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A stacking ensemble machine 
learning model to predict alpha‑1 
antitrypsin deficiency‑associated 
liver disease clinical outcomes 
based on UK Biobank data
Linxi Meng1, Will Treem2, Graham A. Heap2 & Jingjing Chen2*

Alpha‑1 antitrypsin deficiency associated liver disease (AATD‑LD) is a rare genetic disorder and not 
well‑recognized. Predicting the clinical outcomes of AATD‑LD and defining patients more likely 
to progress to advanced liver disease are crucial for better understanding AATD‑LD progression 
and promoting timely medical intervention. We aimed to develop a tailored machine learning 
(ML) model to predict the disease progression of AATD‑LD. This analysis was conducted through 
a stacking ensemble learning model by combining five different ML algorithms with 58 predictor 
variables using nested five‑fold cross‑validation with repetitions based on the UK Biobank data. 
Performance of the model was assessed through prediction accuracy, area under the receiver 
operating characteristic (AUROC), and area under the precision‑recall curve (AUPRC). The importance 
of predictor contributions was evaluated through a feature importance permutation method. The 
proposed stacking ensemble ML model showed clinically meaningful accuracy and appeared superior 
to any single ML algorithms in the ensemble, e.g., the AUROC for AATD‑LD was 68.1%, 75.9%, 91.2%, 
and 67.7% for all‑cause mortality, liver‑related death, liver transplant, and all‑cause mortality or 
liver transplant, respectively. This work supports the use of ML to address the unanswered clinical 
questions with clinically meaningful accuracy using real‑world data.

Alpha-1-antitrypsin deficiency (AATD) is an autosomal codominant genetic disorder with a prevalence range of 
1 per 2500 to 1 per 5000 individuals in Europe and North America that causes early pulmonary disease in adults 
and liver disease in children and  adults1, and which often goes underdiagnosed. Alpha-1-antitrypsin (AAT), 
also known as SERPINA1 (serine protease inhibitor, group A, member 1), is a 52 kDa circulating glycoprotein 
protease inhibitor of the serpin family. Its primary function is to inhibit neutrophil elastase and other proteases 
to prevent excessive protease-induced tissue  damage2,3. AAT is normally synthesized primarily in hepatocytes 
and secreted in monomeric form. If the AAT proteins are malformed or deficient, it may lead to predisposition 
for obstructive pulmonary disease and/or liver  disease1. The PiZZ genotype is known as the most common defi-
ciency genotype and tends to result in the worst clinical  presentation4. Data from real-world clinical practice has 
shown that over 90% of AATD is due to the PiZZ  genotype5. The milder genotypes such as PiSZ and PiMZ are 
also linked to the development of lung and liver disease, mainly when unhealthy behaviors such as smoking or 
alcohol use are  present4. Clinical research shows approximately 40% of adult AATD patients dying of all causes 
had cirrhosis at the time of  death6, and approximately 15% of adult patients with AATD-associated liver disease 
(AATD-LD) required liver  transplantation7. Although clinical trials are underway, there is no approved therapy 
for AATD-LD. Liver transplantation is the only curative treatment available so far.

Motivations. The signs of AATD-LD include elevated transaminases or bilirubin, hepatitis, hepatic fibrosis 
or  cirrhosis8. It is known that liver damage may progress slowly for decades before clinical presentation. Disease 
progression can be accelerated significantly by other factors, including nonalcoholic fatty liver disease, alcoholic 
liver disease, hepatitis, alcohol consumption, smoking, etc. These factors can also cloud accurate diagnosis of 
AATD-LD9–11. Thus, predicting the clinical outcomes of AATD-LD and defining patients who are more likely to 
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progress to advanced liver disease is crucial to enable timely medical intervention. It will also enable researchers 
to make data-driven decisions to inform clinical outcome endpoint selection and clinical development strategy 
when designing clinical trials for potential AATD-LD therapies. However, the risk factors potentially contrib-
uting to the progression of AATD-LD have been poorly  studied12. The existing clinical research on AATD-LD 
mainly utilizes conventional correlation analysis or multivariate regression analysis based on a limited num-
ber of predictor variables such as demographics, baseline disease characteristics, serum tests and  lifestyle7,13–20. 
Many studies have limitations due to small sample size or older  data7. None of the studies has compared the 
risk factors between AATD-LD and other liver disease. Although machine learning (ML) techniques have been 
applied in the medical field for disease diagnosis and treatment outcome prediction, given recent advances in 
ML algorithms and statistical computing  power21–31, little research has been done to understand the AATD-LD 
patients’ journey or predict the disease progression of AATD-LD using ML algorithms.

Objectives. We were intrigued and aimed to fill the gaps by applying advanced ML to predict the disease 
progression of AATD-LD using real-world data from the UK Biobank. In this work, we aimed to:

(a) establish a predictive ML model of clinical outcomes to assess disease progression of AATD-LD based on 
generally available clinical information collected in daily practice;

(b) improve the ML model prediction by applying a supervised stacking ensemble learning technique by com-
bining multiple ML algorithms including random forest (RF), elastic net regularized regression (ENRR), 
gradient boosting (GB), and artificial neutral network multilayer perceptron (ANN-MLP) via meta-learn-
ing; and

(c) improve the interpretability of predictive ML model by mapping the importance of predictor contributions 
through a feature importance permutation method.

