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Our focus in the past several years has been on the identification of novel and effective
pan-Bcl-2 antagonists. We have recently reported a series of Apogossypolone (ApoG2)
derivatives, resulting in the chiral compound (±) BI97D6. We report here the synthesis and
evaluation on its optically pure (−) and (+) atropisomers. Compound (−) BI97D6 potently
inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2, Mcl-1, and Bfl-1 with IC50 values of
76 ± 5, 31 ± 2, 25 ± 8, and 122 ± 28 nM, respectively. In a cellular assay, compound (−)
BI97D6 effectively inhibits cell growth in the PC-3 human prostate cancer and H23 human
lung cancer cell lines with EC50 values of 0.22 ± 0.08 and 0.14 ± 0.02 μM, respectively. Sim-
ilarly, compound (−) BI97D6 effectively induces apoptosis in the BP3 human lymphoma
cell line in a dose-dependent manner. The compound also shows little cytotoxicity against
bax−/ −/bak−/ − cells, suggesting that it kills cancers cells predominantly via a Bcl-2 path-
way. Moreover, compound (−) BI97D6 displays in vivo efficacy in both a Bcl-2-transgenic
mouse model and in a prostate cancer xenograft model in mice. Therefore, compound (−)
BI97D6 represents a promising drug lead for the development of novel apoptosis-based
therapies for cancer.
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INTRODUCTION
Programmed cell death (apoptosis; Reed, 1999; Vaux and
Korsmeyer, 1999) plays critical roles in both the onset and progress
of cancer and contributes significantly to chemoresistance (John-
stone et al., 2002; Reed, 2002). B-cell lymphoma/leukemia-2
(Bcl-2) family proteins are central regulators of the apoptotic
machinery (Adams and Cory, 1998; Reed, 1998; Gross et al.,
1999). The Bcl-2 family is composed of anti-apoptotic and pro-
apoptotic members. To date, six anti-apoptotic members of the
Bcl-2 family have been identified and characterized, including Bcl-
2, Bcl-XL, Mcl-1, Bfl-1, Bcl-W, and Bcl-B. Since the overexpression
of anti-apoptotic Bcl-2 family proteins is associated with tumor
progression, poor prognosis, and drug resistance, these proteins
are representing attractive targets for anticancer drug (Reed, 1997;
Wang et al., 2000; Degterev et al., 2001). X-ray crystallography
and nuclear magnetic resonance (NMR) spectroscopy structural
studies have elucidated a hydrophobic crevice on the surface of
anti-apoptotic Bcl-2 family proteins that binds the BH3 dimeriza-
tion domain of pro-apoptotic family members (Muchmore et al.,
1996; Sattler et al., 1997; Reed, 1998). Thus, molecules that mimic
the BH3 domain of pro-apoptotic proteins may be effective in
either inducing apoptosis and/or in abrogating the ability of anti-
apoptotic Bcl-2 proteins to inhibit cancer cell death (Reed, 1997,
1998; Wang et al., 2000; Degterev et al., 2001).

Our laboratories (Kitada et al., 2003) and others (Wang and
Yang, 2004; Mohammad et al., 2005; Wang et al., 2006a) have
reported that the natural product (±) Gossypol (Figure 1A) is

a moderate inhibitor of Bcl-2, Bcl-XL, and Mcl-1, functioning as
a BH3 mimic (Kitada et al., 2003; Wang and Yang, 2004; Moham-
mad et al., 2005; Wang et al., 2006a). (−) Gossypol (AT101,
Ascenta Pharmaceuticals) is currently in phase II clinical tri-
als as single-agent (Mohammad et al., 2005; Wang et al., 2006a;
Meng et al., 2008). However, (±) Gossypol may target other pro-
teins due to its two reactive aldehyde groups. Hence, we designed
(±)Apogossypol (Figure 1A), a compound lacking these unde-
sired functional groups, but retains activity against anti-apoptotic
Bcl-2 family proteins in vitro and in cell (Becattini et al., 2004).
Accordingly, we found that (±) Apogossypol had superior efficacy
and markedly reduced toxicity compared to (±) Gossypol (Kitada
et al., 2008). Furthermore, single-dose pharmacokinetic charac-
teristics of (±) Apogossypol in mice displayed superior blood
concentrations over time compared to compound (±) Gossy-
pol, due to slower clearance (Coward et al., 2006). Recently, we
reported on the separation and characterization of the atropiso-
mers of (±) Apogossypol (Wei et al., 2009c). We further reported
the synthesis and evaluation of (±) 5, 5′ alkyl, ketone, and amide
substituted (±) Apogossypol derivatives, with the best compounds
(±) BI97D10 (Wei et al., 2009a) and (RS, ± , RS) 8r (Wei et al.,
2009b; Figure 1A) displaying improved in vitro and in vivo efficacy
compared to (±) Apogossypol. Moreover, we reported the opti-
cally pure compound (R,− , R) 8r (BI97C1, Sabutoclax; Figure 1A;
Wei et al., 2010b; Dash et al., 2011) showed marked enhanced effi-
cacy in vivo compared to diastereomer mixtures (RS, ± , RS) 8r
(Wei et al., 2010b).
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FIGURE 1 | (A) Structure of (±) Gossypol, Apogossypol, BI79D10, 8r, and BI97C1. (B) Structure of 5, 5′ substituted Apogossypolone derivatives, Apogossypolone
(ApoG2), BI97D6, and BI97E4. (C) Preparation of pure (−) and (+) BI97D6 and ApoG2 atropisomers using a normal phase liquid chiral column chromatography.

(±) Apogossypolone (ApoG2, Figure 1B) is a Gossypol deriv-
ative designed by Ascenta Pharmaceuticals to reduce the toxicity
of Gossypol. (±) ApoG2 has been reported as a potent inhibitor
of Mcl-1, Bcl-2, and Bcl-XL. (±) ApoG2 blocks binding of Bim
and Bcl-2 and induces apoptosis in a number of human can-
cer cell lines (Wang et al., 2006b; Arnold et al., 2008; Hu et al.,
2008; Mi et al., 2008; Lin et al., 2009; Sun et al., 2009). In addi-
tion, (±) ApoG2 induces regression in several tumor xenograft
models, and its maximum tolerated dose (MTD) appeared to be
less toxic than compound (−) Gossypol, with oral MTD val-
ues of >240 mg/kg and ∼50 mg/kg, respectively (Wang et al.,
2006b; Mi et al., 2008). We have recently reported on the syn-
thesis and biological evaluation of novel (±) ApoG2 derivatives
which replaced the isopropyl groups of (±) ApoG2 with various
alkyl groups at 5, 5′ positions (Figure 1B; Wei et al., 2010a). Some
5, 5′ substituted ApoG2 derivatives 6i (BI97D6) and 6l (BI97E4;
Figure 1B) displayed improved in intro and in vivo efficacy com-
pared to (±) ApoG2. For example, compounds (±) BI97D6 and
BI97E4 induced 43 ± 4 and 38 ± 7% reduction of spleen size at
dose of 30 μmol/kg in B6Bcl-2-transgenic mice model, whereas
compound (±) ApoG2 induced only 15 ± 2% reduction at even
a higher dose (60 μmol/kg) in the same assay (Wei et al., 2010a).
However, compounds (±) BI97D6 and ApoG2 are mixtures of (+)
and (−) atropisomers (Figure 1B). In principle, (+) and (−) atro-
pisomers should be treated as different compounds because they
have different physical, chemical, and pharmacology properties.

