
Correlationc 0.97 0.91
a
True genetic variance of F1 hybrids (s2

F1) and F1:2 bulks (s2
F1:2) used in the

training set.
b
True proportion of SCA to total genetic variance (%scaF1) in full factorial (only
measured for F1 hybrids for which full factorial was created).

c
Correlation (corhybrids ) of true genetic values of F1 hybrids and F1:2 bulks in
training set.

n Table 2 Average simulation results for genomic prediction
accuracy of GCA effects

Structure Generation

Within family Across families

Tested Untested Tested Untested

Constant residual variationa

Convergent F1 0.49 0.34 0.71 0.51
F1:2 0.45 0.32 0.67 0.49

Divergent F1 0.50 0.36 0.73 0.54
F1:2 0.40 0.29 0.62 0.46

Constant heritabilityb

Convergent F1 0.49 0.34 0.71 0.51
F1:2 0.51 0.36 0.72 0.52

Divergent F1 0.50 0.36 0.73 0.54
F1:2 0.48 0.34 0.69 0.51

a
Phenotypic values in F1 and F1:2 training sets had same magnitude of residual
variation.

b
Phenotypic values in F1 and F1:2 training sets had same heritability.
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convergent structure. Finally, both theory and the simulation show that
the relative reduction in genetic variance is greater, the greater thedegree
of divergence. With a constant residual variation, the reduction in
heritability was therefore larger in the divergent scenario. These three
factors combined, i.e., the lower benefit from the reduced proportion of
SCA variance, the lower correlation between F1 and F1:2 genetic effects,
and the lower heritability can explain why a larger accuracy penalty
from using F1:2 training sets was observed for the divergent heterotic
group structure.

The described trends held in general for prediction of tested and
untested DHs. The differences between the accuracy from F1 and F1:2
training sets, however, were largerwhen predicting testedDH lines than
for untested ones (Table 2), at least for the “constant residual variation”
scenario. Genomic predictions of tested individuals (i.e., individuals
contributing to the training set), are strongly influenced by the pheno-
typic observations available for them (Endelman and Jannink 2012;
Müller et al. 2015). It can be speculated that they are therefore more
sensitive to differences in F1 and F1:2 genetic values and the lower
heritability of the latter. Nonetheless, accuracy for tested DH was al-
ways considerably higher than for untested DH. Each tested DH was
not only represented in the training set directly in the form of a hybrid
progeny, but also had 24 full-sib DH that directly contributed to the
training set as well. Previous studies demonstrated the positive effect on
prediction accuracy of direct observations (e.g., Endelman et al. 2014)
and presence of full-sibs in the training set (Habier et al. 2013;
Riedelsheimer et al. 2013; Schopp et al. 2017). The trends concerning
accuracy of F1 and F1:2 training sets also held for within and across
family prediction. That the latter was considerably more accurate was
expected because it is largely driven by separation of family means
(Windhausen et al. 2013; Riedelsheimer et al. 2013).

Genomic prediction of hybrid performance
Because GCA is an important component of total hybrid performance,
similar trends were observed here. Namely that the prediction accuracy
from the F1:2 training set was trailing that of the F1 training set under
constant residual variation but caught up to or even exceeded it under
constant heritability (Table 3). Similarly, the accuracy difference was
larger for the divergent population structure and for hybrids that were
part of the training set (T3). The explanations given above for GCA
apply also here. That prediction for T3 hybrids was most accurate,
followed by that of T2, T1 and T0 hybrids, was observed in previous
studies (e.g., Technow et al. 2014a; Zhao et al. 2015) and is a result of the

decreasing degree of relatedness between the hybrids in the four classes
and the training set. SCA represents higher order statistical effects and
is therefore estimated with greater error than the GCA effects contrib-
uting to hybrid performance (Technow et al. 2012; Kadam et al. 2016).
Their accuracy was therefore considerably lower than that of GCA
effects (compare the “across population” section of Table 2 with Table
3). Because it is relatively less important with divergent heterotic
groups, the lower accuracy of predicted SCA effect will matter less
for determining total hybrid performance, which consequently was
predicted with greater accuracy than in the convergent scenario.