This article is organized as follows: the basic concepts of the supervised stacking ensemble learning technique, a 
brief overview of data and analysis pipeline, and the ML model training and testing workflow are described in the 
“Methods” section. We present the proposed predictive ML model for AATD-LD based on real-world data from 
the UK Biobank as well as the model performance evaluation and model interpretation in the “Results” section. 
A brief discussion on the impact of this work is provided in the “Discussion” section. Of note, we trained the 
ML model for AATD-LD and any liver disease for comparative purpose. Our work focused on the prediction of 
disease progression of AATD-LD, but it can be applied to other clinical outcomes and/or diseases. In summary, 
the generalizable predictive patterns revealed in this work support the potential of ML model as a new tool to 
address the unanswered clinical questions with clinically meaningful accuracy using real-world data.

Methods
This section provides a brief overview of data and analysis pipeline, data assembly and process prior to the 
modeling training, and the ML model building workflow in this work. We also provide the details of statistical 
techniques applied to improve the model performance and interpretation including feature selection, oversam-
pling technique and feature importance. The principles that we demonstrated in this work can be readily applied 
to other clinical outcomes and/or disease indications. This study (UK Biobank application #26041) was covered 
by the general ethical approval for UK Biobank studies. As per informed consent procedures, informed consent 
was obtained and all participant data was anonymized. All methods were carried out in accordance with relevant 
guidelines and regulations.

Data and patient selection. Patient data were extracted from the UK Biobank (https:// bioba nk. ctsu. ox. 
ac. uk), a large-scale biomedical database, of which 500,000 patients aged 40 to 69 years recruited throughout the 
UK between 2006 and 2010. The database included patients with a wide range of serious and life-threatening 
illnesses. Patients had undergone measures, provided blood, urine and saliva samples, and detailed information 
about themselves, and agreed to have their health  followed32,33. The blood, urine and saliva samples were stored 
in such a way as to allow different types of assay to be performed (e.g., genetic, proteomic and metabonomic 
analyses)33. Demographic and behavioral information was recorded using self-reported questionnaires dur-
ing clinic visits. The UK Biobank data included lifestyle, medical history and sociodemographics, physical and 
environmental measures (including urinary biomarkers, cognitive function and hearing tests), genetic data and 
health outcome  data34.

All data used in this work were extracted from UK Biobank (application #26041) for 11,583 patients with a 
diagnosis of any liver disease according to International Classification of Diseases (ICD) codes. Four hundred 
and fifty-five patients with a diagnosis of AATD-LD (identified by ICD code), including 20 AATD-LD patients 
with the PiZZ genotype (SNP rs28929474), were subsequently identified. The demographic and disease charac-
teristics for the patients of interest are shown in Table 1.

Clinical outcomes. The clinical outcomes of interest to assess the disease progression of AATD-LD and any 
liver disease included:

(1) all-cause mortality (taken from UK Biobank—death register),
(2) liver-related death (a subset of all-cause mortality with liver disease diagnosis),
(3) liver transplant (taken from UK Biobank—summary of operations and identified by OPCS4 code), and
(4) all-cause mortality or liver transplant, a combination of clinical outcomes (1), (2), and (3).

https://biobank.ctsu.ox.ac.uk
https://biobank.ctsu.ox.ac.uk
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The frequency of these outcomes recorded among study patients is shown in Table 2.

Predictors and feature selection. All potential predictor variables collected in the UK Biobank were 
included in the analysis and categorized into four predictor blocks to facilitate interpretation of the prediction 
results, as shown in Table 3.

• Predictor Block 1: baseline demographics;
• Predictor Block 2: baseline disease characteristics;
• Predictor Block 3: lifestyle and others; and
• Predictor Block 4: baseline laboratory parameters.

Of note, there are multiple variables with similar information in each predictor block. To prevent the modeling 
barriers from the overfitting or multicollinearity, redundant features were eliminated through feature selection 

Table 1.  Summary of demographic and disease characteristics in patients with any liver disease and 
AATD-LD. Patients with any liver disease were identified by ICD code. Patients with AATD-LD is a subset of 
patients with any liver disease.

Variables Category Any liver disease (N = 11,583) AATD-LD (N = 455)

Sex, n (%)

Female 6097 (52.6%) 226 (49.7%)

Male 5486 (47.4%) 229 (50.3%)

Missing 0 0

Race, n (%)

White 10,840 (94.1%) 426 (94.2%)

Non-white 674 (5.9%) 26 (5.8%)

Missing 69 3

Obesity, n (%)

Non-obese 7180 (62.7%) 321 (72.0%)

Obese 4278 (37.3%) 125 (28.0%)

Missing 125 9

Diabetes, n (%)

Non-diabetic 9862 (85.9%) 401 (88.9%)

Diabetic 1625 (14.1%) 50 (11.1%)

Missing 96 4

Smoking status, n (%)

Never smoking 5090 (44.3%) 182 (40.3%)

Past smoker 4493 (39.1%) 194 (42.9%)

Current smoker 1911 (16.6%) 76 (16.8%)

Missing 89 3

Age (years)

Mean 58.5 60.3

Min, max 40, 70 41, 70

Missing 0 0

BMI (kg/m2)

Mean 29.0 27.5

Min, max 15.0, 69.0 16.9, 52.5

Missing 125 9

Weight (kg)

Mean 82.0 78.0

Min, max 35.8, 190.0 41.7, 151.4

Missing 122 7

Waist (cm)

Mean 95.4 92.9

Min, max 57, 171 62, 153

Missing 84 4

Table 2.  Summary of clinical outcomes in patients with any liver disease and AATD-LD.

