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Type 2 diabetes mellitus (T2DM) is increasing in prevalence worldwide. The complications associated with T2DM result in in-
creased mortality and financial cost for those affected. T2DM has long been known to be associated with insulin resistance in pe-
ripheral tissues and a relative degree of insulin deficiency. However, the concept that insulin secretion and insulin sensitivity are 
not linked through a hyperbolic relationship in T2DM has continuously been demonstrated in many clinical trials. Thus, in or-
der to prevent and treat T2DM, it is necessary to identify the substance(s) that will improve the function and survival of the pan-
creatic b-cells in both normal and pathologic conditions, so that production and secretion of insulin can be enhanced. Incretin 
hormones, such as glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP), have been shown to 
lower the postprandial and fasting glucose and the glycated hemoglobin levels, suppress the elevated glucagon level, and stimu-
late glucose-dependent insulin synthesis and secretion. In this report, we will review the biological actions and mechanisms as-
sociated with the actions of incretin hormones, GLP-1 and GIP, on b-cell health and compare the differences between GLP-1 and 
GIP.
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INTRODUCTION

The prevalence of type 2 diabetes mellitus (T2DM) is increas-
ing worldwide. The World Health Organization (WHO) esti-
mates that approximately 180 million individuals are currently 
affected by T2DM, with the number expected to double by the 
year 2030 [1]. The situation seems to be more serious in Asian 
countries, such as India and China, which currently have the 
greatest number of patients with diabetes mellitus [2]. Com-
pared to Western countries such as the United States, Asian 
countries tend to have more patients with diabetes in the young-
er generations and the difference in prevalence between urban 

and rural community has been gradually declining [3]. The fi-
nancial and societal costs attributable to T2DM are substantial. 
In the U.S. alone, the estimated total costs were $132 billion in 
the year 2002 [4].
  Recently, b-cell dysfunction and the substantial reduction 
in the maximum capacity to secret insulin were demonstrated 
to be the primary metabolic defects in patients with T2DM [5]. 
Indeed, according to the United Kingdom Prospective Diabe-
tes Study (UKPDS), b-cell function is generally diminished by 
more than 50% by the time an individual is diagnosed with 
T2DM [4]. Many individuals who are insulin resistant never 
develop T2DM, as long as they have normal b-cell function 
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that is competent enough to adapt to the state of the insulin 
resistance [6]. Thus, the deterioration of b-cell function main-
ly contributes to the difficulty in maintaining adequate glyce-
mic control in patients with T2DM. In particular, the degree 
of b-cell dysfunction seems to be greater in Asians than in in-
dividuals from Western countries. In Korean subjects, the im-
paired insulin secretion could be demonstrated in those with 
impaired glucose tolerance or impaired fasting glucose, and b-
cell dysfunction is the only parameter associated with the de-
velopment of T2DM in a prospective cohort study, and the se-
lective b-cell loss was noticed in pancreatic islets of the patients 
with T2DM in a postmortem study [7-9]. Japanese people with 
normal glucose tolerance also have an insulin secretory capac-
ity that is insufficient to compensate for the obesity-induced 
insulin resistance [10]. The widely-used anti-diabetic agents, 
such as metformin, sulfonylureas, and thiazolidinediones, at-
tenuate the pathophysiology of T2DM mainly through the pro-
motion of insulin sensitivity and/or insulin secretion, but none 
of these are likely to prevent T2DM via the improvement of b-
cell dysfunction. Thus, there is an increasing need for new 
agents to improve b-cell dysfunction.
  Incretins, glucagons-like peptide (GLP)-1 and glucose-de-
pendent insulinotropic polypeptide (GIP), are hormones se-
creted from the gut in response to nutrient entry. They play a 
major role in glucose homeostasis via the insulinotropic mech-
anism and the proliferative and anti-apoptotic mechanisms in 
b-cells [11]. In many individuals with T2DM or insulin resis-
tance, it has been demonstrated that the GLP-1 level is de-
creased and GIP response to increase insulin secretion is im-
paired [12,13]. Additionally, genetic variation in GIPR, even 
in non-diabetic individuals, was recently shown to be associ-
ated with a diminished insulin response and incretin effects in 
response to an oral glucose challenge [14]. However, the intact 
GLP-1 level was not decreased in Japanese patients with T2DM 
[15]. It is still not firmly established whether incretins are real-
ly associated with the pathogenesis of T2DM and whether they 
exert beneficial effects on insulin secretion and b-cell dysfunc-
tion or b-cell mass in subjects with T2DM.

