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1  | INTRODUC TION

Multiple sclerosis (MS) is a multifaceted inflammatory disease of 
the central nervous system (CNS). It involves a gradual destruction 
of myelin due to an autoimmune response generated against self‐
antigens in a genetically vulnerable patient (Donati & Jacobson, 
2002). The attack against self‐antigen leads to a gradual demise 
of neurons, resulting in severe neurological deficits (Goldenberg, 
2012). The myelin sheath is an insulating cover of axons maintained 
by oligodendrocytes (Compston & Coles, 2008), and facilitates 
electrical action potentials between neurons. Loss of oligodendro‐
cytes and degeneration of the myelin sheath leads to the forma‐
tion of plaques or lesions, commonly located in the optic nerve, 

brain stem, basal ganglia, and spinal cord white matter (Popescu 
& Lucchinetti, 2012). While the repair process of remyelination is 
possible early in disease, oligodendrocytes are incapable of com‐
plete repair due to subsequent attacks to the sheath, contribut‐
ing to the plaque formation (Chari, 2007; Kuhlmann et al., 2008). 
Damage or death of neurons due to lesion accumulation causes 
astrogliosis adding to lesion creation (Compston & Coles, 2008) 
diminishing the communication between neurons and leading to a 
wide range of disorders, largely dependent on the location of the 
lesions, in the brain (Virtanen & Jacobson, 2012). Symptoms in‐
clude loss of sensitivity, changes in sensation (tingling, or pins and 
needles), muscle weakness and spasms, blurred vision, ataxia, and 
speech disorders (Compston & Coles, 2008). MS affects people of 
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Abstract
Multiple sclerosis (MS) is an immune‐mediated demyelinating disorder of unknown 
etiology. Both genetic‐susceptibility and environment exposures, including vitamin D 
deficiency, Epstein‐Barr viral and Herpesvirus (HHV‐6) infections are strongly impli‐
cated in the activation of T cells and MS‐pathogenesis. Despite precise knowledge of 
how these factors could be operating alone or in combination to facilitate and ag‐
gravate the disease progression, it is clear that prolonged induction of inflammatory 
molecules and recruitment of other immune cells by the activated T cells results in 
demyelination and axonal damage. It is imperative to understand the risk factors as‐
sociated with MS progression and how these factors contribute to disease pathology. 
Understanding of the underlying mechanisms of what factors triggers activation of T 
cells to attack myelin antigen are important to strategize therapeutics and therapies 
against MS. Current review provides a detailed literature to understand the role of 
both pathogenic and non‐pathogenic factors on the impact of MS.
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almost all ages, although higher incidences are detected in younger 
adults as they are more susceptible to environmental factors. MS 
is more common in women, suggesting that hormones may also 
play a significant role in determining susceptibility (Milo & Kahana, 
2010; Nylander & Hafler, 2012). Prevalence of MS is two to three 
times	higher	 in	women	 than	 in	men	 (Figure	1)	 (Ahlgren,	Oden,	&	
Lycke, 2012; Compston & Coles, 2002; Orton et al., 2010; Wallin 
et al., 2012).

2  | SUBT YPES OF MS

During the initial stages of the disease, patients primarily experi‐
ence a neurological complication referred to as Clinically Isolated 
Syndrome (CIS). This is the first demyelinating event, lasting for 
approximately 24 hr and presenting as monofocal or multifocal le‐
sions in the CNS (Marcus & Waubant, 2013). Possible symptoms 
of CIS include optic neuritis, a brain stem/cerebellar syndrome, a 
spinal cord syndrome, or hemispheric dysfunction (Miller, Barkhof, 
Montalban, Thompson, & Filippi, 2005). Later, the disease be‐
comes more convoluted and characterized as progressing into four 
distinct variants. These subtypes are important for patient prog‐
nosis and treatment considerations. The most common type of MS 
is called Relapsing Remitting MS (RRMS) and occurs in approxi‐
mately 87% of MS cases (Ransohoff, Hafler, & Lucchinetti, 2015). 
RRMS patients show neurological symptoms and have a short and 
temporary relapse phase where not only existing symptoms are 
aggravated, but new symptoms may also arise (Weiner, 2008). The 
inflammatory attacks during this period are unpredictable and 
are associated with visual and memory impairment, tingling and 
numbness and fatigue. This relapse stage is followed by a stage 

F I G U R E  1  Multiple	sclerosis	(MS)	epidemiology	in	the	United	States.	Prevalence	of	MS	on	the	map	is	illustrated	by	different	color.	Areas	
with low prevalence of MS are indicated in light pink, medium prevalence of MS (pink), moderate prevalence of MS (red), and high prevalence 
of MS (burgundy). Inset shows the ratio between genders and that women are twice as likely than men to develop MS 

Significance

Despite major research efforts in the past few decades, the 
extent to which environmental factors (including external 
pathogens) and genetic susceptibility contribute to the 
pathogenesis of multiple sclerosis (MS) is not clearly identi‐
fied. This review examine the viral and bacterial as well as 
non‐pathogentic environmental associations to MS progres‐
sion and how these factors contribute to disease 
pathology.
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of remission (complete/incomplete) in which the patient may re‐
cover (fully or partially), resulting in asymptomatic disease for sev‐
eral	months	or	years	(Ghasemi,	Razavi,	&	Nikzad,	2017).	Another	
variant is Secondary Progressive MS (SPMS) occurring in ~65% 
of patients with RRMS, gradually transitioning into SPMS as neu‐
rological complications steadily advance over time. Patients may 
have intermittent relapses, but no remission is observed (Correale, 
Gaitan,	Ysrraelit,	&	Fiol,	2017;	Ghasemi	et	al.,	2017).	A	more	un‐
common variant, Primary Progressive MS (PPMS), occurs in ap‐
proximately 10%–15% of MS cases (Ransohoff et al., 2015). PPMS 
is distinguished by a gradual progression from onset with deterio‐
rating symptoms and no occurring relapses or remissions. These 
patients are primarily affected at the nerves of the spinal cord 
and present with fewer brain lesions compared to other subtypes. 
Patients with PPMS show ataxia with problems in walking, weak‐
ness, stiffness, and trouble with balance (Ghasemi et al., 2017). 
Lastly, Progressive‐Relapsing MS, another rare subtype (occurring 
in ~5% of MS cases) is marked by complications starting from the 
initial stages of the disease, and progresses with critical relapsing 
cases without any remissions, mostly without recovery resulting 
in exacerbating neurological injuries. Symptoms in these patients 
include eye pain, double vision and depression, along with sexual, 
intestinal, and urinary system dysfunctions (Ghasemi et al., 2017).