Clinical outcomes, n (%) Any liver disease (N = 11,583) AATD-LD (N = 455)

All-cause mortality 3524 (30%) 245 (54%)

Liver-related death 1230 (10%) 41 (9%)

Liver transplant 124 (1%) 5 (1%)

All-cause mortality or liver transplant 3619 (31%) 246 (54%)
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methods prior to the model training. The final set of predictor variables for the model training was selected 
through the joint application of seven feature selection methods including: (1) filter methods, such as Pearson 
correlation and Chi-squared correlation; (2) wrapper methods, such as feature elimination recursive; and (3) 
embedded methods such as Lasso and three tree-based models, as shown in Fig. 1. Predictor variables selected 
by at least 4 of the 7 feature selection methods were identified as the final potential predictors for the clinical 
outcomes and included in the ML model training. There were 58 predictor variables in total identified through 
the feature selection process.

Data assembly and analysis pipeline. The data were preprocessed before modeling (e.g., centering and 
scaling the predictors, imputing the missing predictor information via multiple imputation). The process flow 
for data assembly, processing, and analysis is shown in Fig. 2. Complete algorithms of data domains and data 
classifiers used in this work can be found in Supplementary Appendix C.

Oversampling technique. To address the imbalanced classification challenge where there were too few 
records of a minority class for the model to effectively learn and to improve the model performance on the 
minority class, the synthetic minority oversampling technique (SMOTE)35 was applied to the clinical outcomes 
with data imbalance including liver-related death and liver transplant. The new synthetic records were generated 
using the existing samples of the minority class by linear interpolating for the minority class. AUPRC was used 
as a performance measure for data imbalance.

Stacking ensemble algorithm. In the practice of ML, the choice of ML model is critical to obtain good 
results. The real challenge is to explore the space of possible ML models and identify a robust model with good 
prediction performance. As an older saying says “unity is strength”, we aimed to apply an ensemble method 
based on a hypothesis that combination of multiple ML models will produce a more powerful and robust model. 
Stacking is one of the ensemble methods and meta-learning algorithms that minimizes the variance, reduces 
the bias and improves the model predictive force by combing multiple heterogeneous base ML models into one 
meta-model to output the predictions based on the multiple predictions from the base ML models. The final 
meta-model can be viewed as a correction of base models or a weighted average of base models.

Therefore, the stacking ensemble learning  algorithm36,37 was applied in this work in order to achieve an 
optimal model prediction performance. The stacking ensemble is a meta-learning algorithm that combines the 
predictions from multiple well-performing ML models including classification tree and/or regression methods to 
make the final model perform better than any single model in the ensemble. We applied and combined the learn-
ing from random forest (RF), gradient boosting (GB), elastic net regularized regression (ENRR), and artificial 

Table 3.  Description of potential predictor variables. Variables in predictor blocks 2 and 3 were obtained from 
patient-reported questionnaires. There may be more than one predictor variable in each predictor category. 58 
predictor variables were identified via feature selection prior to ML model training.

Category Description

Predictor Block 1
Demographics

Age
Age of diagnosis
Gender
Ethnicity
BMI
Weight
Waist circumference

Predictor Block 2
Baseline disease characteristics

Other underlying conditions
 Non-alcoholic steatohepatitis
 Lung disease
 Diabetes
 Obesity

Predictor Block 3
Lifestyle and others

Alcohol intake/status
Smoking status
Medical procedure
Major operation

Predictor Block 4
Baseline laboratory parameters

Blood assays
 Albumin
 Alanine aminotransferase
 Aspartate aminotransferase
 Alkaline phosphatase
 Gamma-glutamyl transferase (GGT)
 Total bilirubin
 Direct bilirubin
 International normalised ratio
 Hemoglobin A1c
 Total protein
Spirometry
 Forced vital capacity (FVC)
 Forced expiratory volume in 1 s (FEV1)
 Peak expiratory flow (PEF)
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Figure 1.  Feature selection strategy prior to model training.
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Figure 2.  Flow chart of data assembly, processing, and analysis.
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neural networks-multilayer perceptron (ANN-MLP) into the stacking ensemble learning algorithm. The technical 
details of the stacking learning  algorithm37 are presented in Supplementary Appendix A.

• RF is an ML algorithm for classification, which consists of a large number of individual decision trees, and 
uses bagging and feature randomness for training to create an uncorrelated forest of trees. The final predic-
tion from random forest model is the class selected by most trees.

• GB is an ML algorithm that uses boosting technique and grows trees in a stage-wise, gradual, additive and 
sequential manner. Two GB algorithms were applied in this work, including eXtreme Gradient Boosting 
(XGBOOST), which splits the tree level-wise and light GBM, which has faster training speed and higher 
efficiency.

• ENRR is an application of regularized regression with penalties to avoid extreme parameters that could cause 
overfitting. ENRR combines two commonly used regularization techniques (Lasso and Ridge) into a hybrid 
penalized model.

• ANN is one of the deep-learning algorithms inspired by the structure and function of the human brain. MLP 
is a class of feedforward ANN. We applied multiple-input single-output neural network forecasting in this 
work.

Nested five‑fold cross‑validation. To optimize the stability of the prediction results, a nested five-fold 
cross-validation with independent random partitions was conducted with 100 repetitions. The nested cross-
validation has an inner loop cross-validation nested in an outer loop cross-validation, where the inner loop was 
used for model selection and hyperparameter tuning and the outer loop was used for model performance evalu-
ation. The full dataset was split into the Training Set and Test Set prior to the model building through the nested 
five-fold cross-validation method. The Training Set was implemented to build up and train the model, and the 
Test Set was used to validate the model built. Of note, the SMOTE oversampling technique was applied to the 
Training Set for liver-related death and liver transplant. To avoid the noisy estimate of model performance by a 
single run of nested five-fold cross-validation, we conducted different splits of Training and Test data by repeat-
ing the nested five-fold cross-validation 100 times to stabilize the performance of the ML models.