Indeed, the (−) Gossypol displayed a marked differential activity
compared to its natural racemic mixture (Wang and Yang, 2004).
Therefore, in this current work, we focus our attention on prepar-
ing pure atropisomers of (±) ApoG2 and its most potent derivative
(BI97D6) followed by further investigation of their in vitro and
in vivo activities (Figure 1C).

MATERIALS AND METHODS
MOLECULAR MODELING
Molecular modeling studies were conducted on a Linux worksta-
tion and a 64 3.2-GHz CPUs Linux cluster. Docking studies were
performed using the crystal structure of Bcl-XL in complex with
a BH3 mimetic ligand (Protein Data Bank code 2YXJ; Oltersdorf
et al., 2005; Bruncko et al., 2007; Lee et al., 2007). The ligand
was extracted from the protein structure and was used to define
the binding site for small molecules. Compounds (−) and (+)
BI97D6 were docked into the Bcl-XL protein by the GOLD (Jones
et al., 1997) docking program using ChemScore (Eldridge et al.,
1997) as the scoring function. The active site radius was set at
10 Å and 10 GA solutions were generated for each molecule. The
GA docking procedure in GOLD (Jones et al., 1997) allowed the
small molecules to flexibly explore the best binding conformations
whereas the protein structure was static. The protein surface was
prepared with the program MOLCAD (Teschner et al., 1994) as
implemented in Sybyl (Tripos, St. Louis) and was used to analyze
the binding poses for studied small molecules.
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CHEMICALS
The synthesis of pure (−) and (+) atropisomers of ApoG2 and
BI97D6 is outlined in Figure 1C. The preparation of racemic
(±) ApoG2 and (±) BI97D6 has been previously reported by
us (Wei et al., 2009b). These racemic compounds were readily
resolved using a liquid normal phase chiral column chromatogra-
phy to afford (−) and (+) optically pure atropisomers of ApoG2
and BI97D6 (Figure 1C). The optical configuration and enan-
tiomeric purity of each atropisomer were determined using a
combination of polarimeter and liquid normal phase chiral col-
umn chromatography (Table A1; Figure A1A in Appendix). The
optical rotation ([α]) generated by the atropisomery in ApoG2
and BI97D6 was approximately from ±40˚, depending on dif-
ferent substitutions on 5, 5′ positions of ApoG2 (Table A1 in
Appendix). The separation and characterization of the compound
(−) BI97D6 are given as an example. The detailed experiment
and characterization of all other compounds are in Appen-
dix. The (±) BI97D6 was resolved to afford pure (−) and (+)
BI97D6 (Figure 1C) using a RegisCell 5 μM 250 mm × 10 mm
liquid normal phase semi-preparative chiral column from Regis
Technologies Inc. Mobile phase A was 0.1% TFA in 2-propanol
and mobile phase B was 0.1% TFA in hexane. Flow rate was
4 mL/min. The run duration was 25 min. The separation was
done using constant 30% A and 70% B in 15 min followed by
10 min at 100% A. The optical rotation ([α]) of (−) BI97D6 is
−38.75˚. 1H NMR (600 MHz, CD3OD) δ 7.448 (s, 2H), 7.224 (d,
J = 7.8 Hz, 4H), 7.178 (t, J 1 = 7.8 Hz, J 2 = 7.2 Hz, 4H), 7.084 (t,
J 1 = J 2 = 7.2 Hz, 2H), 4.643 (dd, J 1 = 14.4 Hz, J 2 = 13.8 Hz, 4H),
1.867 (s, 6H); 13C NMR (600 MHz, (CD3)2SO) δ 185.44, 182.61,
150.04, 149.83, 146.59, 140.95, 138.56, 130.07, 128.66, 128.39,
126.52, 125.82, 123.76, 111.74, 31.74, 14.84; HRMS calculated for
[C36H26O8 + H] 587.1700, Found 587.1723. High-performance
liquid chromatography is 98% pure.

NMR EXPERIMENTS
Nuclear magnetic resonance-based binding assays have been con-
ducted by acquiring one-dimensional 1H experiments with 500 μL
solution of Bcl-XL at 20 μM concentration, in absence and pres-
ence of added compounds, each at 100 μM concentration. By
observing the aliphatic region of the spectra, binding could be
readily detected due to chemical shift changes in active site methyl
groups of Ile, Leu, Thr, Val, or Ala (region between −0.8 and
0.3 ppm). The Mcl-1 binding mode was characterized by recording
[15N, 1H]-HSQC experiments with 500 μL solution of uniformly
15N-labeled Mcl-1 (25 μM concentration) in absence and pres-
ence of added compounds, each at 25 and 125 μM concentration,
respectively. Bcl-XL and Mcl-1 samples were prepared and puri-
fied as described previously (Sattler et al., 1997; Day et al., 2005).
All experiments were performed with a 600-MHz spectrometer
Bruker Advance 600 equipped with four rf channels and z-axis
pulse-field gradients.

FLUORESCENCE POLARIZATION ASSAYS
A Bak BH3 peptide (F-BakBH3) (GQVGRQLAIIGDDINR) was
labeled at the NH2 terminus with fluorescein isothiocyanate
(FITC; Molecular Probes) and purified by HPLC. For com-
petitive binding assays, 20 nM GST–Bcl-XL ΔTM protein was

preincubated with the tested compound at varying concen-
trations in 47.5 μL phosphate-buffered saline (PBS; pH = 7.4)
in 96-well black plates at room temperature for 5 min,
then 2.5 μL of 15 nM FITC-labeled Bim BH3 (FITC-Ahx-
DMRPEIWIAQELRRIGDEFNAYYAR) peptide was added to pro-
duce a final volume of 50 μL. The wild-type and mutant Bim BH3
peptides were included in each assay plate as positive and negative
controls, respectively. After 10 min incubation at room temper-
ature, the polarization values in millipolarization units (Sattler
et al., 1997) were measured at excitation/emission wavelengths of
480/535 nm with a multilabel plate reader (PerkinElmer). IC50 was
determined by fitting the experimental data to a sigmoidal dose–
response non-linear regression model (SigmaPlot 10.0.1; Systat
Software, Inc., San Jose, CA, USA). Data reported are mean of three
independent experiments ± SE. Performance of Bcl-2, Mcl-1, and
Bfl-1 FPA are similar. Briefly, 20 nM of GST–Bcl-2 or –Mcl-1, or
–Bfl-1 were incubated with various concentrations of compounds
(−), (+), (±) ApoG2 and BI97D6 for 2 min, then 15 nM FITC-
conjugated-Bim BH3 peptide (Ramjaun et al., 2007) was added
in PBS buffer. Fluorescence polarization (FP) was measured after
10 min.