Although	MS	 is	 a	 disease	 common	 to	 adults,	 onset	 of	 the	dis‐
ease in children below 18 years of age is not uncommon, accounting 
for about 10% of total MS cases and is termed pediatric MS (PMS) 
(Ferreira, Machado, Dantas, Moreira, & Souza, 2008; Jancic et al., 
2016; Schreiner, 2018). PMS is pathophysiologically distinct in terms 
of brain biopsy, cellular profiling in CSF, and the immune molecules 
present when compared with adult MS patients (Schreiner, 2018). 
The psychological consequences of childhood MS include depres‐
sion, fatigue, anxiety, panic disorder, bipolar disorders, and cognitive 
impairment	(Amato	et	al.,	2010).	Though	the	disability	rate	is	lower	
than that of adult‐onset MS, children diagnosed with PMS pose a 
risk of developing neurological deficits during the active stage of life 
(Renoux et al., 2007).

3  | IMMUNOPATHOLOGY

T‐cells mature may express, on their cell surface, either a CD4 glyco‐
protein, found in T‐helper (Th) cells, or they may express a CD8 gly‐
coprotein, present in cytotoxic T‐cells (Golubovskaya & Wu, 2016). 
Exposure to specific cytokines, such as IL‐1, IL‐2, IL‐4, IL‐6, TNF, and 
INF‐γ result in the differentiation of naïve CD4+ cells into a variety 
of subsets: Th1, Th2, Th9, Th17, Th22, Tfh, and Treg. Each subset 
possesses a unique cytokine profile, releasing cytokines specific to 
that subset, which may provide protective or anti‐/pro‐inflamma‐
tory properties (Golubovskaya & Wu, 2016). Th1 provides protec‐
tion against intracellular pathogens, Th2 defending against parasites, 
and Th17 focuses on defending the host against extracellular patho‐
gens. For example: exposure to IL‐1 results in the differentiation of 
a naïve CD4+ cell to a Th17 subset which function as mediators of 

inflammation and produce IL‐17, protecting the host against fungi 
and bacteria (Golubovskaya & Wu, 2016; Raphael, Nalawade, Eagar, 
& Forsthuber, 2015). Th17 cells are known to mediate autoimmunity 
and play key roles in augmenting inflammation (Raphael et al., 2015).

Antigen‐presenting	cell	(APC)	activated	CD8+	T	cells	proliferate	
and produce effector cells which induce the apoptosis of target cells, 
holding a key role within the adaptive immune response. However, 
there	 are	 various	 subsets	 of	 these	 CD8+	 effector	 cells:	 A	 naïve	
(CD45RA+/CCR7+)	subset	lacking	effector	functions,	(a)	an	antigen‐
experienced	 and	 differentiated	 (CD45RA+/CCR7−)	 subset	 provid‐
ing effector functions (TEff),	(b)	an	antigen‐experienced	(CD45RA−/
CCR7+) subset lacking effector functions, known as central mem‐
ory cells (TCM),	 and	 (c)	 an	 effector	 function	 bearing	 (CD45RA−/
CCR7−)	memory	cell	subset,	defined	as	effector	memory	cells	(TEM) 
(Saxena, Martin‐Blondel, Mars, & Liblau, 2011). Proliferation and 
antigen‐driven activation of these effector C8+ cells is mediated 
by Th1 produced IL‐2, and may present as autoreactive T cells as 
a	 result	of	 self‐antigen	presentation	by	APCs,	potentially	 resulting	
in T‐cell induced axonal damage (Hwang, Hong, & Glimcher, 2005; 
Rollings, Sinclair, Brady, Cantrell, & Ross, 2018; Saxena et al., 2011). 
Expansion of CD8+ cells, detection of identical antigen‐specificity 
in a population of T cell clones, and presence of predominantly IL‐17 
producing CD8+ cells, all within active lesions in MS, support the 
concept of CD8+ cell mediated autoimmunity, in MS (Saxena et al., 
2011).

An	atypical	response	by	immune	cells	against	the	myelin	sheath	
is the common pathological factor between all MS subtypes. This 
response is facilitated by discriminatory activation of CD4+ helper 
and CD8+ killer T cells, accompanied by little to no activation of reg‐
ulatory	T	cells	(Gandhi,	Laroni,	&	Weiner,	2010).	As	a	result,	inflam‐
mation is an alternate characteristic symptom of MS. T lymphocytes 
and activated macrophages infiltrate the brain and with the aid of 
activated microglia, induce immunological activation, leading to pro‐
gressive myelin destruction (Kasper & Shoemaker, 2010). Disruption 
of the blood–brain barrier (BBB) also allows immune cells to enter 
the brain, where T lymphocytes attack the myelin sheath (Compston 
& Coles, 2002). This triggers a subsequent inflammatory cascade, 
leading to the secretion of cytokines, including interferon (IFN)‐γ, 
tumor necrosis factor (TNF)‐α, and interleukin (IL)‐17, and the pro‐
duction of antibodies by B lymphocytes which can secrete their own 
cytokines, TNFα and Transforming Growth Factor (TGF)‐β (Duddy 
et al., 2007). These soluble factors cause further recruitment of 
immune cells, perpetuating inflammation and damage (Nylander & 
Hafler, 2012). In addition, pro‐inflammatory Type 1 T helper (Th1) 
and Th17 cells display direct cytotoxic effects on oligodendrocyte 
precursor cells and obstruct remyelination (Baxi et al., 2015; Moore 
et al., 2015).

4  | GENETIC FAC TORS

Predisposition to genetic changes and its effect on MS susceptibil‐
ity was derived from the characteristics of familial aggregation and 
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the amount of genetic information they share (Gejman, Sanders, 
& Duan, 2010; Oksenberg, Baranzini, Sawcer, & Hauser, 2008). 
Although	MS	is	not	a	hereditary	disease,	predisposition	to	genetic	
variations increases the risk. Studies have shown that the risk rate 
in monozygotic‐twins that have 100% genetic familiarity is ap‐
proximately 25% (Ghasemi et al., 2017). These risks are reduced 
on decreased genetic familiarity, with 5% in siblings, 2% in parents, 
2% in children, and 1% amongst distant relatives (Hassan‐Smith & 
Douglas, 2011).