Model performance evaluation metrics. The model performance was evaluated by prediction accuracy, 
AUROC, and AUPRC. The prediction accuracy and the AUROC were reported as a performance measure to 
indicate the capability of a classification model to distinguish between classes. A prediction accuracy or AUROC 
score close to 1 indicated good model separability. The AUPRC was reported as a performance metric for imbal-
ance data. An AUPRC score better than the baseline fraction of positive cases indicated good performance. The 
mean result and standard deviation across all iterations were reported. It is worth pointing out that the mean 
result is considered as a more accurate and stable estimate to the underlying performance of model prediction.

This analysis was carried out using Python 3.8 and Keras 2.5.0. Figure 3 presents the workflow of the stacking 
ensemble learning algorithm in this work.

Feature importance. Feature importance refers to a class of techniques for assigning scores to input fea-
tures in a predictive model that indicates the relative importance of each feature when making a prediction, pro-
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Figure 3.  The workflow of stacking ensemble learning.
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viding insight and better understanding into the data and an ML prediction model. We applied the permutation 
 importance38 to each of the five ML models to obtain the permutation importance scores and calculated the final 
feature importance score by summing up these importance scores (Supplementary Appendix B). The important 
predictors were identified and ranked based on the final importance score.

Results
Predictive performance of stacking ensemble model. Table 4 displays the model performance meas-
ures (prediction accuracy, AUROC, and AURPC) using the stacking ensemble learning algorithm in the Train-
ing Set and Test Set for the four clinical outcomes of interest in patients with AATD-LD, while Table 5 displays 
the model performance measures in patients with any liver disease for comparative purpose. The results show 
that the stacking ensemble model performed similarly in patients with AATD-LD versus patients with any liver 
disease, with acceptable and clinically meaningful accuracy in both the Training Set and the Test Set. The stacking 
ensemble models worked particularly well for predicting liver-related death and liver transplant.

• AATD-LD The mean prediction accuracy was 0.828 and 0.632 for all-cause mortality, 0.991 and 0.914 for 
liver-related death, 1.000 and 0.989 for liver transplant, and 0.837 and 0.633 for all-cause mortality or liver 
transplant in the Training Set and Test Set of patients with AATD-LD, respectively (Table 4). The mean 
AUROC was 0.899 and 0.681 for all-cause mortality, 0.997 and 0.759 for liver-related death, 1.000 and 0.912 
for liver transplant, and 0.903 and 0.677 for all-cause mortality or liver transplant in the Training Set and 
Test Set respectively. For illustration purposes, Fig. 4 displays the receiver operating characteristic (ROC) 
curve of the final best stacking ensemble model compared with each of the five base ML models in the Test 
Set from one Training-Test split of AATD-LD.

• Any liver disease The mean prediction accuracy was 0.806 and 0.756 for all-cause mortality, 0.911 and 0.913 
for liver-related death, and 0.999 and 0.989 for liver transplant, and 0.815 and 0.755 for all-cause mortality 
or liver transplant in Training Set and Test Set of patients with any liver disease, respectively (Table 5). The 
mean AUROC was 0.852 and 0.770 for all-cause mortality, 0.999 and 0.835 for liver-related death, 1.000 and 
0.859 for liver transplant, and 0.863 and 0.777 for all-cause mortality or liver transplant in the Training Set 
and Test Set, respectively. Figure 5 displays the ROC of the final best stacking ensemble model in the Test Set 
from one Training-Test split of patients with any liver disease.

Overall predictive performance evaluation. We found the stacking ensemble model and five base ML 
models (including RF, XGBOOST, LGBM, ENRR, and ANN-MLP) used to train the stacking ensemble model 
all worked well with complex data and a massive scope of predictors, showing similar prediction performances. 
Tables 6 and 7 present the predictive performance evaluation metrics of the stacking ensemble model and each 
base ML model in patients with AATD-LD and patients with any liver disease, respectively. The results show that 
the stacking ensemble model achieved the best performance compared with each individual base ML model, 

Table 4.  Mean (± standard deviation) model performance measures for stacking ensemble learning in 
Training Set and Test Set across the nested five-fold cross-validation with 100 repetitions in patients with 
AATD-LD (N = 455), respectively. AUROC = area under the receiver operating characteristic, AUPRC = area 
under the precision-recall curve.

Clinical outcomes

Accuracy AUROC AUPRC

Training Test Training Test Training Test

All-cause mortality 0.828 ± 0.091 0.632 ± 0.038 0.899 ± 0.080 0.681 ± 0.035 0.911 ± 0.073 0.709 ± 0.032

Liver-related death 0.991 ± 0.011 0.914 ± 0.009 0.997 ± 0.007 0.759 ± 0.108 0.979 ± 0.043 0.411 ± 0.170

Liver transplant 1.000 ± 0.001 0.989 ± 0.000 1.000 ± 0.000 0.912 ± 0.133 1.000 ± 0.000 0.414 ± 0.416

All-cause mortality or liver transplant 0.837 ± 0.087 0.633 ± 0.029 0.903 ± 0.076 0.677 ± 0.025 0.917 ± 0.067 0.703 ± 0.040

Table 5.  Mean (± standard deviation) model performance measures in Training Set and Test Set across the 
nested fivefold cross-validation with 100 repetitions in patients with any liver disease (N = 11,583). AUROC = 
area under the receiver operating characteristic, AUPRC = area under the precision-recall curve.

