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Abstract
Endoplasmic reticulum (ER) is a crucial organelle associated with cellular homeostasis. 
Accumulation of improperly folded proteins results in ER stress, accompanied by the 
reaction involving triggering unfolded protein response (UPR). The UPR is mediated 
through ER membrane-associated sensors, such as protein kinase-like ER kinase (PERK), 
inositol-requiring transmembrane kinase/endoribonuclease 1α, and activating transcription 
factor 6 (ATF6). Prolonged stress triggers cell apoptotic reaction, resulting in cell death. 
Neuronal cells are especially susceptible to protein misfolding. Notably, ER and UPR 
malfunctions are linked to many neurodegenerative diseases, such as Alzheimer’s 
disease (AD) and Parkinson’s disease (PD), delineated by accumulation of misfolded 
proteins. Notably, ATF family members play key roles in AD and PD pathogenesis. 
However, the connection between ER stress, UPR, and neuropathology is not yet fully 
understood. Here, we discuss our present knowledge of the association between ER stress, 
the UPR, and neurodegeneration in AD and PD. We also discuss the roles of ATF family 
members in AD and PD pathogenesis. Moreover, we provide a mechanistic clarification of 
how disease-related molecules affect ER protein homeostasis and explore recent findings 
that connect the UPR to neuronal plasticity.

Keywords: Activating transcription factor family, Alzheimer’s disease, Endoplasmic 
reticulum stress, Parkinson’s disease

stress and UPR play important pathophysiological role in AD 
and PD; nevertheless, the molecular mechanism of ER and 
UPR involved in pathology of AD and PD is still unknown.

Endoplasmic reticulum stress and unfolded 
protein response

The ER controls numerous important cellular processes. 
Notably, it modulates the protein synthesis and is the major 
Ca2+ storage organelle that supplies Ca2+ for intracellular 
signaling. ER homeostasis is primarily regulated by the UPR, 
a complicated signaling system that modulates translation 
and transcription in response to demand and enhances the 
ER’s protein-folding ability [8]. Various conditions – such as 
reduced calcium in the ER lumen and mutations in proteins 
that are trafficked through the secretory pathway – can lead 

Introduction

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are 
described by advanced detriment of function in the nervous 

system, terminating in serious impairment. Although each 
disease has specific neuropathophysiology, they have a similar 
pathologic characteristic: misfolded protein aggregates [1,2]. 
Since the progression of pathology in AD and PD is related 
to a specific misfolded protein aggregate, these diseases are 
frequently characterized as protein misfolding disorders [3].

Under the physiological state, chaperones in the cell provide 
the accurate protein folding and recognize improperly folded 
proteins and promote protein degradation through lysosome 
or autophagy pathways [4]. The protein homeostasis [5] is 
essential for the preservation of cell function since it inhibits 
improperly folded protein aggregates. In protein misfolding 
disorders, improperly folded protein aggregates complicate the 
maintenance of cellular protein homeostasis [6] and leads to 
endoplasmic reticulum (ER) stress [7]. ER stress triggers a fast 
and integrated biochemical reaction, termed as the unfolded 
protein response (UPR). Growing evidence indicates that ER 
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to ER dysfunction and ER stress, thereby triggering the 
UPR [9]. Activation of the UPR in cells can prompt three 
types of actions: initial adaptation, alarm signaling, and cell 
apoptosis [10,11]. Under stress, UPR modulates cellular 
adaption by increasing the ER’s protein-folding ability and 
concurrently decreasing the synthetic load [12].