CELL VIABILITY ASSAYS
The activity of the compounds against human cancer cell lines
(PC-3, H460, and H23) were assessed by using the ATP-LITE
assay (PerkinElmer). All cells were seeded in either 12F2 or
RPMI1640 medium with 5 mM l-glutamine supplemented with
5% fetal bovine serum (Mediatech Inc.), penicillin, and strepto-
mycin (Omega). For maintenance, cells were cultured in 5% FBS.
Cells plated into 96-well plates at varying initial densities depend-
ing on doubling time. H460 and H23 plated at 2000 cells/well and
PC-3 at 3000 cells/well. Compounds were diluted to final con-
centrations with 0.1% DMSO. Prior to dispensing compounds
onto cells, fresh 5% media was placed into wells. Administration
of compounds occurred 24 h after seeding into the fresh media.
Cell viability was evaluated using ATP-LITE reagent (PerkinElmer)
after 72 h of treatment. Data were normalized to the DMSO
control-treated cells using Prism version 5.01 (GraphPad Soft-
ware). Data were reported as mean of three independent exper-
iments ± SE. The activity of compounds (−) and (+) BI97D6
against mouse embryonic fibroblast wild-type cells (MEF/WT)
and mouse embryonic fibroblast BAX/Bak double knockout cells
(DKO/MEF) was assessed by 1 day ATP-LITE assay. Wild-type
MEF and DKO/MEF were seeded in 96-well plate at a seeding
density of 10,000 cells per well. The next day, compounds (−) and
(+) BI97D6 were added to wild-type and DKO cells. Cell viability
was evaluated using ATP-LITE reagent (PerkinElmer) after 24 h
of treatment. Data were normalized to the DMSO control-treated
cells using Prism version 5.01 (GraphPad Software). Data were
reported as mean of three independent experiments ± SE.

The apoptotic activity of the compounds against BP3 cells was
assessed by staining with Annexin V-FITC and propidium iodide
(PI). BP3 cells were cultured in RPMI 1640 medium (Mediat-
ech Inc., Herndon, VA 20171, USA) containing 10% fetal bovine
serum (Mediatech Inc., Herndon, VA 20171, USA) and Peni-
cillin/Streptomycin (Mediatech Inc., Herndon, VA 20171, USA).
Cells were cultured with various concentrations of (±), (−), and

www.frontiersin.org September 2011 | Volume 1 | Article 28 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive


Wei et al. Apogossypolone derivatives

(+) ApoG2 and its 5, 5′ substituted derivative (BI97D6) for 1 day.
The percentage of viable cells was determined by FITC-Annexin
V- and propidium iodide (PI)-labeling, using an Apoptosis Detec-
tion kit (BioVision Inc.), and analyzing stained cells by flow-
cytometry (FACSort; Bectin-Dickinson, Inc., Mountain View, CA,
USA). Cells that were annexin-V-negative and PI-negative were
considered viable. Data reported are mean of two independent
experiments ± SE.

IN VITRO ADME STUDIES
Liver microsomal stability
Pooled rat liver microsomes (BD Biosciences, # 452701) were
preincubated with test compounds at 37.5˚C for 5 min in the
absence of NADPH. The reaction was initiated by addition of
NADPH and then incubated under the same conditions. The
final incubation concentrations were 4 μM test compound, 2 mM
NADPH, and 1 mg/mL (total protein) liver microsomes in PBS at
pH 7.4. One aliquot (100 μL) of the incubation mixture was with-
drawn at 0, 15, 30, and 60 min and combined immediately with
200 μL of ACN/MeOH containing an internal standard. After mix-
ing, the sample was centrifuged at approximately 13,000 rpm for
12 min. The supernatant was transferred into an auto sampler vial
and the amount of test compound was quantified using the Shi-
madzu LCMS-2010EV mass spectrometer. The change of the AUC
(area under the curve) of the parent compound as function of time
was used as a measure of microsomal stability. Data reported are
mean of two independent experiments ± SE.

Plasma stability
A 20-μL aliquot of a 10-mM solution in DMSO of the test com-
pound was added to 2.0 mL of heparinized rat plasma (Lampire,
P1-150N) to obtain a 100-μM final solution. The mixture was
incubated for 1 h at 37.5˚C. Aliquots of 100 μL were taken (0,
30 min, 1 h) and diluted with 200 μL of MeOH containing internal
standard. After mixing, the sample was centrifuged at approxi-
mately 13,000 rpm for 12 min. The supernatant was transferred
into an autosampler vial and the amount of test compound was
quantified using the Shimadzu LCMS-2010EV system. The change
of the AUC (area under the curve) of the parent compound as
function of time was used as a measure of microsomal stability.
Data reported are mean of two independent experiments ± SE.

Parallel artificial membrane permeation assay
A 96-well microtiter plate (Millipore, # MSSACCEPTOR) was
completely filled with aqueous buffer solution (pH 7.2) and cov-
ered with a microtiter filterplate (Millipore, # MAPBMN310). The
hydrophobic filter material was impregnated with a 10% solu-
tion of hexadecane in hexane and the organic solvent was allowed
to completely evaporate. Permeation studies were started by the
transfer of 200 μL of a 100-μM test compound solution on top
of the filterplate. In general phosphate buffer at pH 7.2 buffer was
used. The maximum DMSO content of the stock solutions was
<5%. In parallel, an equilibrium solution lacking a membrane
was prepared using the exact concentrations and specifications
but lacking the membrane. The concentrations of the acceptor
and equilibrium solutions were determined using the Shimadzu
LCMS-2010EV and AUC methods. The permeation of a com-
pound through the membrane layer is described by the percentage

permeation (% flux). The flux values were calculated consider-
ing the concentration of the acceptor compartment after 8 h and
that of a reference well with the same concentration containing no
membrane barrier.

Bcl-2-TRANSGENIC MICE STUDIES
Transgenic mice expressing Bcl-2 have been described as the B6
line (Katsumata et al., 1992). The BCL-2 transgene represents a
minigene version of a t(14;18) translocation in which the human
BCL-2 gene is fused with the immunoglobulin heavy-chain (IgH)
locus and associated IgH enhancer. The transgene was propagated
on the Balb/c background. These mice develop polyclonal B-cell
hyperplasia with asynchronous transformation to monoclonal
aggressive lymphomas beginning at approximately 6 months of
age, with approximately 90% of mice undergoing transforma-
tion by the age of 12–24 months. All animals used here had
not yet developed aggressive lymphoma. Compounds dissolved
in 500 μL of solution (Ethanol:Cremophor EL:Saline = 10:10:80)
were injected intraperitoneally to age- and sex-matched B6Bcl-
2 mouse, while control-mice were injected intraperitoneally with
500 μL of the same formulation without compound. After 24 h,
B6Bcl-2 mice were sacrificed by intraperitoneal injection of lethal
dose of Avertin. Spleen was removed and weighed. The spleen
weight of mice is used as an end-point for assessing activity as
we determined that spleen weight is highly consistent in age-
and sex-matched Bcl-2-transgenic mice in preliminary studies
(Kitada et al., 2008). Variability of spleen weight was within
±2% among control-treated age-matched, sex-matched B6Bcl-2
mice. Data reported in Figure 3C are mean of five independent
experiments ± SE.