Clinical outcomes

Accuracy AUROC AUPRC

Training Test Training Test Training Test

All-cause mortality 0.806 ± 0.025 0.756 ± 0.008 0.852 ± 0.034 0.770 ± 0.009 0.737 ± 0.049 0.629 ± 0.016

Liver-related death 0.991 ± 0.011 0.913 ± 0.004 0.999 ± 0.002 0.835 ± 0.009 0.998 ± 0.003 0.517 ± 0.023

Liver transplant 0.999 ± 0.001 0.989 ± 0.003 1.000 ± 0.000 0.859 ± 0.045 1.000 ± 0.000 0.142 ± 0.048

All-cause mortality or liver transplant 0.815 ± 0.039 0.755 ± 0.006 0.863 ± 0.046 0.777 ± 0.010 0.764 ± 0.067 0.636 ± 0.010
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yielding higher prediction accuracy and AUROC in both the Training Set and the Test Set for all four clinical out-
comes. It is worth noting that each base ML model performed acceptably well but no one base ML model con-
sistently outperformed others for all clinical outcomes. In summary, our results show that each base ML model 
improved in performance when combined with meta-learning, i.e., the proposed stacking ensemble learning 
predictive model.

• AATD-LD Among five base ML models, ENRR appeared to have the highest prediction accuracy for all-
cause mortality (accuracy = 0.620 compared with 0.589, 0.614, 0.616, 0.595); LGBM for liver-related death 
(accuracy = 0.897 compared with 0.894, 0.893, 0.851, 0.770); RF, LGBM, and ENRR for liver transplant 
(accuracy = 0.988 compared with 0.981, 0.982); and ENRR for all-cause mortality or liver transplant (accu-
racy = 0.641 compared with 0.620, 0.603, 0.605, 0.624) (Table 6).

• Any liver disease Among five base ML models, ENRR appeared to have the highest prediction accuracy for 
all-cause mortality (accuracy = 0.754 compared with 0.700, 0.724, 0.726, 0.746); LGBM for liver-related death 
(accuracy = 0.900 compared with 0.818, 0.897, 0.890, 0.878); LGBM for liver transplant (accuracy = 0.987 com-

All-cause mortality Liver-related death 

Liver transplant All-cause mortality or liver transplant 

Figure 4.  ROC curves for the trained classifiers in the Test Set from one Training-Set split for patients 
AATD-LD (N = 445). Given the low liver transplant event incidence in AATD-LD patients in the Test Set, there 
was insufficient data to populate the ROC curve for liver transplant and a box plot was presented instead.
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pared with 0.947, 0.985, 0.983, 0.979), and ENRR for all-cause mortality or liver transplant (accuracy = 0.753 
compared with 0.707, 0.727, 0.728, 0.753, 0.740) (Table 7).

Summary of feature importance. The top 25 important predictors ranked by their contributions to the 
outcome prediction in the final stacking ensemble learning predictive model among a total of 58 predictor 
variables were identified through a feature importance permutation method and presented in Figs. 6 and 7 in 
patients with AATD-LD and patients with any liver disease, respectively.

• AATD-LD Fig. 6 shows the top 25 important predictors for the stacking ensemble learning predictive model 
for patients with AATD-LD. The pattern of top-ranked predictors appeared similar, including baseline demo-
graphics (e.g., “age at recruitment”, “body fat percentage, “hip circumstance”, “standing height”), baseline 
disease characteristics (e.g., “number of self-reported non-cancer illness”, “number of self-reported opera-

Liver-related deathAll-cause mortality

All-cause mortality or liver transplantLiver transplant

Figure 5.  ROC curves for the trained classifiers in the Test Set from one Training-Set split for patients with any 
liver disease (N = 11,583).
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tions”, “other serious medical conditions/disabilities”), liver function tests, lung function spirometry, alcohol 
intake and smoke status with the order slightly different for each clinical outcomes of disease progression. The 
highest-ranked predictors of all-cause mortality were age at recruitment, GGT, alcohol intake (e.g., “alcohol 
usually taken with meal”, “average weekly spirit intake”, “heavy alcohol drinker”, “alcohol intake frequency”), 
laboratory measurements (e.g., “total bilirubin”, “total protein out of range”, “total protein”, “albumin”,), lung 
function spirometry (e.g., max PEF), and smoking status (e.g., “level of smoker”, “smoking status”). The 
highest-ranked predictors of liver-related death were the genetic AAT deficiency (e.g., rs28929474 genotypes 
with Pi type of “ZZ”), GGT out of range, other serious medical conditions/disability, alcohol intake frequency, 
laboratory measurements (e.g., “GGT”, “total bilirubin”, “albumin out of range”, “AST”), smoking status, and 
number of self-reported operations. The highest-ranked predictors of liver transplant were GGT out of range, 
GGT, alcohol intake (e.g., “average amount of alcohol per week”, “alcohol intake frequency”), and baseline 
demographics and disease characteristics (e.g., “body fat percentage”, “other serious medication condition/
disability”, “standing height”, “ethnic background”, “sex”). When combining all-cause mortality and liver 
transplant, the highest rank predictors were age at recruitment, total protein, alcohol intake (e.g., “heavy 
alcohol intake”, “average weekly spirits intake”), and laboratory measurements (e.g., “total bilirubin”, “GGT”, 
“ALP”, “albumin”), baseline demographics and disease characteristics (e.g., “hip circumstance”, “number of 
reported non-cancer illness”, “BMI”).