UPR is regulated by sensor proteins, such as RNA-activated 
protein kinase-like ER kinase (PERK), activating transcription 
factor 6 (ATF6), and inositol-requiring transmembrane 
kinase/endoribonuclease 1α (IRE1α). In the physiological 
state, these proteins bind with immunoglobulin heavy-chain 
binding protein (BiP). Under ER stress, these sensor proteins 
release BiP, enabling PERK and IRE1α dimerization and 
autophosphorylation, respectively, and modulated ATF6 
proteolysis. These actions lead to the induction of UPR. 
PERK activation triggers the phosphorylation of eIF2α, and 
phosphorylated eIF2α decreases global protein synthesis and 
induces ATF4 translation, which increases the expression 
of apoptosis-related genes. The endoribonuclease activity 
of IRE1α enables the splicing of XBP1u protein to the 
spliced XBP1 (XBP1s). XBP1s increase transcription of 
numerous genes related to ER-associated degradation and 
UPR. In unstressed cells, ATF6 was located in ER. Under 
ER stress, it translocates to the Golgi, where it is cleaved 
consecutively by the enzymes S1P and S2P. Active ATF6 
translocates into nucleus, then it binds promoters of various 
UPR-related genes, including GADD34, CHOP, BiP, and 
XBP1 [1,13,14] [Figure 1].

Endoplasmic reticulum stress in alzheimer’s 
disease

AD is a destructive degenerative condition affecting 
many people. It is described by a significant decrease in 
memory and cognitive tasks. The mechanisms leading to 
AD are complex and involve alterations in increased ER 
stress, calcium imbalance, synaptic transmission, and chronic 
neuroinflammation [15]. Neuropathological traits of AD include 
the plaques of amyloid-β (Aβ) peptides and accumulation of 
hyperphosphorylated tau [15,16]. While tau normally stabilizes 
neuronal microtubules, its phosphorylated form (p-tau) 
accumulates into neurofibrillary tangles [17]. Neurotoxic Aβ 
peptides result in neurodegeneration [18] [Table 1]. During 
the process of AD development, persistent aggregation of 
Aβ or p-tau leads to ER calcium dyshomeostasis, ER stress, 
and aberrant protein folding. Tau reportedly inhibits the 
ER-associated degradation pathway, resulting in improperly 
folded protein aggregates in the ER [19]. The neurotoxicity of 

Aβ peptides is associated with ER stress-modulated apoptosis 
through JNK activation [20].

Various studies have reported dysregulated ER stress in 
the brains of AD patients. During moderate ER stress, UPR 
plays a protective role. However, prolonged ER stress triggers 
the proapoptotic pathway of the UPR, potentially leading 
to neurodegeneration. Increased levels of BiP and other 
chaperones, including Hsp72, Hsp73, and glucose-regulated 
protein 94 (Grp94), have been found in the cerebrospinal fluids 
and brains of AD patients [21,22]. In addition, AD brains show 
substantial upregulation of p-PERK and p-eIF2α, which can 
be induced by tau aggregates [13,23]. This phosphorylation 
is induced by tau accumulates [21]. Activation of PERK is 
linked to increased expression of ATF4 and BACE1 [24]. 
ATF4 is an important modulator of neuronal plasticity and 
spatial memory [25].

IRE1 activation in human brain tissue is positively 
associated with the progression of AD. IRE1 deleted the RNase 
domain in the nervous system, decreased Aβ oligomer content, 
and led to recovery of memory capacity and learning in mouse 
AD model [26]. In addition, XBP1 promoter polymorphism 
increases a risk factor for it [27]. XBP1 can decrease BACE1 
expression through HMG-CoA reductase degradation 1, 
resulting in a reduction of Aβ plaques [28]. ATF6 reduces APP 
expression level, thereby inhibiting Aβ levels, decreasing the 
expression of BACE1 and promoter activity, and facilitating 
the spatial memory retention in mouse AD model [29].

In the brains of AD patients, CHOP, caspase-12 and 
GADD34, linking ER stress to apoptosis, is increased [30].  An 
increase in CHOP results in the production of reactive 
oxygen species (ROS), elevated levels of Aβ oligomers, and 
ultimately, cell death [31].

Sadleir et al. found that 5XFAD transgenic mice (with 
familial AD) showed increased expressions of APP and 
presenilin 1 (PS1; the most common cause of familial AD). 
These mice did not show UPR activation and did not exhibit 
increased expressions of sensor proteins, suggesting that 
the role of ER stress in AD is still controversial [32]. In 
summary, ER and UPR appear to be important factors in the 
development of AD [Figure 2].