Discovered in mice in 1936, the major histocompatibility com‐
plex (MHC) and the human equivalent human leukocyte antigen 
(HLA)	are	extensively	studied	 for	both	gene	and	allelic	variation	
in	MS	 (Matzaraki,	Kumar,	Wijmenga,	&	Zhernakova,	 2017).	HLA	
changes are responsible for approximately 20%–60% of genetic 
predisposition (International Multiple Sclerosis Genetics et al., 
2011), and around 110 polymorphisms found in discrete loci out‐
side the MHC gene are associated with the susceptibility to MS 
(Sawcer,	 Franklin,	 &	 Ban,	 2014).	 According	 to	 a	 Genome‐wide	
association study, susceptibility to MS has been linked mainly to 
the	HLA‐DRB1	 locus	 class	 II	 region	of	 the	MHC,	with	 the	HLA‐
DR15	 (DRB1*1501‐DQA1*0102‐DQB1*0602‐DRB5*0101)	 hap‐
lotypes	dominating	MS	risk	 in	Caucasians	and	HLA‐DRB1*15:01	
associated	with	MS	 risk	 in	African	Americans	and	northern	Han	
Chinese	 populations	 (Compston	 &	 Coles,	 2008).	 Additional	 al‐
leles within the MHC locus have been associated to MS including 
the	 HLA‐DRB1*03:01,	 HLA‐DRB1*13:03,	 HLA‐DPB1*03:01	 and	
HLA‐A*02:01,	while	HLA‐C554	and	HLA‐DRB1*11	are	believed	to	
be protective against the disease (International Multiple Sclerosis 
Genetics	et	al.,	2011).	Polymorphisms	 in	non‐HLA	genes	associ‐
ated to MS include the interleukin 2 (IL2) receptor alpha (IL2RA) 
and interleukin 7 (IL7) receptor alpha (IL7RA) loci expressed on 
regulatory T cells, important for proliferation and survival of 
T‐ and B cells, and increase the vulnerability of developing MS 
(Giovannoni & Ebers, 2007). Single‐Nucleotide Polymorphisms 
(SNPs) in IL‐7R markers identified in MS patients in Sweden sug‐
gest that SNPs can lead to dysregulation in the activity of both 
T‐ and B‐cells (Lundmark et al., 2007). By analyzing MS patients 
possessing SNPs in the Serine‐Threonine Kinase 11 gene (encod‐
ing liver kinase B1—LKB1), Boullerne et. al. suggests it as a risk 
factor for MS (Boullerne et al., 2015). LKB1 has effects on T‐cell 
activation, Th1/Th17 cytokine production, and modulate adenos‐
ine	monophosphate	 kinase	 (AMPK)	 activation.	 Dysregulation	 of	
LKB1 function is implicated toward MS pathogenesis (Germain 
et	 al.,	 2013).	 It	 has	 been	demonstrated	 using	GSAW	 that	multi‐
ple	 non‐MHC	 loci—CLEC16A,	 IL2RA	 and	 IL7R	 are	 susceptibility	
loci for MS (De Jager et al., 2009). Other non‐MHC critical fac‐
tors	with	 links	 to	MS	 include	TNFRSF1A	 (Caminero,	Comabella,	
& Montalban, 2011; Hoffjan et al., 2015), which contains two 
independent susceptible alleles responsible for dysregulated ex‐
pression of TNF; IRF8 has a susceptible allele that encodes tran‐
scription factors, and CD6 is involved in T‐cell co‐stimulation and 
differentiation (De Jager et al., 2009).

5  | ENVIRONMENTAL FAC TORS

High rates of discordancy in monozygotic twin studies led to the 
conclusion that genetic and epigenetic factors are not the only fac‐
tors (Giovannoni & Ebers, 2007), thus emphasizing the importance 
of environmental factors in developing MS. Environmental factors 
such as smoking, vitamin deficiency, diet, and UV radiation exposure 
act as modifiable risk factors (Sawcer et al., 2014). The expression 
of	 the	Vitamin	D	 receptor	on	most	 immune	cells	 including	APC	 is	
considered a driving force in MS progression (Disanto, Morahan, 
Barnett, Giovannoni, & Ramagopalan, 2012). Presence of 1,25‐dihy‐
droxyvitamin D3 (1α,25‐(OH)2D3) modulates the expression of MHC 
II‐complexed antigens on the surface of immune cells, inhibits the 
production of Type 2 helper T cell cytokines, and affects T‐and B 
cell	proliferation	and	antibody	secretion	 (Aranow,	2011;	van	Etten	
& Mathieu, 2005). The International Multiple Sclerosis Genetics 
Consortium (IMSGC) and Welcome Trust Case Control Consortium 2 
(WTCCC2) reported that the genes encoding the Cytochrome P450 
Family 27 Subfamily B Member 1 (CYP27B1) enzyme for vitamin D 
production	and	Cytochrome	P450	Family	24	Subfamily	A	Member	1	
(CYP24A1)	enzyme	which	degrades	1,25‐dihydroxyvitamin	D	con‐
tribute to MS progression by lowering the levels of active vitamin 
D.	Moreover,	RNA	expression	levels	of	the	MS	susceptibility	gene,	
HLA‐DRB1*15:01	are	 controlled	by	vitamin	D	 levels	 (International	
Multiple Sclerosis Genetics et al., 2011).

The risk of developing SPMS is 3‐fold higher in smokers than in 
non‐smokers who had relapsing–remitting clinical onset of the dis‐
ease (Healy et al., 2009; Wingerchuk, 2012). Furthermore, tobacco 
affects the integrity of the BBB and triggers inflammatory responses 
that, lead to loss of membrane integrity (Hawkes, 2007; Hernan et 
al.,	2005;	Riise,	Nortvedt,	&	Ascherio,	2003).	Marabita	et.	al.	showed	
that	smoking	affects	DNA	methylation	in	MS	patients	and	gene	ex‐
pression	of	Aryl‐Hydrocarbon	Receptor	Repressor	(AHRR)	is	higher	
in smokers and contained hypomethylation at several CpG sites 
(Marabita et al., 2017). Tobacco smoke induces the production of 
free radicals, such as nitric oxide (NO) which exacerbates the clinical 
progression of MS by causing inflammatory lesions and axonal de‐
generation (Hernan et al., 2005).