HUMAN PROSTATE CANCER XENOGRAFTS IN ATHYMIC NUDE MICE
PC-3-Luc cells (1 × 106) were injected s.c. in 100 μL of PBS in
the left flank of male athymic nude mice (NCRnu/nu, 4 weeks
old, 20 g body weight). After establishing visible tumors of ∼75-
mm3, requiring ∼5–6 days, compound dissolved in 500 μL of
solvent (ethanol/Cremophor EL/saline = 10:10:80) were injected
intraperitoneally (i.p.). The injections were given every 2 days for
a total of nine injections. Seven treatment groups were established
for the experiment, i.e., DMSO only, 3 mg/kg of (±) BI97D6, (−)
BI97D6, (+) BI97D6, 5 mg/kg of (± ) BI97D6, (−) BI97D6, (+)
BI97D6, respectively. A minimum of five animals was used per
experimental condition. Data reported are mean of five indepen-
dent experiments ± SE. For in vivo imaging of tumors, the mice
were anesthetized and injected i.p. with 150 mg/kg luciferin and
light emitted from each tumor was determined using a Xenogen
system with CCD camera with an integration time of 1 min. Lumi-
nescence measurements were made using Living Image software
(version 2.50.1; Xenogen).

RESULTS AND DISCUSSION
We had recently reported that (±) BI97D6 (Figure 1B) was a
promising inhibitor of Bcl-XL, Bcl-2, and Mcl-1 with improved
in vitro and in vivo efficacy compared to (±) ApoG2 (Wei et al.,
2010a). However, by using chiral chromatography we found that,
similar to what was known about (±) Gossypol and Apogossy-
pol (Wang and Yang, 2004; Wei et al., 2009c), compound ApoG2
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FIGURE 2 | Molecular docking studies. Stereo views of docked structures
of (−) BI97D6 (A) and (+) BI97D6 (B) into the BH3 peptide binding groove in
Bcl-XL (PDB ID: 2YXJ). (C) Fluorescence polarization-based competitive
dose–response curves of (−) BI97D6 to Bcl-XL (red square), Bcl-2 (blue dot),

Bfl-1 (dark up triangle), and Mcl-1 (green down triangle). (D) Inhibition of cell
growth by compounds (± ) BI97D6 (Green Square), (−) BI97D6 (red dot), and
(+) BI97D6 (blue up triangle) in the PC-3 human prostate cancer cell line. Cells
were treated for 3 days and cell viability was evaluated using ATP-LITE assay.

and its derivative (BI97D6) also displayed axial chirality due to
restricted rotation around the binaphtyl bond (Figure 1B). There-
fore, it was attractive to explore whether optically pure (−) and (+)
atropisomers of ApoG2 and BI97D6 presented different in vitro
and in vivo activities. In order to predict binding poses of (−)
and (+) BI97D6 into the BH3 binding groove of Bcl-XL, mole-
cular docking studies were performed (Figures 2A,B). Analysis
of the predicted binding models indicated that both atropiso-
mers (−) BI97D6 and (+) BI97D6 could fit well into the BH3
binding groove of Bcl-XL (Figures 2A,B), with the left half com-
ponents of (−) and (+) atropisomers bound to Bcl-XL in a
similar orientation. However, their right substituted naphthalene
rings were predicted to present rather different binding modes
(Figures 2A,B). The (−) BI97D6 was predicted to form hydrogen
bonding with residue Asn 136 in Bcl-XL through its 1′ oxygen on
the right naphthalene ring (Figure 2A), whereas the (+) BI97D6
could not form the hydrogen bonding (Figure 2B). The chem-
score of (−) BI97D6 was 28.54, which was greater than 20.25 for
(+) BI97D6. Therefore, we anticipated that the atropisomer (−)
BI97D6 might have higher binding affinity for Bcl-XL compared
to its (+) atropisomer.

Table 1 | Cross-activity of (±), (+), and (−) ApoG2 and BI97D6 against

Bcl-XL, Bcl-2, Bfl-1, and Mcl-1.

Compounds IC50 (nM)

Bcl-XL Bcl-2 Bfl-1 Mcl-1

(±) ApoG2 129 ± 4 54 ± 3 227 ± 53 72 ± 5

(−) ApoG2 88 ± 3 40 ± 2 211 ± 63 56 ± 4

(+) ApoG2 92 ± 3 38 ± 5 534 ± 52 62 ± 6

(±) BI97D6 54 ± 4 21 ± 2 144 ± 11 53 ± 4

(−) BI97D6 76 ± 5 31 ± 2 122 ± 28 25 ± 8

(+) BI97D6 125 ± 7 30 ± 3 242 ± 25 41 ± 11

The pure atropisomers, namely compounds (−) BI97D6, (+)
BI97D6, (−) ApoG2, and (+) ApoG2 were then evaluated by
NMR spectroscopy binding assays (Figure A1B in Appendix),
competitive FPAs (Table 1) and cell viability assays (Table 2).
Compounds (−) BI97D6 and (−) ApoG2 induced larger chem-
ical shift perturbations in the aliphatic region (region between
−0.38 and 0.42 ppm) compared to (+) BI97D6 and (+) ApoG2
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Table 2 | Evaluation of (±), (+), and (−) ApoG2 and BI97D6 using cell viability assays.

EC50 (μM)

Compound R = Optical Activities H460a* (μM) PC-3a* (μM) H23a* (μM) BP3b* (μM)

(± ) ApoG2 (±) 0.71 ± 0.05 4.67 ± 0.28 0.38 ± 0.04 13.36 ± 1.20

(−) ApoG2 (−) 0.42 ± 0.05 4.39 ± 0.28 0.41 ± 0.03 14.25 ± 1.28

(+) ApoG2 (+) 0.61 ± 0.05 5.41 ± 0.19 0.54 ± 0.05 12.70 ± 2.10

(±) BI97D6 (±) 0.17 ± 0.10 0.30 ± 0.05 0.25 ± 0.01 4.87 ± 0.50

(−) BI97D6 (−) 0.17 ± 0.23 0.22 ± 0.08 0.14 ± 0.02 3.55 ± 0.29

(+) BI97D6 (+) 0.21 ± 0.30 0.44 ± 0.10 0.19 ± 0.02 8.57 ± 0.28

a*Compounds against cell line using ATP-LITE assay.
b*Compounds against cell line using Annexin V-FITC and propidium iodide assay.