METABOLISM OF GLP-1 AND GIP

In 1960, extracts of mucosa from the porcine upper small in-
testine were used as a treatment for diabetes [16]. In 1932, the 
effect of the unidentified substance was referred to as the “in-
cretin effect” [17]. Some years later, a polypeptide was discov-

ered and named “gastric inhibitory polypeptide (GIP)” due to 
its inhibitory effect on gastric acid secretion in dogs. GIP was 
later renamed “glucose-dependent insulinotropic polypeptide 
(GIP)”, because its gastric inhibitory effect was found to be 
weak [18]. Although GIP was shown to be a potent stimulator 
of insulin secretion, removal of GIP from gut extracts via im-
munoadsorption did not eliminate the incretin effect, provid-
ing evidence for the existence of an additional peptide, later 
called GLP-1, with incretin-like activity [19]. In 1983, the gene 
encoding proglucagon, the precursor of glucagon, was found 
to include the sequence of two peptides (GLP-1 and GLP-2), 
in addition to glucagon itself. Proglucagon is expressed in both 
the pancreatic a-cells and the intestinal L-cells and its primary 
transcripts and translation products are identical in the two 
types of cells. However, the post-translational processing dif-
fers markedly in these two tissues [20,21].
  GLP-1 and GIP are made from proglucagon and proGIP 
protein precursors in the intestine or pancreas. First, bioactive 
GLP-1 is generated from proglucagon through cleavage of sin-
gle arginine residue that flank GLP-1 by the intestine-specific 
prohormone convertase (PC) 1 or 3 [22]. Second, bioactive 
GIP is generated from proGIP via cleavage by PC 1 or 3 of sin-
gle arginine residue that flanks GIP [11]. GLP-1 is secreted 
from L-cells, which are located mainly in the distal ileum and 
colon. In contrast, GIP is released form K-cells that are local-
ized to a more proximal region (duodenum and jejunum). 
These cells are in direct contact with luminal nutrients and 
neural and vascular tissues, which could regulate GLP-1 and 
GIP secretion by a variety of mechanisms including endocrine 
factors [23]. As soon as GLP-1 and GIP are secreted, they are 
inactivated by the ubiquitous proteolytic enzyme dipeptidyl 
peptidase-4 (DPP-4), which is a serine protease that specifical-
ly cleaves dipeptides from the protein that contains an alanine 
or proline residue in their N-terminal sequences. Thus, bioac-
tivities of GLP-1 and GIP are maintained for very short peri-
ods of 2 min and 7 min, respectively [24].