Risk for MS development intensifies due to complex interplay of 
different pathogenic environmental factors including viral and bac‐
terial infections(Virtanen & Jacobson, 2012). Infection with measles, 
Herpesvirus (HHV‐6) and Epstein Barr virus (EBV) at a young age 
increase the chances of developing MS (Compston & Coles, 2008; 
Giovannoni et al., 2006). Virus‐derived peptide sequences such 
as	 the	 Epstein–Barr	 nuclear	 antigen	 1	 (EBNA1)	 (Owens,	 Gilden,	
Burgoon, Yu, & Bennett, 2011)and BRRF2 protein contribute to MS 
pathology partly by activation of memory B cells, increased fre‐
quency	of	oligoclonal	IgG	specificities,	and	by	interacting	with	HLA	
through	DR2b	(DRB1*1501)	and	DR2a	(DRB5*0101)	(Abdelrahman,	
Selim, Hashish, & Sultan, 2014; Pender & Burrows, 2014). The pro‐
duction of EBV‐specific T cells or antibodies cross‐react with auto‐
antigens in the CNS, and attack myelin sheath. Latent persistent EBV 
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antigens bind to autoreactive B cells that facilitate EBV replication, 
and	augment	EBV‐specific	T‐	and	B‐cell	responses	(Ascherio	et	al.,	
2001; Lunemann, Kamradt, Martin, & Munz, 2007). Other viruses 
associated with MS include varicella zoster virus (VZV) and human 
endogenous retroviruses (HERVs).

A	 “multi‐hit”	 model	 study	 illustrated	 how	 the	 gut	 microbiota	
creates a suitable proinflammatory condition for multiple insults 
(genetic disposition and environmental factors) to act together re‐
inforcing MS disease (Cekanaviciute et al., 2017). Akkermansia mu‐
ciniphila and Acinetobacter calcoaceticus induce proinflammatory 
responses, and are found in higher numbers within the gut whereas 
Parabacteroides distasonis, which stimulates the anti‐inflammatory 
response, is found in lower numbers in MS patients (Mirza & Mao‐
Draayer, 2017). It is also possible that individuals without early life 
exposure to infectious pathogens could mount abnormal responses 
during infectious exposure in their adult life (Baranzini et al., 2010). 
It is evident that multiple environmental factors play important roles 
toward increased risks of MS; however, the pathogenic contributions 
are still being unearthed and will be the focus of the remainder of 
this review.

6  | PATHOGENS IN THE CNS

Most pathogens associated with MS are also considered causative 
agents in the development of other neurological disorders. By defin‐
ing the mechanisms behind MS‐like symptoms linked to pathogenic 
infections, the similarities that may lead to onset of disease become 
more readily apparent. HHV‐6 infection is associated with neuro‐
logical disorders such as febrile seizure, epilepsy, and encephalitis 
(Yao et al., 2009), while EBV infection has been associated with CNS 
vasculitis (Kano et al., 2017). These two pathogens share common 
mechanisms that can contribute to the onset of MS symptoms. Both 
EBV and HHV‐6 infection can trigger myelin‐reactive antibodies 
specifically targeting myelin basic protein (MBP), an ubiquitous mye‐
lin membrane protein (Deber & Reynolds, 1991; Tait & Straus, 2008). 
Low levels of MBP phosphorylation in both human MS patients as 
well as in mice models are detected (DeBruin et al., 2005; DeBruin, 
Haines, Bienzle, & Harauz, 2006); however, the direct effects of this 
have not yet been characterized. In contrast, VZV utilizes an endo‐
somal/autophagic recycling pathway similar to that used by myelin 
proteins and the iron‐binding glycoprotein transferrin (Winterstein, 
Trotter,	&	Kramer‐Albers,	2008).	It	is	through	this	pathway	that	VZV	
trafficks glycoprotein complexes from the endoplasmic reticulum 
(ER) to the outer cell membrane to release new virus (Buckingham, 
Jarosinski, Jackson, Carpenter, & Grose, 2016). Given that low serum 
transferrin levels have been linked to several chronic diseases, in‐
cluding MS (Zeman et al., 2000), trafficking of VZV alongside the 
transferrin receptor would aid in viral assembly, ultimately leading to 
increased immune activation.

Apart	 from	 demyelination,	 there	 is	 also	 evidence	 of	 axonal	 or	
neuronal injury in MS that have gained some importance in the MS 
field.	 The	 “inside‐out”	 concept	 of	 induced	 demyelination	 suggests	

that pathogenic damage occurs at the unmyelinated axon, often in 
combination with enhanced oligodendrocyte apoptosis (Tsunoda & 
Fujinami, 2002). Several viral infections are accompanied by axonal 
damage	like	HIV	(An	et	al.,	1997),	HSV	(Martin,	1984),	and	Theiler’s	
murine encephalomyelitis virus (TMEV) (Tsunoda & Fujinami, 2002), 
which has also been associated with MS. The pathogenesis of this 
axonal injury still requires much study. One concept suggests di‐
rect immune attack on the axon based upon the presence of anti‐
bodies to neurofilament and tubulin in some MS patients (Silber & 
Sharief, 1999). Separately, some viruses can be transported through 
the axons leading to axonal degeneration and dissemination of virus 
throughout the CNS (Kristensson, 1996). In TMEV infection, for 
example, axonal injury precedes demyelination which indicates in 
some cases demyelination may come secondary to axonal injury (Das 
Sarma,	Kenyon,	Hingley,	&	Shindler,	2009).	Additionally,	as	has	been	
discussed, there is also evidence on axonal injury in silent inactive 
plaques where few axons are degraded at a given point in time but 
will instead persist for a longer time in the CNS (Lassmann, 2003).

Viral infections causing encephalitis (Morfopoulou et al., 2016), 
are also considered as a risk factor in developing MS (Weiss, 1983). 
Human beta‐coronaviruses, such as HCoV‐OC43 primarily linked 
with mid‐upper respiratory tract infections with neuro‐invasive prop‐
erties leading to encephalitis, are associated with MS (Morfopoulou 
et	al.,	2016).	Additionally,	John	Cunningham	virus	(JCV)	induces	pro‐
gressive multifocal leukoencephalopathy (PML) in active RRMS pa‐
tients undergoing immunosuppressant treatment with natalizumab 
(Schwab et al., 2016). The immunosuppression causes reactivation of 
JCV, which is normally kept dormant by the human immune system, 
contributing to the progression of PML (Schwab et al., 2016).