• Any liver disease Fig. 7 shows the top 25 important predictors for the stacking ensemble learning predictive 
model for patients with any liver disease. The prediction pattern was similar to patients with AATD-LD. It 
is interesting to note that the order of top-ranked predictors was slightly different from that in patients with 
AATD-LD. For example, the highest-ranked two predictors were age at recruitment and liver cancer for all-
cause mortality, liver cancer and smoking status for liver-related death, alcohol intake frequency and liver 
cancer for liver transplant, and age at recruitment and liver cancer for all-cause mortality or liver transplant. 
It is worth noting that all three measures of alcohol intake (“alcohol intake frequency”, “heavy alcohol drink-
ing”, and “alcohol usually taken with meals”) seem to play an important role in predicting liver transplant.

Table 6.  Overall predictive model performance measures of stacking ensemble and each base model used 
in the ML training in patients with AATD-LD. Mean model performance measures were reported in the 
Training Set and the Test Set, respectively. AATD-LD = alpha-1 antitrypsin deficiency-associated liver disease, 
AUPRC = area under the precision-recall curve, AUROC = area under the receiver operating characteristic, 
RF = random forest, XGBOOST = extreme gradient boosting, LGBM = light gradient boosting, ENRR = elastic 
net regularized regression, ANN-MLP = artificial neural network multilayer perceptron. Model performance 
measures from the stacking ensemble learning model are in bold.

Model Performance measure

All-cause 
mortality 
(N = 455)

Liver-related 
death (N = 455)

Liver transplant 
(N = 455)

All-cause 
mortality or 
liver transplant 
(N = 455)

Training Test Training Test Training Test Training Test

Stacking ensemble learning

Accuracy 0.828 0.632 0.991 0.914 1.000 0.989 0.837 0.633

AUROC 0.899 0.681 0.997 0.759 1.000 0.912 0.903 0.677

AUPRC 0.911 0.709 0.979 0.411 1.000 0.414 0.917 0.703

RF

Accuracy 0.779 0.589 0.970 0.894 0.999 0.988 0.797 0.620

AUROC 0.858 0.626 0.981 0.756 1.000 0.908 0.871 0.655

AUPRC 0.872 0.657 0.928 0.344 0.999 0.335 0.885 0.682

XGBOOST

Accuracy 0.757 0.614 0.908 0.893 0.993 0.981 0.76 0.603

AUROC 0.829 0.649 0.954 0.746 1.000 0.867 0.826 0.638

AUPRC 0.848 0.675 0.777 0.366 0.999 0.273 0.842 0.668

LGBM

Accuracy 0.733 0.616 0.950 0.897 0.999 0.988 0.754 0.605

AUROC 0.805 0.649 0.977 0.722 1.000 0.821 0.821 0.635

AUPRC 0.826 0.677 0.873 0.331 1.000 0.297 0.841 0.664

ENRR

Accuracy 0.682 0.620 0.928 0.851 0.986 0.988 0.675 0.641

AUROC 0.751 0.648 0.855 0.717 1.000 0.922 0.738 0.668

AUPRC 0.773 0.676 0.608 0.379 0.994 0.363 0.762 0.697

ANN-MLP

Accuracy 0.646 0.595 0.931 0.770 0.999 0.982 0.723 0.624

AUROC 0.736 0.674 0.827 0.622 1.000 0.930 0.798 0.683

AUPRC 0.757 0.692 0.565 0.228 1.000 0.395 0.822 0.712
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Discussion
AATD-LD is a rare inherited genetic disease and is not well recognized. Since liver damage may progress slowly 
for decades before clinical presentation, it is crucial to predict the clinical outcomes of AATD-LD and define 
patients whose disease is more likely to progress in order to better understand the disease progression and 
promote timely medical intervention of AATD-LD in clinical practice. To date, there is little research in terms 
of disease progression of AATD-LD using the ML techniques. Hence, we developed a clinically meaningful and 
accurate predictive model using a novel stacking ensemble algorithm of disease progression of AATD-LD based 
on widely available clinical information. Our work proved the hypothesis that a combination of multiple ML 
models via meta-learning can produce a more powerful and robust ML predictive model, and it demonstrated 
the feasibility of applying such a novel ML technique to a large-scale complex and massive real-world database, 
the UK Biobank. Our work has provided a better understanding of the mechanism underlying the multivariate 
prediction of disease progression of AATD-LD. It has also enabled comparison of disease progression between 
AATD-LD and liver diseases in general.

Advantages of stacking ensemble algorithm. The real challenge in the applied ML is to explore 
the space of possible ML models and identify a robust model with good prediction accuracy and reasonable 
 interpretability39. The choice of the ML model depends on the specific data, e.g., data quantity, data dimen-
sion, data distribution, etc. We showed that the best ML performance was obtained from the proposed stacking 
ensemble predictive model by combining five base ML models via meta-learning. Our proposed stacking ensem-
ble predictive model achieved an average accuracy of 63.2% and 75.6% for all-cause mortality, 91.4% and 91.3% 
for liver-related death, 98.9% and 98.9% for liver transplant, and 63.3% and 75.5% for all-cause mortality or liver 
transplant in prediction of AATD-LD and any liver disease, respectively, which surpassed each of the base ML 
models used in the ensemble. The stacking ensemble model worked particularly well in predicting liver-related 
death and liver transplant for both AATD-LD and any liver disease with a prediction accuracy greater than 90%.