in the one-dimensional 1H NMR spectroscopy (1D-1H NMR)
binding assays against Bcl-XL (Figure A1B in Appendix). To
confirm the result of the NMR binding data, we next evalu-
ated the binding property of these compounds against Bcl-XL

using FP assays (Table 1 and Figure 2C). Consistent with the
NMR data, compound (−) BI97D6 bound tightly to Bcl-XL with
an IC50 value of 76 ± 5 nM and and is more potent compared
to (+) BI97D6 (125 ± 7 nM), (−) ApoG2 (88 ± 3 nM), and (+)
ApoG2 (92 ± 3 nM) in FP assay (Table 1). In agreement, com-
pound (−) BI97D6 was more effective in inhibiting growth of
PC-3 cells, which expressed high levels of Bcl-XL. The EC50 value
of (−) BI97D6 in killing PC-3 cells was 0.22 ± 0.08 μM, hence
more potent than (+) BI97D6 (0.44 ± 0.10 μM), (+) ApoG2
(5.41 ± 0.19 μM), and (−) ApoG2 (4.39 ± 0.28 μm; Figure 2D
and Table 2). This is in agreement with previous observations that
lead to the selection of (−) Gossypol (AT101) for clinical trials
(Wang and Yang, 2004). In fact, (−) Gossypol and (+) Gossypol
bound to Bcl-XL with IC50 values of 0.48 and 0.54 μM, respec-
tively, in FPA assays while their EC50 values in killing PC-3 cells
were 3.3 and 17.8 μM, respectively.

In addition to Bcl-XL, other members of the Bcl-2 family were
known to play critical roles in tumor survival (Brien et al., 2007;
Wesarg et al., 2007; Placzek et al., 2010). Therefore, we further eval-
uated the binding properties and specificity of (−) and (+) atro-
pisomers (BI97D6, ApoG2) against Mcl-1, Bcl-2, and Bfl-1 using
a similar FP assay (Table 2). Compound (−) BI97D6 displayed

highly potent binding affinity against Mcl-1 (IC50 = 25 ± 8 nM),
Bcl-2 (IC50 = 31 ± 2 nM),and Bfl-1 (IC50 = 122 ± 28 nM) in these
assays (Table 2). To confirm these results, we also produced uni-
formly 15N-labeled Mcl-1 protein and measured 2D [15N,1H]-
TROSY correlation spectra in absence and presence of compound
(−) BI97D6 (Figure A1C in Appendix). Compound (−) BI97D6
displayed a significant binding to Mcl-1, as qualitatively eval-
uated by the nature of significant changes in chemical shifts
at the ligand/protein ratio of 5:1. Although (+) atropisomer
BI97D6 was a potent inhibitor of Mcl-1 (IC50 = 41 ± 11 nM) and
Bfl-1 (IC50 = 242 ± 25 nM), it is one- to two-fold less potent
than its (−) atropisomer BI97D6 in same FP assays (Table 1).
However, compound (+) BI97D6 has similar inhibitory activity
against Bcl-2 (IC50 = 30 ± 3 nM) compared to its (−) atropisomer
(IC50 = 31 ± 2 nM). Compound (−) BI97D6 was further evalu-
ated against H460 and H23 cancer cell lines, which express high
levels of Bcl-2 and Mcl-1, respectively (Table 2; Brien et al., 2007;
Voortman et al., 2007; Li et al., 2008; Placzek et al., 2010). Con-
sistent with the FP data, compound (−) BI97D6 also displayed
potent efficacy in inhibiting cell growth in human cancer H460
and H23 cell lines (Ferreira et al., 2000; Voortman et al., 2007;
Li et al., 2008) in a 3-day ATP-Lite assay, with EC50 values of
170 ± 23 and 140 ± 2 nM, respectively (Table 2 and Figure A2A
in Appendix). (−) and (+) atropisomers of ApoG2 also displayed
strong inhibitory properties against Bcl-XL, Bcl-2, Mcl-1, and Bfl-
1 (Tables 1 and 2). Although (−) BI97D6 and (−) ApoG2 have
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FIGURE 3 | (A) Mouse embryonic fibroblast cells with wild-type (MEF/WT;
red dot) or bax−/ −bak−/ − double knockout (MEF/DKO, blue square)
genotypes were treated with (−) BI97D6 at various concentrations using
ATP-LITE assay. (B–D) Characterization of (−), (+), and (±) BI97D6 in vivo.
(B) Dose-dependent effects of (−) BI97D6 (blue), (+) BI97D6 (red), and (±)
BI97D6 (green) on shrinkage of Bcl-2-transgenic mice spleen at a single
intraperitoneal injection (i.p.) dose of 20, 10, and 5 μmol/kg, respectively.
All shrinkage data are reported as percentage of maximum reduction of
mice spleen size. (C) Effects of compounds (−), (+), and (±) BI97D6,
respectively, on shrinkage of six B6Bcl-2-transgenic mice spleen at a
single i.p. injection dose of 5 μmol/kg. (D) Human prostate cancer
xenograft in athymic nude mice. PC-3-Luc cells (1 × 106) were injected s.c.
in 100 μL of PBS in the left flank of male athymic nude mice (NCRnu/nu,

4 weeks old, 20 g body weight). After establishing visible tumors of
∼75-mm3, compounds were injected intraperitoneally (i.p.) every 2 days
for a total of nine injections. Seven treatment groups were established for
the experiment, i.e., DMSO only (blue dot), 3 mg/kg of (±) BI97D6 (red
square), 5 mg/kg of (±) BI97D6 (green up triangle), 3 mg/kg of (+) BI97D6
(purple × ), 5 mg/kg of (+) BI97D6 (deep blue star), 3 mg/kg of (−) BI97D6
(orange dot), and 5 mg/kg of (−) BI97D6 (light blue cross). A minimum of
five animals was used per experimental condition. For in vivo imaging of
tumors, the mice were anesthetized and injected i.p. with 150 mg/kg
luciferin and light emitted from each tumor was determined using a
Xenogen system with CCD camera with an integration time of 1 min.
Luminescence measurements were made using Living Image software
(version 2.50.1; Xenogen).

comparable inhibitory properties against Bcl-2, Mcl-1, and Bfl-1
in FP assays (Table 1), (−) BI97D6 are approximately two to four
times more potent than (−) ApoG2 in inhibiting cell growth in
human cancer H460 and H23 cell lines (Table 2).