Endoplasmic reticulum stress in parkinson’s 
disease

PD is a serious neurodegenerative disease portrayed by 
both motor and nonmotor symptoms, eventually resulting in 
immobility [33,34]. The pathogenic factors involved in PD 
remain largely unclear. Most cases of PD are sporadic with 
an unknown etiology, while only 10%–15% result from 
mutations in several genes, such as PRKN, SNCA/PARK1, 
and PINK1 [35].

PD is typically identified by two major features: the 
impairment of dopaminergic neurons in the substantia nigra and 
the aggregation of improperly folded alpha-synuclein (α-SYN) 
in neuronal somas (Lewy bodies) or within axons and 
dendrites (Lewy neurites) [36] [Table 1]. High α-SYN 
expression is detected in the presynaptic terminals of neurons 

Table 1: Protein misfolding in Alzheimer’s disease and 
Parkinson’s disease
Disease Protein misfolding
AD Deposits of intracellular tau aggregate to form neurofibrillary 

tangles

Extracellular aggregates of amyloid-β form amyloid plaques
PD Formation of protein inclusion bodies, known as Lewy 

bodies, that contain aggregated α-synuclein and ubiquitin
Accumulation of tau deposits

AD: Alzheimer’s disease, PD: Parkinson’s disease
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but can also be found in blood and tissues [37,38]. SNCA 
gene mutations, including A53T, A30P, and E46K, are 
recognized as inherited causes of PD [39-41]. α-SYN is prone 
to accumulate, and their β-sheet form extends into insoluble 
fibrils [42].

Numerous studies indicate that ER stress acts a key role 
in α-SYN toxicity and modulates the death of dopaminergic 
neurons. α-SYN accumulation interacting with BiP results 
in UPR signaling pathway [14,43]. α-SYN is reportedly 
more plentiful in the ER/microsome fractions of brain tissue 
from mice and humans with PD, compared with non-PD 
controls [44]. In addition, ER stress markers, including 
p-PERK and p-eIF2α, have been detected in the dopaminergic 
neurons of PD patients [45].

α-synucleinopathy was positively correlated with the 
activation of ER chaperones and aberrant UPR in pathological 
neurons of A53T transgenic mouse model. This correlation is 

validated by the upregulated accumulation of polyubiquitin 
chains and caspase-12 triggering [44]. Notably, lack of 
glucose caused α-SYN-induced cell apoptosis in dopaminergic 
differentiated SH-SY5Y cells. α-SYN plays a role in stress 
detection; lack of glucose results in α-SYN overexpression, 
leading to interaction with BiP, and subsequent triggering of 
the PERK/ATF4/cAMP response element binding protein-2 
(CREB-2) pathways [14].

Controversy remains regarding the IRE1-XBP1 
pathway involved in ER stress in PD. In neurotoxin 
6-hydroxydopamine-induced PD model animals, the active 
form of XBP1 is reportedly neuroprotective [46]. However, in 
a PD model fruit fly, IRE1 induce cell loss in photoreceptor 
neurons, in an XBP1-unrelated way [47]. Moreover, in yeast, 
α-SYN aggregate induces ER stress through suppressing 
ER-to-Golgi transport [48,49]. This trafficking damage is 
reportedly induced by RAB1 GTPase, or by ATF6 [48,50]. 

Figure 1: Diagrammatic illustration of the sensor proteins of unfolded protein response (UPR). The principle UPR pathways after binding protein dissociated from 
sensor proteins when Endoplasmic reticulum (ER) stress happens: (a) protein kinase-like ER kinase (PERK)/eIF2α/ATF4 pathway: trans PERK auto-phosphorylation 
results in p-eIF2α, then reducing protein translation and upregulates ATF4 translation which increases the expression of gene related to apoptosis, including CHOP, (b) 
inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α)/XBP1 pathway: IRE1α with RNase activity cuts out 26 intronic nucleotides of the XBP1 mRNA, 
leading to the XBP1s, which is accountable for inducing gene expression related to chaperones and ER-associated degradation, (c) activating transcription factor 6 (ATF6) 
pathway: Active ATF6 translocates to the nucleus and promotes the expression of genes related to chaperone, ER-associated degradation, and XBP-1
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Notably, the coexpression of RAB1 with α-SYN has recovered 
the damage of dopaminergic neurons in animal models [48].