It is noteworthy that no consistent trend in prediction performance was observed for the five base ML models 
in predicting four clinical outcomes of disease progression. For example, classification trees such as RF or GB 
appeared to work better for certain clinical outcomes such as liver-related death or liver transplant, whereas the 
regression method ENRR worked better for others. It shows that no single ML model is universally better or 
outperforms all others. It is worth noting that the stacking ensemble algorithm can combine classification trees 
with regression methods, and harness the benefits of these well-performing ML algorithms and enhance the 
prediction with superior performance than any single base ML model in the ensemble.

Table 7.  Overall predictive model performance measures of stacking ensemble and each base model used 
in the ML training in patients with any liver disease. Mean model performance measures were reported in 
the Training Set and the Test Set, respectively. AUPRC = area under the precision-recall curve, AUROC = area 
under the receiver operating characteristic, RF = random forest, XGBOOST = extreme gradient boosting, 
LGBM = light gradient boosting, ENRR = elastic net regularized regression, ANN-MLP = artificial neural 
network multilayer perceptron. Model performance measures from the stacking ensemble learning model are 
in bold.

Model Performance measure

All-cause 
mortality 
(N = 11,583)

Liver-related 
death (N = 11,583)

Liver transplant 
(N = 11,583)

All-cause 
mortality or 
liver transplant 
(N = 11,583)

Training Test Training Test Training Test Training Test

Stacking Ensemble Learn-
ing

Accuracy 0.806 0.756 0.991 0.913 0.999 0.989 0.815 0.755

AUROC 0.852 0.770 0.999 0.835 1.000 0.859 0.863 0.777

AUPRC 0.737 0.629 0.998 0.517 1.000 0.142 0.764 0.636

RF

Accuracy 0.739 0.700 0.804 0.818 0.957 0.947 0.739 0.707

AUROC 0.801 0.745 0.866 0.800 0.993 0.829 0.800 0.752

AUPRC 0.676 0.577 0.784 0.391 0.906 0.114 0.688 0.601

XGBOOST

Accuracy 0.764 0.724 0.972 0.897 0.999 0.985 0.765 0.727

AUROC 0.820 0.764 0.995 0.812 1.000 0.843 0.827 0.772

AUPRC 0.685 0.606 0.991 0.461 1.000 0.112 0.710 0.631

LGBM

Accuracy 0.759 0.726 0.978 0.900 0.999 0.987 0.754 0.728

AUROC 0.813 0.766 0.996 0.812 1.000 0.831 0.812 0.772

AUPRC 0.678 0.609 0.994 0.465 1.000 0.105 0.691 0.632

ENRR

Accuracy 0.757 0.754 0.807 0.890 0.954 0.983 0.755 0.753

AUROC 0.767 0.761 0.848 0.831 0.916 0.870 0.769 0.764

AUPRC 0.616 0.608 0.766 0.507 0.406 0.143 0.636 0.630

ANN-MLP

Accuracy 0.767 0.746 0.886 0.878 0.988 0.979 0.769 0.740

AUROC 0.785 0.762 0.945 0.824 0.994 0.735 0.790 0.776

AUPRC 0.648 0.604 0.908 0.45 0.943 0.055 0.671 0.632
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Limitations of stacking ensemble algorithm. The common limitation of ML, lack of data or lack of 
good data, also applies to the stacking ensemble algorithm. An abundance of data is required to train and vali-
date the ML model in order to produce useful results with good performance. The stacking ensemble algorithm 
also has its own limitations. For example, it may be time-consuming to build the model since each base ML 
model needs to be trained first. The stacking ensemble algorithm may also be harder to deploy and maintain, 
and less straightforward to interpret. Although the stacking ensemble model may not always be the best choice, 
the pros seem to outweigh the cons if properly used.

Liver-related death 

All-cause mortality 

Figure 6.  Feature importance in the final stacking ensemble learning model for patients AATD-LD (N = 455).
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In addition, we would recommend the following in ML practice:

• apply an iterative imputation strategy to resolve model-fitting problems due to missing or incomplete infor-
mation in the predictor variables;

• implement oversampling technique to overcome data imbalance challenges during model fitting process 
without overfitting; and

• utilize the nested k-fold cross-validation with repetitions to optimize the stability of the prediction results.

All-cause mortality or liver transplant 

Liver transplant 

Figure 6.  (continued)



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17001  | https://doi.org/10.1038/s41598-022-21389-9

www.nature.com/scientificreports/

Prediction of disease progression in AATD‑LD. Our findings are generally consistent with the existing 
related work in AATD-LD based on conventional correlation or multivariate regression analysis but are more 
comprehensive, including four clinical outcomes of disease progression (i.e. all-cause mortality, liver-related 
death, liver transplant, all-cause mortality or liver transplant). Instead of relying on small-sized studies or older 
data, as did the existing  research7, we used the complex and massive data in the UK Biobank which contains 
demographics, disease characteristics, medical history, lifestyle, physical activities, health outcome data, imag-
ing and genetic data. The immense amount of data enabled us to build a ML predictive model for AATD-LD 

All-cause mortality 

Liver-related death 

Figure 7.  Feature importance in the final stacking ensemble learning model for patients with any liver disease 
(N = 11,583).
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disease progression with clinically meaningful accuracy. The feature importance permutation method allowed 
us to rank the risk factors based on their contributions to the predictive model for a better understanding of 
disease progression of AATD-LD. All identified top-ranked predictors of each clinical outcome appeared clini-
cally relevant.