6.1 | Viruses

Although	no	definitive	association	between	viral	infections	and	MS	
have been reported so far, compelling evidence for this hypothesis 
exists,	 such	 as	 the	 presence	 of	 viral	 DNA,	 RNA,	 or	 proteins,	 and	
immune response elements in the body fluids or tissue of patients 
(Donati	&	Jacobson,	2002).	Attempts	to	establish	a	definitive	asso‐
ciation between MS and viral infections has been restricted by many 
factors, including asynchrony between viral infection and demyeli‐
nation, genetic, and immunological susceptibility of the individuals, 
and the involvement of polymicrobials as the causative agent of MS. 
This is further complicated by differences in the pathogenic mecha‐
nisms of different individuals with varying genetic backgrounds, re‐
sulting in different forms of the disorder (Donati & Jacobson, 2002). 
Even though different animal models of MS, such as the experimen‐
tal	 autoimmune	 encephalitis	 (EAE)	model	 and	 TMEV	model	 aided	
in the understanding of possible underlying mechanisms including 
molecular mimicry and bystander activation, animal models for the 
most commonly associated viruses HHV‐6 and EBV have yet to be 
developed (Virtanen & Jacobson, 2012).

Studies on viral induced demyelination show cellular mecha‐
nisms of myelin destruction through persistence, latency, reacti‐
vation, and tissue damage by viruses. Virus‐induced demyelination 
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disorders have different underlying mechanisms related to direct 
toxic effects or immune activation by virus, molecular mimicry, by‐
stander activation, and epitope spreading (Fujinami, von Herrath, 
Christen, & Whitton, 2006). Examples of direct toxic effects from an 
active infection is JCV which directly causes demyelination after in‐
fecting oligodendrocytes, and canine distemper virus which infects 
astrocytes in white matter leading to demyelination (Chalkias et al., 
2014).	 Another	 mechanism	 underlying	 demyelination	 is	 molecular	
mimicry, where pathogenic proteins possess homologous amino acid 
sequences with self‐proteins subsequently causing viral induced 
autoimmunity (Fujinami & Oldstone, 1985). Below, various viruses 
and their associations to the etiology or pathogenesis of MS will be 
discussed.

6.1.1 | Measles virus

Measles is caused by the highly contagious paramyxovirus and is 
transmitted via respiratory route (Laksono, de Vries, McQuaid, 
Duprex, & de Swart, 2016; Ludlow, McQuaid, Milner, de Swart, & 
Duprex, 2015). The clinical manifestation is relatively mild present‐
ing as skin rashes, though, in rare cases, neurological complications 
can	 also	 occur.	 Acute	 disseminated	 encephalitis	 (Lundmark	 et	 al.,	
2007), measles inclusion body encephalitis, and subacute sclerosing 
panencephalitis are all severe cases of measles which have been as‐
sociated with CNS disorders (Laksono et al., 2016). In MS patients, 
the most frequent anti‐viral antibodies produced intra‐thecally tend 
to be against measles, rubella and VZV, referred to as MRZ reac‐
tion	phenomenon.	Although	this	is	not	restricted	to	a	direct	associa‐
tion with these three viruses, it may be a response against different 
viruses such as HSV or EBV. Evidence supporting the possible di‐
rect interaction or causal association of measles with MS is not well 
documented; moreover, unchanged prevalence of MS after vaccina‐
tion against measles, shed further doubt on the possible association 
between	the	virus	and	disease	(Ahlgren,	Odén,	Torén,	&	Andersen,	
2009; Donati & Jacobson, 2002; Jacobson, Flerlage, & McFarland, 
1985; Norrby, Link, & Olsson, 1974).

6.1.2 | Human Herpesvirus 6

Human	 Herpesvirus	 6	 (HHV‐6)	 is	 a	 DNA	 virus	 belonging	 to	 β‐
Herpes virus family and is widely sero‐prevalent in adults. The two 
variants	HHV‐6A	and	HHV‐6B	have	about	90%	sequence	homol‐
ogy, and are transmitted via saliva and close contact with infected 
parents during early years of life. HHV‐6B is the causative agent of 
exanthema subitum (or roseola), a benign febrile illness with skin 
rashes	 while	 HHV‐6A	 has	 not	 been	 definitively	 associated	 with	
any disease (Reynaud, Horvat, & Horvat, 2013). HHV‐6 is able to 
enter cells through the CD46 receptor, with viral antigen able to 
be detected in oligodendrocytes and rarely in astrocytes. However, 
HHV‐6 has been detected in the scar‐like plaques on the myelin 
sheath	of	MS	patients	(Reynaud	et	al.,	2013).	Accordingly,	IgM	an‐
tibody	 against	 the	 P41/38	 antigen	 and	DNA	of	HHV‐6A	was	 re‐
ported	 in	 serum	 from	RRMS	patients.	HHV‐6A	 persists	 and	may	

reactivate CNS immune cells, leading to higher lymphoproliferative 
response	against	HHV6A	which	has	been	detected	in	MS	patients.	
Mechanistically, HHV‐6 may be linked to pathogenesis of MS 
through a proline‐rich integral membrane protein known as U24 
(Sullivan & Coscoy, 2010). The proline rich region of U24 possesses 
sequence identity with MBP at a key phosphorylation site which, 
if molecular mimicry were to occur, the mitogen‐associated kinase 
pathway and the glycogen synthase kinase may be recruited and 
activated, resulting in lower phosphorylation of MBP. The potential 
of the proline‐rich region of U24 acting as a molecular mimic may 
mediate cross‐reactivity of T‐cells and lead to targeting of MBP in 
MS patients.