BIOLOGICAL ACTIONS OF GLP-1 AND GIP 
IN b-CELLS

The biological actions of GLP-1 and GIP in b-cells are mainly 
undertaken through their receptors, glucagon-like peptide-1 
receptor (GLP-1R) and glucose-dependent insulinotropic poly-
peptide receptor (GIPR), respectively. GLP-1R and GIPR be-
long to the class B family of 7 transmembrane-spanning, het-
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erotrimetric G-protein-coupled receptors [25,26], and are ex-
pressed in a-, b-, and d-cells of the pancreatic islets. The bind-
ing of GLP-1 and GIP to the N-terminal extracellular regions 
of their receptors activates the G protein and its downstream 
signaling pathways, which result in i) the exocytosis of insulin 
storage granules, ii) the stimulation of insulin synthesis, iii) 
differentiation of pancreatic exocrine cells toward a more en-
docrine-like phenotype, iv) expansion of b-cell mass, and v) 
the reduction of endoplasmic reticulum (ER) stress (Table 1).
  First, the insulin granule exocytosis is likely to result from 
GLP-1-induced KATP channel closure and adenylyl cyclase ac-
tivation, in which the former induces membrane depolariza-
tion and opens a voltage-dependent Ca2+ channel, and subse-
quently increases the influx of the extracellular Ca2+ into the 
cell, and the latter increases intracellular cAMP levels and 
consequently activates Epac2, which releases Ca2+ from the 
ER. The increased [Ca2+]i leads to the exocytosis of insulin 
storage granules out of b-cells [11].
  Second, GLP-1-stimulated insulin synthesis appears to be 
responsible for cAMP/PKA- or cAMP/Epac/ TORC2 (a CREB 
coactivator)-dependent signaling, which phosphorylates the 
cAMP response element binding protein (CREB) [27] and in-
sulin receptor substrate (IRS)-2 and subsequently increases 
the expression of pancreas/duodenum homeobox-1 (Pdx-1) 
and the binding of Pdx-1 to the insulin gene promoter [28]. 
The importance of Pdx-1 in GLP-1-stimulated insulin synthe-
sis was confirmed by the evidence that the GLP-1 agonist ex-
endin-4 failed to increase the plasma insulin level, pancreatic 
insulin content, and insulin mRNA expression in b-cellPdx-/- 

mice compared to the wild type mice [29].
  Third, the differentiation of pancreatic exocrine cells toward 
b-cells may be attributable to GLP-1-stimulated Pdx-1 gene 
transcription [30]. Indeed, GLP-1 increased the expression of 
b-cell-specific genes such as insulin, glucose transporter 2 
(GLUT2), and glucokinase in human and rat pancreatic ductal 
cells transfected with Pdx-1 compared with those transfected 
with null vector [30].
  Fourth, b-cell expansion may result from the inhibition of 
FoxO1 and activation of Pdx-1 via cAMP/PKA/CREB/IRS-2 
signaling or PI3K/AKT signaling or cell cycle regulator cyclin 
D1 up-regulation through MAPK signaling. In INS-1 cells 
transduced with constitutively active nuclear-FoxO1, the anti-
apoptotic effect of GLP-1R agonist was abolished with extru-
sion of anti-apoptotic protein Pdx-1 into the cytoplasm [31].
  Further, the reduction of ER stress is likely to result from 
GADD34-induced dephosphorylation of eIF2a. In an Ins-1 
b-cell line, ER stress was induced by thapsigargin, a non-com-
petitive inhibitor of SERCA, and GLP-1R agonist potentiated 
the translation of ATF4 and the expression of its target gene 
GADD34, thereby increasing GADD34-mediated dephospho-
rylation of eIF2a [32].
  Like GLP-1, GIP shows similar biological activity (the insu-
linotropic and proliferative effects) on pancreatic b-cells and 
has many common steps of intracellular signal transduction, 
such as membrane potential change, intracellular calcium re-
sponse, and cAMP response. However, several different bio-
logical actions have also been demonstrated for GIP and GLP-
1 on b-cells (Table 1).

Table 1.  Biological actions of GLP-1 and GIP in b-cells

GLP-1 GIP

Insulin secretion ↑ via KATP channels closure or cAMP/Epac2 activation ↑ via cAMP/PKA-dependent KV channels closure

Insulin synthesis ↑ �by increasing Pdx-1 expression or the binding of Pdx-1 
to insulin promoter via cAMP/PKA- or cAMP/Epac/
TORC2-dependent mechanism

↑ �via PI3K/AKT-dependent FoxO1 nuclear exclusion 
and Pdx-1 nuclear translocation

Proliferative and 
anti-apoptotic action

↑ �by inhibiting FoxO1 activity and subsequently 
upregulating Pdx-1 expression via PI3K/AKT or 
cAMP/PKA/CREB-dependent mechanism

↑ �by decreasing the apoptotic Bax promoter activity or 
stimulating the nuclear translocation of Pdx-1 via 
cAMP/PKA/CREB- or PI3K/AKT-dependent 
mechanism