We further evaluated the ability of (−) and (+) atropiso-
mers (BI97D6 and ApoG2) to induce apoptosis of the human
BP3 cell line (which express high levels of Bfl-1 and Mcl-1),
which originates from a human diffuse large B-cell lymphoma
(DLBCL; Brien et al., 2007; Wei et al., 2009b). For these assays,
we used a 1-day Annexin V-FITC and propidium iodide (PI)

double staining, followed by flow-cytometry analysis (Table 2).
All compounds effectively induced apoptosis of the BP3 cell line
in a dose-dependent manner (Table 2). In particular, compound
(−) BI97D6 was effective with an IC50 value of 3.55 ± 0.29 μM,
which was approximately 2.5 times more potent than its (+) atro-
pisomer BI97D6 (EC50 = 8.57 ± 0.28 μM; Table 2). The mRNA
ratio of Bfl-1, Bcl-XL, and Mcl-1 is approximately 10:3:1 in BP3
cell lines (Brien et al., 2007). However, we determined that BP3
cells express high levels of both Bfl-1 and Mcl-1 by Western blot
analysis (Wei et al., 2009a). In agreement with these observations,
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the potent dual Bcl-XL and Bcl-2 antagonist ABT-737 (Olters-
dorf et al., 2005) displayed no cytotoxic activity against BP3
cell lines, presumably because ABT-737 is not effective against
Mcl-1 and Bfl-1 (Cory and Adams, 2005; Oltersdorf et al., 2005;
Wesarg et al., 2007). Consistent with previous results obtained
with human PC-3, H460, and H23 cancer cell lines, (−), (+)
atropisomers of ApoG2 also induced apoptosis of the BP3 cell
lines in a dose-dependent manner (Table 2). Again, compounds
(−) BI97D6 are approximately four times more potent than (−)
ApoG2 (EC50 = 14.25 ± 1.28 μM) in inducing apoptosis of the
BP3 cell line (Table 2).

We next explored whether (−), (+), and (±) BI97D6 had cyto-
toxic properties against wild-type mouse embryonic fibroblast
cells (MEF/WT) and transformed Bax/Bak double knockout MEF
cells (MEF/DKO) in which anti-apoptotic Bcl-2 family proteins
lack a cytoprotective phenotype (Wei et al., 2001). Compound
(−) BI97D6 displayed slight toxicity in MEF/DKO cells at 30 μM
(Figure 3A) while it killed almost 76 ± 3% MEF/WT cells at the
same concentration (Figure 3A), implying that the compound (−)
BI97D6 only displayed minor off-target effects. Although Com-
pound (+) BI97D6 has similar cytotoxicity in MEF/DKO cells at
3−30 μM compared to (−) BI97D6, it is less potent than its (−)
isomer and killed 66 ± 5% MEF/WT cells at 30 μM (Figure A2B
in Appendix). (±) BI97D6 displayed similar cytotoxic proper-
ties against MEF/WT and MEF/DKO compared to (+) BI97D6
(Figure A2C in Appendix).

In order to test the pharmacological properties of compounds
(−), (+), and (±) BI97D6, we determined their in vitro plasma
stability, microsomal stability, cell membrane permeability, and
chemical stability (Table 3). From these studies, we could con-
clude that compounds (−), (+), and (±) BI97D6 displayed good
rat plasma stability and only degraded 2.4 ± 0.8, 5.5 ± 0.3, and
1.0 ± 0.5%, respectively, after 1 h incubation in rat plasma. By
comparison, (±) ApoG2 degraded 23% after 40 min incubation
in rat plasma (Wei et al., 2010a). In addition, compounds (−),
(+), and (±) BI97D6 demonstrated relatively good microsomal
stability and degraded 20.3 ± 2.0, 23.7 ± 1.5, and 19.3 ± 5.4%,
respectively, after 1 h incubation in rat microsomal preparations,
whereas (±) ApoG2 degraded 53% after 40 min incubation in
rat microsomal preparations (Wei et al., 2010a). Racemic BI97D6
and its (+), (−) isomers displayed similar cell membrane per-
meability (Table 3). The chemical stability of solid compounds
(−), (+), and (±) BI97D6 was also evaluated at room temper-
ature. Although those compounds have a potentially unstable
polyphenol scaffold with four hydroxyl groups, these compounds
showed excellent chemical stability (Table 3). In particular, com-
pounds (−) BI97D6 and (+) BI97D6 were only 5 ± 0.5% degraded
after 100 days at room temperature (Table 3), presumably because

electron withdrawing ketone groups stabilized the polyphenol
scaffold (Figure 1B).

Taken together, these observations suggested that unlike cur-
rently available antagonists (van de Donk et al., 2003; Oltersdorf
et al., 2005), our compounds (−) BI97D6, (+) BI97D6, and (±)
BI97D6 were effective in inhibiting several anti-apoptotic Bcl-2
proteins, and therefore were expected to display in vivo efficacy
against a variety of in vivo models that relied on different Bcl-
2 proteins for growth and progression (Kitada et al., 2008; Dash
et al., 2010; Placzek et al., 2010). To test this hypothesis, we selected
two different in vivo models: a Bcl-2-transgenic mouse model and
a prostate cancer xenograft model (Kitada et al., 2008; Dash et al.,
2010). B-cells of B6 transgenic mice overexpressed human Bcl-2
proteins and accumulated in the spleen resulting of a measur-
able weight enlargement. Because we had determined that the
spleen weight was highly consistent in age- and sex-matched Bcl-
2-transgenic mice, varying by only ±2% among control Bcl-2 mice
(Kitada et al., 2008), the spleen weight was used as an end-point for
assessing in vivo activity of anti-Bcl-2 compounds (Kitada et al.,
2008). B6Bcl-2-transgenic mice were treated with compounds (±)
BI97D6, (−) BI97D6, and (+) BI97D6 in doses of 5, 10, and
20 μmol/kg (i.p.), respectively (Figure 3B). In agreement with
our in vitro and cell data, compounds (±) BI97D6, (−) BI97D6,
and (+) BI97D6 induced significant spleen weight reduction in
mice in a dose-dependent manner. In particular, compound (−)
BI97D6 induced 27, 38, and 41% spleen weight reduction in a
single-dose of 5, 10, and 20 μmol/kg, respectively (Figure 3B).
Since the maximum spleen shrinkage would be no more than 50%
in this experimental model (Kitada et al., 2008), compound (−)
BI97D6 induced near 54, 76, and 82% maximal biological activity.
Given that compounds (−), (+), and (±) BI97D6 has comparable
binding affinity against Bcl-2 in FP assays (Table 1), compounds
(+) and (±) BI97D6 has similar activities as (−) BI97D6 and
induced 81, 77% maximal biological activity in a single-dose of
10 μmol/kg, respectively (Figure 3B). However, compounds (±)
BI97D6, (−) BI97D6, and (+) BI97D6 also exhibited toxicity pro-
files that were more pronounced at higher doses. For instance,
mice treated with (−) BI97D6 in a dose of 10 and 20 μmol/kg
displayed mild to moderate hepato-toxicity, respectively, whereas
mice treated with (−) BI97D6 in a dose of 5 μmol/kg displayed
no evident sign of toxicity. To confirm the results of the single
transgenic mouse experiment at a dose of 5 μmol/kg, we next eval-
uated the in vivo activity of compounds (±) BI97D6, (−) BI97D6,
and (+) BI97D6 in groups of six B6Bcl-2-transgenic mice each
at a dose of 5 μmol/kg. Consistent with the single mouse experi-
ment, compounds (−), (±), and (+) BI97D6 treatment resulted
in 47 ± 2, 45 ± 7, and 52 ± 2%, respectively, maximal reduction of
spleen weight compared to the control group of six mice at a dose

Table 3 | Plasma stability, microsomal stability, cell permeability, and chemical stability of (±), (−), and (+) BI97D6 atropisomers.