There has recently been interest in revisiting reciprocal full-sib
mating designs (Hallauer and Eberhart 1970) in light of advances in
genomic prediction of hybrid (Technow et al. 2012; Kadam et al. 2016;
Fritsche-Neto et al. 2018) and GCA (Giraud et al. 2017) performance.
As noted by Giraud et al. (2017), reciprocal testing has several advan-
tages over the still predominant topcross design, in which individuals
under evaluation are crossed with a common partner (“tester”) from
the opposite heterotic group (Jenkins and Brunson 1932). A major
advantage is that field testing is twice as efficient because testcross
hybrids are informative for both heterotic groups, meaning that the
same number of individuals can be tested with half the resources (e.g.,
1,000 instead of 500 total hybrids would have been required to repre-
sent 500 male and 500 female DH if a topcross design would have been
used). The other advantage is that when the crosses are made at ran-
dom, they comply with the assumptions of a gene-orthogonal popula-
tion (Schnell 1965) thus facilitating unbiased estimation of random
GCA and SCA effects and their variances. The training set used in this
studywas constructed in this reciprocal fashion by directly pairingmale
and female DH at random, without the use of a topcross tester. The
results are thus additional confirmation that hybrid performance as
well as GCA and SCA effects can be evaluated and predicted accurately
with such a design, even when each parent is represented in only a
single hybrid combination.

Practical considerations
This study focused on assessing the theoretical potential of using F1:2
bulks for evaluating and predicting F1 hybrid and GCA performance,
basedonmeasures suchas theexpectedcorrelationsbetweenF1andF1:2
derived performance values and effects on genomic prediction accuracy.
However, biological and practical considerationswill also factor into the
relative merit of the proposed approach. Key considerations hereby are
the seedmultiplication rate (= number of seeds harvested per plant) and

n Table 3 Average simulation results for genomic prediction accuracy of hybrid performance and SCA effects

Structure Generation

Hybrid performance SCA effects

T3a T2 T1 T0 T3 T2 T1 T0

Constant residual variationb

Convergent F1 0.76 0.63 0.55 0.45 0.35 0.18 0.14 0.12
F1:2 0.67 0.60 0.52 0.44 0.20 0.12 0.10 0.08

Divergent F1 0.78 0.69 0.61 0.51 0.33 0.17 0.13 0.10
F1:2 0.63 0.59 0.52 0.44 0.18 0.10 0.07 0.06

Constant heritabilityc

Convergent F1 0.76 0.63 0.55 0.45 0.35 0.18 0.14 0.11
F1:2 0.74 0.64 0.56 0.46 0.25 0.14 0.11 0.09

Divergent F1 0.78 0.69 0.61 0.51 0.33 0.17 0.13 0.10
F1:2 0.72 0.65 0.57 0.48 0.24 0.12 0.10 0.07

a
T3: Hybrids used in training set (i.e., with observed data); T2: both parents represented in training set but with different partners; T1: one parent represented; T0: no
parent represented.

b
Phenotypic values in F1 and F1:2 training sets had same magnitude of residual variation.

c
Phenotypic values in F1 and F1:2 training sets had same heritability.
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the seeding rate (= number of seeds planted per area unit) of the crop in
question. Both will determine how many F1 plants, which have to be
generated by hand pollination, are required to produce the amount of
F1:2 seed needed for conducting multi-environment field trials. All else
equal, theproposedapproachwill bemorepromising for cropswithhigh
seed multiplication rate and low seeding rate, like rapeseed and sugar
beet, than for crops with a lowmultiplication rate and high seeding rate,
which tends to be the case for many small grain cereals. Other factors
influencing the economical viability of F1:2 production for research
purposes include flower morphology, determining the ease with which
hand pollination can be carried out, and ultimately also the availability
and cost of labor. Those biological and practical factors, however, are
highly crop specific and, as far as labor costs are concerned, also depend
on the geography of the breeding program. A detailed economic cost-
benefit analysis of the F1:2 approach is therefore not within the scope of
this study.