ER stress reduction ↓ �via the enhancement of ATF4 translocation and 
GADD34- mediated dephosphorylation of eIF2a

Not yet determined

b-cell neogenesis ↑ via the increase in Pdx-1 expression Not yet determined

GLP-1, glucagon-like peptide-1; GIP, glucose-dependent insulinotropic polypeptide; ER, endoplasmic reticulum.
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  First, a novel role of GIP in the regulation of KV channel was 
identified as a potential mechanism whereby GIP modulates 
insulin secretion. In INS-1 cells, GIP reduced an A-type peak 
ionic current amplitude of Kv1.4. The mutant form of Kv1.4 
with Thr/Ala substitutions in a PKA-phosphorylated site re-
versed the GIP-reduced Kv1.4 peak current amplitude and sub-
sequently reduced glucose-dependent insulin secretion [33]. 
In addition, GIP did not regulate fasting glucose, but appeared 
to have a predominant role in the regulation of postprandial 
glucose level in GIPR-/- mice compared with GLP-1R-/- mice 
[34,35]. Furthermore, in clinical trials, GIP and GLP-1 induced 
the similar early phase insulin responses to oral glucose chal-
lenge, but GIP failed to induce the late phase insulin response 
in diabetic patients [36].

FACTORS INVOLVED IN GLP-1 AND GIP 
SYNTHESIS AND SECRETION

Meal ingestion and autonomic nervous system
GLP-1 and GIP release can be stimulated by mixed meals or in-
dividual nutrients including glucose and fatty acids [37]. GIP 
secretion showed species-specific differences, in which fat is 
the most potent stimulator in humans and carbohydrate is the 
most potent stimulator in rodents and pigs [11].
  Glucose entry into the L-cells via sodium glucose transport-
ers (SGLT) causes an increase in ATP level, which leads to the 
closure of KATP channels and subsequent opening of L-type 
voltage-gated calcium channels [38], which results in GLP-1 
release. Fatty acids bound to GPR120 increase the intracellular 
calcium level and activate AKT or MAPK signaling, which 
lead to GLP-1 release. However, the nutrient-stimulated GLP-
1 release starts at a second phase (90-120 min) after nutrient 
ingestion [12]. In the early phase (15-30 min) after nutrient 
ingestion, GLP-1 secretion seems to be mainly stimulated by 
the autonomic nervous system, by neurotransmitters gastrin-
releasing peptide (GRP) and acetylcholine (Ach), and GIP, be-
cause the majority of GLP-1 secreting L-cells are located in the 
distal small intestine [12]. After a meal ingestion, GIP released 
in the duodenum appears to activate the vagal afferents, which 
subsequently induce GLP-1 secretion through the vagal effer-
ents (Ach) or enteric efferent neurons such as GRP. Binding of 
GRP or Ach to G protein-linked GPR or M1 receptors activates 
phospholipase C (PLC)/protein kinase C (PKC) or cAMP/PKA 
signaling and then leads to secretion of GLP-1. The importance 
of the vagus nerve in mediating the proximal-distal loop was 

elucidated from the evidence that GLP-1 secretion is enhanced 
when the fat is administered into the duodenum or when the 
GLP-1 secretion in response to the infusion of physiological con-
centration of GIP was completely abrogated by vagotomy [39].

Leptin
In leptin deficient ob/ob mice and high fat-induced leptin re-
sistant mice, plasma GLP-1 levels were decreased. Binding of 
leptin to its receptor (OB-Rb) leads to phosphorylation of Janus 
kinase (JAK), which serves as a docking site for a signal trans-
ducer and activator of transcription (STAT) molecules. Once 
docked, STAT molecules are phosphorylated and dimerized 
prior to entering into the nucleus to mediate gene transcrip-
tion. In human and rodent L-cells, leptin increases GLP-1 se-
cretion together with STAT3 phosphorylation. However, the 
detailed mechanisms on downstream mediators are not known. 
Nonetheless, these findings suggest a possible mechanism by 
which circulating GLP-1 levels are reduced in obese individu-
als [40].