6.1.3 | Epstein barr virus

EBV causes infectious mononucleosis and remains latent in B cells 
(Thorley‐Lawson, 2001) for approximately 30 years after infection 
(Nielsen et al., 2007). Later onset of symptomatic EBV infection is 
extremely	risky	(Ascherio	&	Munger,	2007).	CD4	and	CD8	T	cells	are	
the primary line of defense against EBV‐infection. The association 
of EBV with MS is supported by numerous case reports where EBV 
infection was shown to cause axonal demyelination, and detect‐
able EBV antibodies were reported in CSF and meningeal lymphoid 
follicles	 (Salvetti,	 Giovannoni,	 &	 Aloisi,	 2009;	 Thacker,	Mirzaei,	 &	
Ascherio,	2006;	Tselis,	2012).	The	major	EBV	antigen	 in	MS	cases	
is	 EBNA1,	with	 antibodies	 produced	 specifically	 in	 the	 CSF	 com‐
partment forming oligoclonal bands, a characteristic of viral infec‐
tion in MS. Epitope mapping techniques employed for testing the 
specificity of oligoclonal IgG showed that MS‐specific epitopes are 
derived	from	EBNA1	and	BRRF2	(EBV	lytic	gene	product)	proteins,	
providing	evidence	of	intrathecal	production	of	EBNA1‐specific	IgG	
in	MS	(Cepok	et	al.,	2005).	Viral	capsid	antigen	(VCA)	and	the	early	
antigens	 (EA)	are	also	produced	against	EBV.	Serum	antibodies	 to	
VCA	show	more	variation	and	higher	seroprevalence	than	antibod‐
ies	to	EBNA‐1.	EBV	transforms	B	cells	controlled	by	host	immuno‐
logical control leading to EBV‐associated malignancies. During the 
lytic	stage,	C‐terminus	of	EBNA1	binds	to	the	episome	(circular	DNA	
of	EBV)	and	 transmits	virus	 into	progenies.	Another	 link	between	
EBV infection and MS corresponds to molecular mimicry for immu‐
nodominant myelin resultant motifs on T cells (Libbey & Fujinami, 
2010). Peptides derived from EBV have sequences which are stimu‐
latory	 for	MBP	 derived	CD4	 T‐cell	 clones.	 A	 cross‐reactive	 T‐cell	
clone	detects	the	MBP	peptide	similar	to	the	HLA‐DR2b	and	EBV	
BSLF1	peptide	similar	to	the	HLA‐DR2a.	T	cells	specific	to	EBNA1	
will	provide	immunity	against	EBV,	but	in	MS	patients,	an	EBNA1‐
specific response of T cells is distorted; yielding exacerbated T cell 
responses throughout infection. Molecular mimicry amongst viral 
antigens and autoantigens support autoreactive T cells, such as the 
accumulation	of	EBNA1‐targeting	T	 cells	 leading	 to	 autoimmunity	
associated with infection. EBV genes in turn excite autoimmune B 
cells which are also cross‐reactive, serving as evidence that EBV 
has involvement in MS pathogenesis (Compston & Coles, 2008) 
(Figure 2).
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6.1.4 | Herpes zoster virus

VZV commonly causes encephalitis, meningitis, and myelitis. 
Immune responses against VZV, measles, and rubella have been 
found in patients with CNS vasculitis (Graef, Henze, & Reiber, 
1994) and in the CSF of MS patients. The proposed pathway of 
VZV on CNS infection involve autophagy and retrograde traf‐
ficking of the virus primarily from vesicles on the trigeminal gan‐
glion to cerebral arteries. Transport of the VZV within T‐cells 
and subsequent fusion with neurons has been postulated as a 
possible infectious mechanism (Horien & Grose, 2012). Despite 
this, the risk of developing MS upon VZV infection is less when 
compared to infection with EBV or HHV‐6 (Virtanen & Jacobson, 
2012).

6.1.5 | Retroviruses

There is growing evidence that retroviruses play a role in MS. It 
is suggested that two cofactors of the HERVs family, (a) MS‐as‐
sociated retrovirus (MSRV) and (b) endogenous retroviral family 
W env(C7) member 1(ERVWE1), whose envelope proteins (Zappia 
E) show neuropathogenic features in vitro and in vivo, contribute 
to the inflammatory processes and MS pathogenesis (Sospedra 
& Martin, 2005). HERV‐W env gene encodes syncytin‐1 protein, 
which expresses in astrocytes, microglia and macrophages of MS 

patients. It promotes release of cytokines and reactive oxygen 
species in astrocytes leading to oligodendrocyte damage stimulat‐
ing neuroinflammation.

6.2 | Bacteria

6.2.1 | Peptidoglycan

During the host response to infection, many bacterial components 
are released that can be recognized as targets for immune response. 
Heteropolymer peptidoglycan (PG) released by bacterial cells serves 
as a ligand to activate inflammatory immune response (Gupta, Wang, 
Vinson, & Dziarski, 1999; Weidemann et al., 1994). PG has been 
shown	to	be	present	 in	 immunocompetent	APC	in	the	brain	tissue	
of MS patients suggesting its role in MS pathogenesis (Schrijver et 
al., 2001). The presence of PG in the brain tissue of MS patients has 
been shown in the absence of active infection and thus indicates 
that	peripheral	PG	may	 translocate	with	 the	APC	 to	 the	CNS	and	
serve to drive an inflammatory response in this location.

6.2.2 | Chlamydia pneumoniae

Chlamydia pneumoniae causes common respiratory infections, with 
up to 50% of the population showing seropositivity in late adult‐
hood (Grayston, Wang, Kuo, & Campbell, 1989). The first report of 

F I G U R E  2  Activation	of	cross‐reactive	T	cells	by	pathogen‐derived	peptides	and	self‐epitopes	via	molecular	mimicry	or	by	stander	
activation. Bystander activation involves a wide range of events that occur after viral infection such as production of cytokines and 
chemokines, expression of host otherwise inactive genes, and the unveiling of blocked self‐antigens (Donati & Jacobson, 2002). The process 
of epitope spreading implies the introduction of additional epitopes following an initial inflammatory response to one epitope, such as myelin 
basic protein (Lehmann, Forsthuber, Miller, & Sercarz, 1992). The mechanism can be explained by self‐sustained breakdown of myelin by 
continuous exposure of epitope during inflammatory reactions. The phenomenon of epitope spreading is well studied in the autoimmune 
encephalitis and TME models for demyelination induced by viruses. B‐cells localized to the central nervous system present infectious agents 
on their surface and hence the infected epitope spreads to T cells and autoimmunity is promoted 
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coincidental infection with C. pneumoniae in a patient with RPMS 
was reported in 1998 (Sriram, Mitchell, & Stratton, 1998). Upon 
broader examination it was found that over 97% of serum CSF in 
patients with MS tested positive for the C. pneumoniae momp gene. 
Additionally,	C. pneumoniae was isolated from 64% of MS patients, 
showing coincidental infection (Sriram et al., 1999). C. pneumoniae 
has also been implicated in the pathogenesis of other neurodegener‐
ative	diseases	such	as	Alzheimer’s	Disease	and	schizophrenia	given	
that the pathogen can invade the blood stream, and when taken up 
by monocytes as carriers, can cross the BBB and access the CNS 
(Cahoon, 2009). It must be recognized that the direct relation of C. 
pneumoniae with MS is controversial. Likely, the bacteria acts as a 
co‐factor and contributes toward persistent and prolonged infection 
leading to MS disease progression(Fainardi, Castellazzi, Seraceni, 
Granieri, & Contini, 2008).