In cases where neither the implementation of a hybridization system
nor the production of F1:2 seed is feasible on a large scale, inbred per-se
evaluation might be considered. The correlation between inbred per-se
and testcross performance is, however, typically expected to be low for
complex traits like grain yield (Smith 1986; Schopp et al. 2015). This
therefore seems promising only for scenarios in which selection for
simply inherited traits with predominantly additive gene action is im-
portant and can be carried out as a first step in a multi-stage (genomic
or phenotypic) selection scheme. Production of either F1 (through a
hybridization system) or F1:2 seed for testcross evaluation might then
be possible for the much reduced set of selected inbred lines.

A reduction in heritability was identified as themain factor reducing
prediction accuracy of F1:2 training sets relative to that of F1 training
sets, rather than differences in F1 and F1:2 genetic values. Options for
increasing the heritability of F1:2 phenotypes include testing in more
environments and/or replications and possibly in larger field plots
(Rebetzke et al. 2014). Alternatively, the lower heritability could partly
be compensated by increasing training set size (Lorenz 2013). The in-
crease in resource requirements associated with each option might be
justifiable with the expected reduction in complexity and cost of seed
production.

This studyshowedthat theabilityofF1:2 trainingsets topredictGCA
and hybrid performance on the F1 level is expected to be greater, the
lower the degree of divergence between heterotic groups.Most crops for
which hybrid breeding is considered promising currently lack clearly
defined heterotic patterns (Melchinger and Gumber 1998; Zhao et al.
2015; Beukert et al. 2017), certainly not to the extent present in maize,
where many decades of reciprocal-recurrent selection led to a system of
divergent, co-evolving heterotic groups (Duvick et al. 2004; Technow
et al. 2014a; Gerke et al. 2015). Thus, for many crop species, for which
the lack of an efficient and reliable hybridization system is a major
impediment (Longin et al. 2012), resorting to F1:2 bulks is particularly
promising.

It should be noted that for all self-pollinating crop species, the
baseline for comparison are not the “true” F1 hybrids considered in
this study, but those produced with the help of hybridization systems.
Chemical hybridization agents (CHA), for example, often result in only
partial sterility of the female parent, meaning that a certain proportion
of the harvested seed is in fact the result of a self pollination. The degree
with which this happens is genotype dependent (Adugna et al. 2004),
leading to a potential confounding of genetic effects and F1 seed purity
in field trials. In a CMS system, several cycles of backcrossing are re-
quired to develop sterile “A-line” versions of the female inbred lines. In
early backcrossing generations, the A-lines still contain significant
amounts of donor genome and do not accurately reflect the B-line

genotype (Ahmadikhah et al. 2015). Neither is necessarily a major
concern for production of commercial seed, where CHA applica-
tions can be optimized for each commercial hybrid and there is
enough time for as many cycles of backcrossing as necessary to
remove nearly all residual donor genome. Optimization of CHA
applications for hundreds or thousands of experimental hybrids
used in a training set or for testcross evaluation, however, is un-
feasible, and carrying out three or more cycles of backcrossing be-
fore testcrossing would increase the total length of the breeding
cycle significantly. Thus, the F1 hybrids used in practice for training
set development and testcross evaluation are also not expected to
reflect “true” F1 performance without bias.

Even in the “worst-case” scenario however, i.e., without the ability of
compensating for the reduced heritability of F1:2 bulks and with strong
divergence between heterotic groups, should the prediction accuracy
observed here for GCA and hybrid performance of tested and untested
individuals be high enough to facilitate genetic gain and identification
of superior hybrids. The modest accuracy penalty when using F1:2
bulks might therefore be a reasonable price to pay for the prospect of
removing the significant complication and resource requirement of a
hybridization system from the breeding process.
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