Activator of Wnt signaling: insulin and metformin
Most, but not all studies have found that insulin secretion tends 
to decrease in carriers of the TCF4 (TCF7L2) risk genotypes, 
which implies potential mechanisms relating Wnt signaling to 
pancreatic development and b-cell function, as well as the reg-
ulation of the incretin hormones [41,42]. In carriers of TCF4 
gene polymorphisms, GLP-1 administration did not induce 
insulin secretion [43] and Wnt3 or lithium, an inhibitor of gly-
cogen synthase kinase (GSK) 3b, enhanced GIP production 
through the increase in the binding of b-catenin/TCF4 to the 
proximal GIP promoter [44]. In the presence of Wnt ligands, 
Wnts bind to Frizzled (Fz) receptors and low-density lipopro-
tein receptor-related protein (LRP) 5/6 coreceptors, whereby 
dishevelled (Dsh) is recruited to the membrane and GSK 3b is 
inhibited by the activation of Dsh by Fz. This could lead to the 
translocation of the β-catenin into the nucleus and could stim-
ulate the binding of β-catenin with TCF to activate specific 
genes, such as GLP-1 and GIP (Fig. 1) [45].
  Insulin stimulates GLP-1 secretion via the cross-talk between 
insulin and Wnt signaling pathways. In an intestinal GLUTag 
L-cell line as well as in primary fetal rat intestinal cells, insulin 
stimulated the expression of proglucagon and enhanced GLP-
1 content, which is attributable to the enhanced binding of b-
catenin and TCF-4 to the TCF4 site in the G2 enhancer element 
[46] of the proglucagon gene promoter. Moreover, a high con-
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centration of insulin can induce insulin resistance in L-cells 
and this insulin resistance can attenuate insulin-stimulated 
GLP-1 secretion as well as heterologous desensitization of the 
L-cell response to GIP. Taken together, these findings suggest a 
possible mechanism by which GLP-1 levels could be reduced 
in patients with type 2 diabetes [47] as well as in normal sub-
jects in the lowest tertile of insulin sensitivity [12]. Recently, 
we found that metformin could increase the production and 
secretion of GLP-1 in intestinal L-cells both in vitro and in vivo 
through the activation of the Wnt signal transduction pathway 
(unpublished data).

A variety of genes bind to the GIP gene promoter
Human GIPR gene promoter contains cAMP-response ele-
ments and the binding sites for several transcription factors 
including Sp1, Sp3, activator protein (AP)-1 and AP-2. In ad-
dition, cis-acting negative regulatory sequences that control 
cell-specific GIPR gene expression have been identified in more 
distal 5’-flanking region [48]. Recently, chromatin immuno-
precipitation assay was used to demonstrate that Pdx-1 binds 
to GIP promoter. Indeed, there was a remarkable reduction 
(97.8%) in the number of GIP-expressing cells in Pdx-/- mice 
[49].

Fig. 1.  Proposed model for action of Wnt signaling on GLP-1 or GIP production. Wnt ligands bind to Frizzled (Fz) receptors 
and low-density lipoprotein receptor-related protein (LRP) 5/6 coreceptors, whereby dishevelled (Dsh) is recruited to the mem-
brane and GSK3b is inhibited by the activation of Dsh by Fz. This leads to the translocation of b-catenin into the nucleus, where 
it binds with TCF to activate specific target genes such as GLP-1 and GIP in intestinal L-cells or K-cells. GLP-1, glucagon-like 
peptide-1; GIP, glucose-dependent insulinotropic polypeptide.
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CONCLUSION

GLP-1 and GIP could exert beneficial effects in b-cells through 
structurally related G protein-coupled receptors, which utilize 
overlapping signal transduction pathways in islet b-cells. Al-
though GLP-1 and GIP both stimulate glucose-dependent in-
sulin secretion, insulin synthesis, and b-cell proliferation, and 
inhibit b-cell apoptosis, they exert different activities and ac-
tions on b-cells, too. Thus, understanding the relative impor-
tance and the different mechanisms of incretin hormones on 
b-cells will help us to design strategies to optimize b-cell func-
tion in patients with T2DM.
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