In addition, α-SYN suppresses ATF6 activation through coat 
COPII-modulated ER-Golgi trafficking, triggered on ER stress, 
resulting in induction of apoptosis [51]. In addition, ER stress 
triggered by α-SYN accumulation is through destabilized ER 
Ca2+ homeostasis. α-SYN accumulation stimulates ER calcium 
pump SERCA protein in neurons, resulting in changes of 
calcium metabolism and apoptosis [52]. Knockout mice of the 
CaBP-9k gene showed upregulation of α-SYN and activation 
of apoptosis in neurons. CaBP-9k knockout mice treated with 
ER stress inhibitor tauroursodeoxycholic acid restored ER 
stress markers and cleaved caspase-12 to regular levels [53]. 
In conclusion, UPR and ER stress-related pathways appear to 
be a novel target for PD treatment [Figure 2].

Activating transcription factor family 
in Alzheimer’s disease and Parkinson’s 
disease

ATF family acts significant roles in the neuropathogenesis 
of AD and PD. ATFs contain a basic leucine zipper-like domain 
that enables the execution of critical transcriptional modulatory 
functions [54,55]. The ATF family includes ATF1-7 [56,57], 
and these transcription factors exhibit differential expression 
in human tissues [58]. Notably, ATF-2, -4, and -6 are highly 
expressed in the brain compared to other tissues, while ATF-1, 
ATF-3, ATF-5, and ATF-7 are expressed at lower levels in the 
brain relative to other tissues.

ATF-1 binds with CREB to exert beneficial effects on 
neurons [59] and modulate several stress responses [60]. ATF-2 
is involved in DNA damage and apoptosis [61,62] and can 
regulate the inflammation in microglia cells, which is related 
to AD [63]. ATF-2 exhibits cytoplasmic localization in brain 
tissue from AD patients, suggesting that the pathogenesis of 

AD may involve altered subcellular localization of ATF-2 [64]. 
Kang et al. found that metformin activates ATF-2/CREB/
PGC-1α pathway, resulting in neuroprotection. PGC-1α, 
CREB, and ATF-2 appear important for cell viability against 
mitochondrial stress, as SH-SY5Y cells with knockdown of 
these genes are susceptible to MPP+ toxicity [65]. In addition, 
in dopaminergic neuron-specific conditional ATF-2 mutant 
mice, MPTP-triggered neurodegeneration was significantly 
mitigated, suggesting that ATF-2 activation acts a harmful 
function in PD neuropathogenesis [66].

ATF-3 expression is low under normal situations but is 
rapidly induced by multiple stresses [67]. ATF-3 binds to 
the cyclic AMP response element, typically decreasing the 
expressions of various target genes, and ATF-3-mediated 
responses can be adaptive or maladaptive [67,68]. 
ATF-3 is increased in damaged neurons to help neuronal 
regeneration [69]. Upregulation of ATF3 is linked to 
neuroprotection and regeneration [70]. ATF3 protects neurons 
from death and rebuilds synaptic links after neurotoxic 
injury [71]. In the peripheral nervous system, ATF3 is also 
involved in axonal regeneration [70].

López-Cerdán et al. highlighted sex-based different 
mechanisms in PD hallmarks, including inflammatory 
reaction, mitochondrial malfunction, and oxidative stress. 
In female PD patients, specific transcription factors were 
activated with normalized enrichment scores of >0 including 
ATF-3, B-cell lymphoma 6, and Polycomb Group Ring Finger 
2, which have been previously linked to neurodegenerative 
diseases or cognitive disabilities [72]. In addition, a PD model 
exhibited alterations of ATF-3 in response to ROS production 
and neurological damage [73]. Moreover, in a mouse model of 
PD, suppression of the ROS/ATF-3/CHOP pathway mitigates 
cell apoptosis in neurons, as ATF-3 activation induces 
CHOP expression, ultimately leading to cell apoptosis [73]. 