Compound Plasma stability

(T = 1 h)

Microsomal stability

(T = 1 h)

Cell permeability

(LogPe)

Chemical stability

(T = 100 days)

(±) BI97D6 99.0 ± 0.5% 81.7 ± 5.4% −7.37 98.0 ± 0.5%

(−) BI97D6 97.6 ± 0.8% 79.7 ± 2.0% −7.17 95.0 ± 0.5%

(+) BI97D6 94.5 ± 0.3% 76.3 ± 1.5% −7.44 95.5 ± 1.0%
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of 5 μmol/kg (Figure 3C). All mice tolerated the treatment well,
with no evident signs of toxicity.

As anticipated earlier, we and others had recently realized the
importance of Mcl-1 inhibition in designing Bcl-2 antagonist (van
de Donk et al., 2003; Oltersdorf et al., 2005; Placzek et al., 2010;
Wei et al., 2010a,b; Dash et al., 2011). For example, the potent Bcl-
XL/Bcl-2 antagonist ABT-737 and the Bcl-2 antisense Genasense
(Genta) were not effective against cancer cells that overexpressed
Mcl-1 (van de Donk et al., 2003; Oltersdorf et al., 2005; Placzek
et al., 2010). Therefore, to further examine the therapeutic poten-
tial of our molecules as single agents against tumors, compounds
(−) BI97D6 and (+) BI97D6 were evaluated side by side with
compound (±) BI97D6 in a prostate cancer xenograft using PC-3
cell line in which Mcl-1 and Bcl-XL were overexpressed (Placzek
et al., 2010). A quantity of 1 × 106 PC-3 cells were injected sub-
cutaneously in the left flank of male athymic nude mice, and the
tumors were allowed to grow to an average size of ≈75 mm3 prior
to initiation of therapy. Compounds (±) BI97D6, (−) BI97D6,
and (+) BI97D6 were administrated (i.p.) every 2 days (total of
nine injections) at two doses of 3 and 5 mg/kg (5 and 8 μmol/kg),
respectively. All tested compounds, (±) BI97D6, (−) BI97D6,
and (+) BI97D6, displayed a marked inhibitory effect of tumor
size compared with the control group, particularly at the dose of
5 mg/kg (Figure 3D; Figure A2D in Appendix). In fact, the most
potent compound (−) BI97D6 induced near complete inhibition
of tumor growth at the dose of 5 mg/kg compared with the control
group (Figure 3D). Since (−) BI97D6 displayed better activities
against Bcl-XL and Mcl-1 in FP and PC-3 cell assays compared to
its (+) isomer, the (−) atropisomer BI97D6 displayed better PC-3
tumor growth inhibitory effect compared to its (+) atropisomer
at both doses of 3 and 5 mg/kg (Figure 3D). All mice toler-
ated the treatment well with no apparent signs of toxicity in this
in vivo assay. The most potent (−) BI97D6 is currently undergoing

pharmacokinetic and toxicity studies to decide whether it has sci-
entific merit for further development as a new apoptosis-based
cancer drug.

CONCLUSIONS
In summary, (−) and (+) atropisomers of compounds BI97D6
and ApoG2 were synthesized and evaluated in a variety of in vitro
and in vivo assays. The optically pure compound (−) BI97D6 was
found to bind to Bcl-XL, Bcl-2, Mcl-1, and Bfl-1 with IC50 val-
ues of 76 ± 5, 31 ± 2, 25 ± 8, and 122 ± 28 nM, respectively in FP
assays. The compound also potently inhibited growth in culture
of the PC-3 human prostate cancer and H23 human lung can-
cer cell lines with EC50 values of 0.22 ± 0.08 and 0.14 ± 0.02 μM,
respectively. Compound (−) BI97D6 effectively induced apopto-
sis of the BP3 human lymphoma cell line in a dose-dependent
manner and potently killed MEF/WT cell while it showed little
cytotoxicity against MEF bax−/−/bak−/− cells, suggesting that
it killed cancers cells predominantly via the intended mecha-
nism. Finally, (−) BI97D6 demonstrated favorable in vitro ADME
properties and superior in vivo efficacy in transgenic mice, in
which Bcl-2 is overexpressed in splenic B-cells and further demon-
strated greater single-agent antitumor efficacy in a prostate cancer
mouse xenograft model at the dose of 5 mg/kg. Given the crit-
ical roles of anti-apoptotic Bcl-2 family proteins in tumorige-
nesis, chemoresistance, and the potent inhibitory effect of (−)
BI97D6 against anti-apoptotic Bcl-2 family proteins, we con-
clude that the reported (−) BI97D6 represent a viable drug
candidate for the development of novel apoptosis-based cancer
therapies.
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APPENDIX
GENERAL SYNTHETIC PROCEDURES
Unless otherwise indicated, all reagents and anhydrous solvents
(CH2Cl2, THF, diethyl ether, etc.,) were obtained from commercial
sources and used without purification. All reactions were per-
formed in oven-dried glassware. All reactions involving air or
moisture sensitive reagents were performed under a nitrogen
atmosphere. Silica gel or reverse phase chromatography was per-
formed using prepacked silica gel or C-18 cartridges (RediSep),
respectively. All final compounds were purified to >95% purity, as
determined by a HPLC Breeze from Waters Co. using an Atlantis
T3 3 μM 4.6 mm × 150 mm reverse phase column. Method A: The
eluant was a linear gradient with a flow rate of 1 mL/min from
50% A and 50% B to 5% A and 95% B in 15 min followed by
5 min at 100% B (Solvent A: H2O with 0.1% TFA; Solvent B: ACN
with 0.1% TFA). Compounds were detected at λ = 254 nm. 1H
NMR spectra were recorded on Varian 300 or Bruker 600 MHz
instruments. Chemical shifts are reported in ppm (δ) relative to
1H (Me4Si at 0.00 ppm). Coupling constant (J ) are reported in
Hz throughout. Mass spectral data were acquired on Shimadzu
LCMS-2010EV for low resolution, and on an Agilent ESI-TOF for
high resolution.

The syntheses of compounds (±), (−), and (+) BI97D6 and
ApoG2 have been previously described by us (Wei et al., 2009).
Racemic (±) BI97D6 and ApoG2 were resolved to afford pure (−)
and (+) BI97D6 and ApoG2 atropisomers, respectively, using a
RegisCell 5 μM 250 mm × 10 mm normal phase semi-preparative
chiral column from Regis Technologies Inc. Results were analyzed
using 5 μM 250 mm × 4.6 mm normal phase analytical chiral col-
umn. Mobile phase A was 0.1% TFA in 2-propanol and mobile
phase B was 0.1% TFA in hexane. Flow rate was 4 mL/min for
preparative and 1 mL/min for analytical analysis, respectively. The
run duration was 25 min. The separation of (±) ApoG2 and
BI97D6 were accomplished using different ratio of phase A and
B (Methods A, B, and C), respectively. Method A: constant 8% A
and 92% B in 15 min followed by 10 min at 100% A. Method B:
constant 30% A and 70% B in 15 min followed by 10 min at 100%
A. Method C: constant 25% A and 75% B in 15 min followed by
10 min at 100% A.