6.2.3 | Mycobacterium avium subspecies 
paratuberculosis

Mycobacterium	avium	subspecies	paratuberculosis	(MAP),	an	infec‐
tious	bacillus,	has	been	previously	associated	with	Crohn’s	disease	
(CD)	in	humans.	To	study	possible	associations	of	MAP	infection	with	
MS,	the	prevalence	of	MAP	protein	MAP2694	(a	glycine	and	proline	
rich transmembrane protein conserved in the Mycobacteriaceae 
family), and the immune response to this protein in patients with MS 
compared to normal control subjects were studied. Patients with 
MS	tested	positive	for	MAP	DNA	(42%)	when	compared	to	healthy	
controls	(12%).	Additionally,	MAP	protein	antibodies	were	detected	
more often in MS patients (32%) compared to healthy subjects (2%) 
(Cossu et al., 2011).

6.2.4 | Helicobacter pylori

Helicobacter pylori has shown the histological isolation from 86.4% 
of MS patients versus 50% of healthy control subjects. (Gavalas et 
al., 2015). Gavalas et al. first reported a reverse correlation between 
H. pylori and MS with subsequent meta‐analysis, concluding that pa‐
tients with H. pylori infection had lower rates of MS than those with‐
out infection. This suggests that H. pylori infection may provide some 
protection against MS development or progression (Jaruvongvanich, 
Sanguankeo, Jaruvongvanich, & Upala, 2016), mechanisms to which 
still remain unclear.

6.2.5 | Staphylococcus aureus

Counter to observed associations between bacterial infec‐
tion and MS, Staphylococcus aureus infection in a murine model 
of MS demonstrated a reduction in experimental autoimmune 
encephalomyelitis(Fainardi et al., 2008). This is counterintuitive to 
the model of bacterial inflammation driving MS development or 
progression as S. aureus produces systemic inflammation and stim‐
ulates the production of cytokines responsible for inflammatory 
response. This protective role was demonstrated by a reduction in 

demyelination and higher axon density in infected groups, as well 
as lower clinical scores, compared to uninfected groups. This pro‐
tective role was mediated in part by an extracellular adhesion pro‐
tein which was recovered in the blood of infected animals (Kumar 
et al., 2015).

7  | ANIMAL MODEL S AND TRE ATMENT 
OPTIONS

Animal	models	are	critical	for	diseases	like	MS,	which	have	a	complex	
etiology and lack a complete understanding of its mechanisms. Due 
to its complexity, there is currently no single animal model that can 
reflect the whole spectrum of the disease. Over the years, several 
animal models have been designed to study MS and reviewed effec‐
tively (Procaccini, De Rosa, Pucino, Formisano, & Matarese, 2015), 
however, the most frequently used model for etiological studies of 
MS	is	the	EAE	model.	In	EAE,	an	immune	reaction	to	CNS	compo‐
nents is induced in susceptible animals with self‐antigens that are 
derived from myelin protein. This was first described in monkeys 
stimulated with rabbit antigen (Rivers, Sprunt, & Berry, 1933), but 
later	 Freund’s	 adjuvant	 (Freund	 &	McDermott,	 1942)	 and	 pertus‐
sis toxin (Munoz, Bernard, & Mackay, 1984) were added to induce a 
humoral immune reaction similar to as seen in RRMS (Kabat, Wolf, 
& Bezer, 1947), and analogous to what is found in MS patients. 
Although	studies	have	been	done	on	guinea	pigs	(Freund,	Stern,	&	
Pisani, 1947) and monkeys (Kabat et al., 1947), the best models re‐
sulted from mice (Olitsky & Yager, 1949) and rats (Lipton & Freund, 
1952). The type of antigen introduced to the animal determined its 
particular	 presentation	 of	 EAE.	 Immunization	 of	 SJL/J	 mice	 with	
an epitope of proteolipid protein induces RRMS (Tuohy, Lu, Sobel, 
Laursen, & Lees, 1989), while MS induced by myelin oligodendro‐
cyte glycoprotein in C57BL6/J mice is chronic MS (Tompkins et al., 
2002).	Apart	 from	EAE	models,	viral	 infection	models	which	most	
effectively aid in the study of EBV related MS are TMEV infection 
models (Richards et al., 2011; Tsunoda, Iwasaki, Terunuma, Sako, 
& Ohara, 1996). Utilizing TMEV models also assist in studying new 
therapeutic methodologies targeted toward adhesion molecules and 
axonal degeneration (Tsunoda & Fujinami, 2010). Independent of 
introducing immunogens and viruses, certain chemical compounds 
have been utilized to cause an immune reaction leading to MS‐like 
symptoms, like cuprizone and lysolecithin, which cause oligodendro‐
cyte cell death and have been primarily used to study demyelination 
and remyelination in MS (Jeffery & Blakemore, 1995; Matsushima & 
Morell, 2001).

7.1 | Epigenetic therapy

Epigenetics,	 encompasses	 DNA	 methylation,	 histone	 modifica‐
tions,	and	small	RNA	based	mechanisms,	may	be	a	potential	thera‐
peutic avenue in MS treatment (Huynh & Casaccia, 2013). Due to 
observed epigenetic changes in MS, this therapy has emerged as a 
novel treatment alternative to MS. Histone deacetylase inhibitors 
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like	Trichostatin	A,	Vorinostat,	and	Valproic	acid	have	been	used	as	
therapeutic drugs, and have been shown to reduce cell infiltration in 
the CNS and reduce overall inflammation through the suppression of 
dendritic cells and dendritic cell costimulatory molecules (Camelo et 
al., 2005; Ge et al., 2013; Zhang, Zhang, Wu, & Schluesener, 2012). 
Further, histone acetyl transferase inhibitors like curcumin were 
found to repress infiltration of inflammatory cells in the spinal cord 
(Xie	et	al.,	2009).	More	recently,	5‐azacytidine,	a	DNA	methylation	
inhibitor,	was	shown	to	inhibit	EAE	by	induction	of	regulatory	T	cells	
in	a	mouse	EAE	model	(Chan	et	al.,	2014).