1. GGT  Different from some existing studies that showed mixed results for the serum tests as potential 
 predictors7,12,16–19, our findings suggested liver function tests (e.g., GGT, total bilirubin) are among the top-

Liver transplant 

All-cause mortality or liver transplant 

Figure 7.  (continued)
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ranked predictors for AATD-LD disease progression. In particular, it is interesting to note that GGT is usually 
dismissed as unimportant in predicting the course of chronic liver disease, because (1) it is more a sign of 
intrahepatic cholestasis and injury to the canalicular membrane or biliary epithelium than to hepatocytes; 
or even a sign of obstructive jaundice secondary to either intrahepatic or extrahepatic obstruction of bile 
ducts; and (2) it can easily be mildly perturbed by moderate alcohol intake, smoking, and multiple com-
mon medications. Our work showed that out-of-range GGT contributed more in predicting AATD-LD 
disease progression than other laboratory parameters that are considered more reflective of liver metabolism 
and transport (total bilirubin); liver synthetic function (albumin), hepatocyte injury (AST); or cholestasis 
(alkaline phosphatase). In a previous study of PiZZ AATD patients with lung and liver disease, GGT is also 
found in the lung and is related to static lung function, chronic bronchitis, sputum purulence, history of 
acute exacerbations, and smoking status in addition to alcohol consumption, cirrhosis and serum markers 
of liver  disease20. GGT is independently correlated with airflow obstruction and is associated with chronic 
bronchitis and independently associated with mortality. This suggests that the importance of out-of-range 
GGT in AATD may originate from its dual source of origin in the two most affected and damaged organs in 
AATD, the liver and the lung. Our work may suggest the components of a clinical composite score that will 
help to predict disease progression to these clinical outcomes.

2. Lung manifestations Few studies have examined decline in lung function related to AATD-LD  progression7. 
It is worth noting that lung manifestations of AATD (e.g., PEF) appeared among the top 10 important pre-
dictors of all-cause mortality but not liver-related mortality.

3. Alcohol intake Previous work showed inconsistent results in increased alcohol intake for AATD-LD 
 progression40,41. Our findings suggested alcohol intake as a top-ranked predictor of AATD-LD progression. 
Of note there are multiple measurements of alcohol intake in the UK Biobank. Our work also showed the 
difference in term of contributions to the clinical outcomes among these alcohol intake measurements. For 
example, alcohol taken with meal, average weekly spirit intake, heavy alcohol drinker appeared to be among 
the top 10 ranked predictors for all-cause mortality, while alcohol intake frequency appeared important for 
liver-related death and liver transplant.

Prediction of disease progression in AATD‑LD versus any liver disease. The identified important 
predictor variables all appeared clinically relevant, although the predictor variables were slightly different for 
patients with AATD-LD and patients with any liver disease, which was not unexpected. For example, the geno-
type of PiZZ (e.g., rs28929474 genotypes with Pi type of “ZZ”) appeared to be the top one contributor to liver-
related death and GGT to liver transplant in AATD-LD patients, while liver cancer was the top one contributor 
for liver-related death and alcohol intake for liver transplant in patients with any liver disease. Of note, only 20 
AATD-LD patients had known genotype as PiZZ while the other patients’ genotype was either unknown or dif-
ferent from PiZZ. Thus, the disease progression for such patients is likely more dependent on something other 
than just a single allele Z mutation of the SERPINA gene (e.g., NASH, alcohol, other liver disease, other non-liver 
disease). This is supported by the pre-eminence of the PiZZ genotype as a predictor of disease progression in at 
least the 20 subjects who were known to carry that genotype. These results also suggest that in some AATD-LD 
patients the disease is driven by accumulation of Z-protein and inflammation, apoptosis and fibrosis in the liver, 
whereas in other patients the disease is likely primarily driven by something else but facilitated or exacerbated 
by accumulation of some Z-protein in the liver.

Limitations and future research. Overall, our work demonstrates the feasibility of applying the ML tech-
nique to predict AATD-LD disease progression using the easily obtained demographic, baseline disease charac-
teristics, lifestyle information and laboratory tests. Our work may lead to greater insights in clinical practice and 
assist clinicians in effectively identifying high-risk patients with AATD-LD, mitigating the burden of diagnosis 
and in managing the disease progression and treatment. It may also enable a data-driven strategy for biopharma-
ceutical companies to select clinical outcome endpoints and target patient populations in clinical research when 
developing a treatment for AATD-LD. However, there are a few limitations of this work. Firstly, given the data 
limitation of the UK Biobank, only the first 4 digits of ICD code were available to identify patients with AATD-
LD, which might have affected the precision of AATD-LD patient selection. For example, E88.01 was the ICD10 
code for AATD-LD, while only E88.0 was recorded in the UK Biobank. Secondly, there were very few AATD-LD 
patients with known genotype information in the UK Biobank, which limited our ability of further exploring 
the predictive pattern of disease progression in a subset of AATD-LD patients with PiZZ genotype. Lastly, one 
of the foci for liver disease research is to understand the patient disease progressive journey, in particular that of 
rapid disease progression. For future research, we will further explore the potential predictors of rapid disease 
progression of AATD-LD.

Data availability
The data underlying this article is a part of the UK Biobank dataset (application #26041) and is publicly available 
upon access request. The data, data processing, feature extraction, machine learning, and analysis code will be 
shared by the corresponding author upon reasonable request.
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