(−) ApoG2: (−)-6,6′,7,7′-tetrahydroxy-5,5′-diisopropyl-3,3′-
dimethylo-2,2′-binaphthyl-1,1′,4,4′-tetraone 1H NMR (600 MHz,
(CD3)2SO) δ 10.942 (s, 2H), 9.426 (s, 2H), 7.322 (s, 2H), 4.312
(m, 2H), 1.837 (s, 6H), 1.359 (d, J = 6.6 Hz, 6H). 13C NMR
(600 MHz, (CD3)2SO)) δ 187.10, 182.50, 150.91, 149.53, 147.60,
137.78, 137.11, 126.24, 125.01, 111.01, 27.07, 20.50, 20.35, 15.00.

Table A1 | Optical and chiral HPLC purity of (±), (−), and (+) ApoG2

and BI97D6.

Compounds Optical Rotation (α) Chiral HPLC Purity (−):(+)

(±) ApoG2 +2.31 ± 0.1˚ 46.8:53.2

(−) ApoG2 −41.25 ± 3.6˚ 93.2:6.8

(+) ApoG2 +41.66 ± 1.6˚ 4.8:95.2

(±) BI97D6 +3.50 ± 0.3˚ 51.7:48.3

(−) BI97D6 −38.75 ± 2.3˚ 99.0:1.0

(+) BI97D6 +38.83 ± 2.3˚ 2.3:97.7

+34.8 ± 0.1˚a* 99:1

a*Reference compound commercially available from Sigma-Aldrich, Optical activ-

ity [α]22/D + 35.0˚, C = 1 in Ethanol.

HPLC purity 95.0%, t R = 10.43 min. HRMS calcd for C28H26O8

491.1700 (M + H), found 491.1720.
(−) BI97D6: (−)-5,5′-dibenzyl-6,6′,7,7′-tetrahydroxy-3,3′-

dimethyl-2,2′-binaphthyl-1,1′,4,4′-tetraone 1H NMR (600 MHz,
CD3OD) δ 7.448 (s, 2H), 7.224 (d, J = 7.8 Hz, 4H), 7.178 (t,
J 1 = 7.8 Hz, J 2 = 7.2 Hz, 4H), 7.084 (t, J 1 = J2 = 7.2 Hz, 4H), 4.643
(dd, J 1 = 14.4 Hz, J 2 = 13.8 Hz, 4H), 1.867 (s, 6H). 13C NMR
(600 MHz, (CD3)2SO)) δ 185.44, 182.61, 150.04, 149.83, 146.59,
140.95, 138.56, 130.07, 128.66, 128.39, 126.52, 125.82, 123.76,
111.74, 31.74, 14.84. HPLC purity 98.0%, t R = 10.18 min. HRMS
calcd for C36H26O8 587.1700 (M + H), found 587.1723.

(+) ApoG2: (+)-6,6′,7,7′-tetrahydroxy-5,5′-diisopropyl-3,3′-
dimethyl-2,2′-binaphthyl-1,1′,4,4′-tetraone 1H NMR (600 MHz,
(CD3)2SO) δ 10.941 (s, 2H), 9.428 (s, 2H), 7.322 (s, 2H), 4.312
(m, 2H), 1.881 (s, 6H), 1.358 (d, J = 6.6 Hz, 6H). 13C NMR
(600 MHz, (CD3)2SO)) δ 187.10, 182.50, 150.91, 149.53, 147.60,
137.78, 137.11, 126.24, 125.01, 111.02, 27.07, 20.50, 20.35, 15.00.
HPLC purity 94.9%, t R = 10.36 min. HRMS calcd for C28H26O8

491.1700 (M + H), found 491.1706.
(+) BI97D6: (+)-5,5′-dibenzyl-6,6′,7,7′-tetrahydroxy-3,3′-

dimethyl-2,2′-binaphthyl-1,1′,4,4′-tetraone. 1H NMR (600 MHz,
CD3OD) δ 7.448 (s, 2H), 7.225 (d, J = 7.2 Hz, 4H), 7.178 (t,
J 1 = 7.8 Hz, J 2 = 7.2 Hz, 4H), 7.084 (t, J 1 = J2 = 7.2 Hz, 4H), 4.642
(dd, J 1 = 14.4 Hz, J 2 = 13.8 Hz, 4H), 1.867 (s, 6H). 13C NMR
(600 MHz, (CD3)2SO)) δ 185.44, 182.61, 150.04, 149.84, 146.59,
140.95, 138.56, 130.07, 128.66, 128.39, 126.52, 125.82, 123.75,
111.75, 31.74, 14.84. HPLC purity 98.3%, t R = 10.15 min. HRMS
calcd for C36H26O8 587.1700 (M + H), found 587.1719.
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FIGURE A1 | (A) HPLC purity of (±), (−), and (+) BI97D6 using normal
phase chiral column chromatography. (B) NMR binding studies.
Aliphatic region of the 1H-NMR spectrum of Bcl-XL (20 μM, black) and
Bcl-XL in the presence of compound (+) ApoG2 (100 μM, pink), (−)

ApoG2 (100 μM, Green), (−) BI97D6 (100 μM, blue), and (+) BI97D6
(100 μM, red). (C) Superposition of 2D [15N,1H]-TROSY spectra of
hMcl-1 (25 μM; red) before and after addition of compound (−) BI97D6
(125 μM; green).
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FIGURE A2 | (A) Inhibition of cell growth by (−) BI97D6 (red dot), (±) (green
square), and (+) BI97D6 (blue up triangle) in the H460 human lung cancer
cell line. Cells were treated for 3 days and cell viability was evaluated using
ATP-LITE assay. (B) Mouse embryonic fibroblast cells with wild-type
(MEF/WT; red dot) or bax−/ −bak−/ − double knockout (MEF/DKO, blue up
triangle) genotypes were treated with compounds (+) BI97D6 at various
concentrations using ATP-LITE assay. (C) Mouse embryonic fibroblast cells
with wild-type (MEF/WT; red dot) or bax−/ −bak−/ − double knockout
(MEF/DKO, blue up triangle) genotypes were treated with compounds (±)

BI97D6 at various concentrations using ATP-LITE assay. (D) Tumor
xenografts from PC-3-Luc cells were established in athymic nude mice on
the left flanks. After establishing visible tumors of ∼75-mm3, requiring
∼5–6 days, intraperitoneal (i.p.) injections of DMSO or compounds (±)
BI97D6, (−) BI97D6, and (+) BI97D6 (3 or 5 mg/kg) were given every 2 days
(total of nine injections). For in vivo imaging the mice were anesthetized and
injected i.p. with 150 mg/kg luciferin and light emitted from each tumor
determined in a Xenogen system with CCD camera with an integration time
of 1 min.
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