Figure 2: Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in neurodegeneration. Neuronal ageing, neuro-inflammation, genetic mutations, and 
other stimuli may trigger improperly folded protein accumulation and aggregation resulting in ER stress. In order to rescue ER stress, the response via UPR is triggered. 
However, long-lasting ER stress triggers apoptosis influencing neurons and synaptic function, thereby resulting in neurodegenerative
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Francis et al. reported that ATF3 overexpression protects 
rat neurons from kainic acid-triggered neurotoxicity, having 
antiapoptotic effects on cells [74]. Although these results 
are contradictory, they suggest that ATF-3 is implicated in 
apoptosis. Accordingly, it is possible that ATF-3 activation or 
overexpression might modulate AD or PD through regulation 
of apoptosis.

ATF-4 is generally expressed at low levels but is increased 
on stimulation. It can be as both a transcriptional repressor 
and activator [75]. ATF-4 is involved in cell apoptosis [76], 
redox homeostasis, mitochondrial function, and amino acid 
metabolism in neurons [77,78]. ATF-4 is also involved in cell 
death [79,80]. The AD brain shows a significantly increased 
protein level of ATF-4 [81]. This may be related to the 
finding that ATF-4 may function as the downstream effector 
of Aβ and an upstream initiator for the neuropathological 
features in AD [82]. It is possible that increased ATF-4 is 
related to upregulated phosphorylation of tau, through protein 
phosphatase 1 kinases and glycogen synthase kinase 3, which 
could result in neuronal damage. Sun et al. found that human 
PD brain samples showed intense ATF-4 immunostaining [83]. 
Aimé et al. found that the drug adaptaquin blocks ATF-4/
CHOP-dependent pro-death Tribbles pseudokinase 3 induction 
and protects in cellular and mouse models of PD [84]. Wang 
et al. found that verbascoside suppresses the progress of AD 
through downregulating PERK-eIF2α-ATF-4-CHOP axis 
triggered by ER stress in U251 glioma cells and in APP/PS1 
transgenic mice [85].

ATF-5 is an opposing modulator of differentiation in 
neurons [86]. A decrease of ATF-5 is necessary to enhance 
neural cell cycle exit and neuronal differentiation [86,87]. 
ATF-5 can suppress apoptosis [88]. ATF-6 activates the UPR 
in response to ER stress [89]. The first line of defense against 
ER stress, the UPR can preserve ER homeostasis, although its 
activation may also lead to cell death [90]. ATF-6 is involved 
in the UPR pathway and can decrease ER stress [91,92]. When 
lasting presence of stimuli damages ER function, the ATF-6 
pathway triggers the ER stress-regulated apoptosis, stimulating 
the expression of caspase-12 and CHOP to provoke apoptotic 
pathway [93,94]. In summary, ATFs act an important role in 
modulating cell repair, injury, and regeneration in neurons.

Conclusion
ER stress acts a critical role in AD and PD characterized 

by improperly folded protein aggregates. However, it is 
not yet completely clear how the UPR is involved, and 
related mechanisms through which ER stress leads to 
neuropathogenesis are unknown, and may have opposite 
effects. This may explain the interaction between ER stress, 
UPR, and neuroinflammation. As previously reviewed, studies 
using both in vitro and in vivo neurodegenerative disease 
models have demonstrated that the disease-related aggregates 
of improperly folded protein result in synaptic and neuronal 
dysfunction. Targeting ER- and UPR-related pathways 
appears to be a promising approach to treat neurodegenerative 
diseases. A comprehensive understanding of the cellular 
signaling pathways and physiological roles of ER- and 
UPR-related proteins will assist to guide the development of 

new therapeutic strategies. It will be important to discover 
novel drugs that can regulate ER stress and UPR signaling in 
various cell and animal models, which will provide substantial 
information regarding how the ER and UPR are involved in 
AD and PD progression.

Here, we also summarized the roles of ATFs in the 
neuropathogenesis of AD and PD. Since ATF expressions are 
significantly changed during AD or PD, it can be suggested 
that ATFs family may be the causative genes for AD or PD. 
ATFs play diverse roles during AD and PD and may be 
involved in these diseases through several pathways, including 
modulation of ER stress and apoptosis. Thus, ATFs may act 
as a potential target for the therapy of AD and PD. However, 
there are presently few drugs that target ATFs to treat AD or 
PD, and there remains a need for further research to investigate 
the particular mechanism of ATFs in AD and PD.
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