7.2 | Hormone therapy

Corticosteroids are commonly used drugs for treatment of acute 
MS relapses (Karussis, 2013). Glucocorticoids strongly downregu‐
late inflammation by inhibiting genes that affect the production of 
cytokines including IL‐1, IL‐2, IL‐3, IL‐4, IL‐5, IL‐6, IL‐8, and TNF‐α. 
This	in	turn,	reduces	the	proliferative	ability	of	T	cells	(Abbruzzese	
et al., 1983; Barkhof, Hommes, Scheltens, & Valk, 1991; Beck et al., 
1992; Miller et al., 1991; Rose et al., 1970), and induces the synthe‐
sis of lipocortin‐1 to minimize eicosanoid production and reduce the 
permeability of BBB with steroids (Barkhof et al., 1991; Kesselring et 
al., 1989; Miller et al., 1992). Studies have shown that both cortico‐
trophin	(ACTH)	and	intravenous	methylprednisolone	could	be	used	
in short‐term treatment of the acute exacerbations of MS (Berkovich 
et	al.,	2017).	An	alternative	to	corticosteroids	are	sex	hormones,	for	

example, testosterone supplements can be protective in males and 
combination of estradiol and progesterone is protective in case of 
females (Golden & Voskuhl, 2016).

7.3 | Immunotherapy

7.3.1 | T cell therapy

The first line of treatment targeting T cells in both the clinic and 
mouse	EAE	models	was	represented	by	type	1	interferons	and	glati‐
ramer	acetate	(GA).	IFN‐β reduces relapses and slows progression of 
the	disease	(Abreu,	1982).	GA	is	a	synthetic	co‐polymer	containing	
alanine, glutamine, lysine, and tyrosine (Norohna, Toscas, & Jensen, 
1990; Rudick, Carpenter, Cookfair, Tuohy, & Ransohoff, 1993). This 
compound shares immunologic similarities with the MBP molecule 
and can reduce inflammation by preventing lymphocyte sensitiza‐
tion	 (Abreu,	1985).	GA	 is	 capable	of	downregulating	antigen	pres‐
entation	 through	 competitive	 inhibition	 for	 binding	 to	MHC/HLA,	
thereby	inducing	a	Th2	shift,	in	regulatory	and	CD8	suppressor	GA‐
reactive cells (Comi, Filippi, Wolinsky, & Group, 2001).

7.3.2 | B‐cell therapy

B cell immunity plays an integral part in the development of MS 
because of its role in antibody presentation, cytokine production, 
meningeal inflammation, axonal degeneration, and grey matter 

F I G U R E  3   Schematic diagram of environmental factors and host derived pathways in causation of the disease and therapeutic strategies 
associated	with	multiple	sclerosis	(MS)	progression.	Although	many	correlations	have	been	established	between	foreign	pathogens	and	MS,	
there is no evidence for a direct association between any pathogen and the development or progression of MS. It is still unclear, whether 
bacterial	or	viral	pathogens	are	capable	of	initiating	MS	in	susceptible	patients	and	exacerbate	MS	symptoms.	As	multiple	species	of	bacteria	
and virus have been shown to associate with MS, it is possible that the mechanism of this association is a result of generalized inflammation 
caused by the immune response to these pathogens. The listed pathogens have been reported to cause one or more of the indicated 
pathways which culminate in the demyelination of neurons and progression of MS. The outlined therapeutic strategies include the existing 
treatment options as well as the focuses of current research 
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demyelination (McLauchlan & Robertson, 2017). Therefore, B cell‐
depleting therapy as an alternative to T cell therapy is considered 
highly effective against relapsing MS, and disability worsening in 
PPMS. The B cell‐depleting therapy is divided into two categories; 
polyclonal and monoclonal antibody therapies. Polyclonal antibody 
therapies inhibit cell‐mediated immune reactions by causing general 
immunosuppression, albeit not commonly used in MS due to high 
toxicity (Walker, Hoehn, & Kashiwagi, 1976). On the other hand, nu‐
merous	monoclonal	antibodies	including	Natalizumab,	Alemtuzumab	
and Daclizumab have proven effective in early RRMS(Nguyen, 
Gresle, Marshall, Butzkueven, & Field, 2017). In addition, three 
emerging monoclonal antibodies against CD20‐positive B cells 
(rituximab, ocrelizumab, and ofatumumab) have shown overall prom‐
ising	effects	in	clinical	phase	II	and	III	trials	(Abbruzzese	et	al.,	1983;	
Reff et al., 1994; Stashenko, Nadler, Hardy, & Schlossman, 1980). 
Other developing therapies against relapsing forms of the disease 
targets B cell CD19 antigen and B cell cytokine signaling molecules 
(Schneider et al., 1999).

7.4 | Stem cell therapy

Hematopoietic stem cell transplantation suppresses the immune 
system and mitigates the inflammatory responses generated by an 
insult (Burt et al., 2009). The entire immune system is reconstructed 
using	the	patient’s	own	stem	cells	 (Burt	et	al.,	2009).	 In	numerous	
clinical cases, the use of stem cell therapy was able to bring about an 
induction of remission and stabilization of MS (Burt et al., 2009). In 
addition, stem cell therapy using embryonic and other types of adult 
stem cells, particularly mesenchymal stem cells, are currently being 
studied	using	the	EAE	model	(Kassis	et	al.,	2008;	Zappia	et	al.,	2005).

7.5 | Electrical stimulation

Electrical stimulation has emerged as a potential therapeutic tech‐
nique	for	MS.	A	pilot	study	showed	that	intraluminal	electrical	phar‐
yngeal stimulation can treat dysphagia caused by MS (Restivo et al., 
2013).	A	randomized	control	trial	showed	that	resistance	training	of	
light to moderate intensity over long periods of time increases mus‐
cle strength in MS patients, while concurrent use of electrical stimu‐
lation does not help to further improve the outcome (Broekmans et 
al.,	2011).	Additionally,	functional	electrical	stimulation	has	tremen‐
dous potential as a therapeutic strategy to aid with gait in MS pa‐
tients (Hausmann et al., 2015; Sampson et al., 2016; van der Linden, 
Scott, Hooper, Cowan, & Mercer, 2014).

8  | CONCLUSIONS

Although	 substantial	 resources	 have	 been	 devoted	 on	 finding	 a	
cure for MS, based on current knowledge about the etiology of the 
disease, further studies are required to determine the association 
between virus and bacteria in the pathology of MS development 
(Figure 3). The most effective etiologic agent causing MS is still not 

known, though it is possible that multiple agents work in synchro‐
nization to hijack the immune system and aggravate the disease. 
As	 such,	 a	 deeper	 understanding	 of	 the	 underlying	 mechanisms	
is needed because a variety of factors associated with numerous 
diseases in completely different subsets of patients predisposed 
genetically for the disease have been shown. In addition, more 
studies on extent of interplay between MS and other non‐patho‐
genic environmental factors like vitamin D levels, exposure to UV‐
light, consumption of tobacco, with respect to MS pathogenesis 
are required.
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