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While deep learning (DL) has brought a revolution in the protein structure prediction field, still an impor-
tant question remains how the revolution can be transferred to advances in structure-based drug discov-
ery. Because the lessons from the recent GPCRDock challenge were inconclusive primarily due to the size
of the dataset, in this work we further elaborated on 70 diverse GPCR complexes bound to either small
molecules or peptides to investigate the best-practice modeling and docking strategies for GPCR drug dis-
covery. From our quantitative analysis, it is shown that substantial improvements in docking and virtual
screening have been possible by the advance in DL-based protein structure predictions with respect to
the expected results from the combination of best pre-DL tools. The success rate of docking on DL-
based model structures approaches that of cross-docking on experimental structures, showing over
30% improvement from the best pre-DL protocols. This amount of performance could be achieved only
when two modeling points were considered properly: 1) correct functional-state modeling of receptors
and 2) receptor-flexible docking. Best-practice modeling strategies and the model confidence estimation
metric suggested in this work may serve as a guideline for future computer-aided GPCR drug discovery
scenarios.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep learning (DL) has revolutionized protein structure predic-
tion [1,2] and started to have a large impact on structure-based
drug design (SBDD) [3,4]. Before the emergence of such methods,
predicted structures played minor roles in SBDD. Prior to the
breakthrough, template-based models (TBM) were regarded as
the best protein structure models [5]. However, TBMs have suffi-
cient accuracy for SBDD only at limited conditions when very close
(e.g. sequence identity > 50 %) homolog structures are available.
Unlike TBMs, the model accuracy of AlphaFold [1] reported in
CASP14 (2020) was comparable to such close-homolog TBMs
regardless of the existence of such homologous structures when
enough related sequences were available. The paradigm has been
shifted since then, and now a majority of proteins having reason-
able homologous ‘‘sequences” (not necessarily structures) have
their near-experiment accuracy models by DL and hence could
serve as reasonable targets for SBDD, covering a far larger portion
in the protein space than before. The key question has also shifted
from ‘‘whether the protein of interest (or its homolog) has experi-
mental structure” to ‘‘how to model protein–ligand interactions”
using DL-based tools, and ‘‘what’s the best status we can reach
now compared to the previous best modeling scenario and
whether it is a meaningful progress”. Whether those DL tools
would be advantageous to drug discovery-related problems is a
crucial question [6,7], but not many works have been published
to date providing realistic guidelines or quantitative analyses.
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In this work, we aim to find the best contemporary strategy for
the structure-based and computer-aided G-protein-coupled recep-
tor (GPCR) drug discovery. GPCRs are a group of related proteins
sharing the same 7-transmembrane helical topology, therefore
the shared activation mechanism for many members with some
exceptions, being responsible for sensing various external signals
(lights, chemicals, pressures, etc.) [8]. Because of their huge impor-
tance as drug targets, continuous efforts have been made by
researchers to apply computer-aided drug discovery pipelines
[7,9–11]. Especially, the recent GPCRDock 2021 has shown an
important step toward understanding the aforementioned key
questions regarding the recent advance in DL structure prediction.
The main lesson from the challenge was that, unlike previous
rounds of the challenge held in the early 2010 s, now receptors
and receptor-peptide complexes could be modeled with reason-
able accuracy by many participants, majorly powered by the
breakthrough in DL-based structure prediction. However, the les-
sons learned from the challenge were quite limited primarily due
to the size of the dataset tested in the challenge, in which only
two small-molecule binders and three peptide binders were
included. To derive lessons that are as general as possible, we
not only expand the dataset size but also test a variety of receptor
families and ligand types including both small molecules and pep-
tides. We first carefully collected 70 unique GPCR complexes with
either small molecules or peptides. Then 5 receptor modeling
strategies and a total of 8 docking strategies (4 for small molecules
and 4 for peptides) are benchmarked to evaluate the best-practice
receptor modeling and docking protocols.
2. Overview of the benchmark dataset

We tried to consider a large number of receptor types when
curating the benchmark dataset. The dataset employed in this
work covers 33 unique families in human GPCRs spanning classes
A, B1, C, and F. We selected complex structures that were experi-
mentally resolved in the bound form with one of 51 small mole-
cules or 19 peptides, comprising a total of 38 active-state and 32
inactive-state complexes (Fig. 1). To fairly benchmark the effect
of considering the activation state excluding the effect by the infor-
mation underlined in the receptor types or sequences, we included
the receptors that have PDB entries for both active and inactive
states as many as possible. Resolutions of selected complex struc-
tures were lower than 3.5 and 3.0 Å for active and inactive com-
plexes, respectively. A full list of complex PDB entries, their
receptor names, and ligands is listed in Supplementary Table S1.
3. Modeling in functional state-specific context results in the
most accurate binding site structure prediction

We sought to benchmark several receptor modeling strategies
to address two questions: what is the best DL-based modeling
strategy to obtain the most accurate structure models, and what
is the extent of model accuracy improvement compared to the pre-
vious state-of-the-art non-DL methods (i.e. template-based model-
ing). With this aim, four types of AlphaFold protocol for active-
state modeling and two types for inactive-state were employed,
mainly varying in their inputs to take into account the functional
state in different fashions (details provided in Methods). For the
best-practice TBM for comparison, receptor models at inactive
states were brought from the GPCR TBM database (https://github.-
com/benderb1/rosettagpcr) prepared by Bender et al [13] (only
inactive states are available in the database). In this database, all
TBMs were built using RosettaCM [14], known to be the best-
performing template-based method in the previous CASP [15].
The method builds models by recombining multiple templates
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with a sequence identity of less than 40 % (more description of
the database in Methods) and showed improved model accuracy
over five other GPCR model databases using other methods
[13,15]. Because no close homologs were included as templates,
TBM from this database may correspond to the best available mod-
els for ‘‘non-trivial modeling” rather than ‘‘trivial modeling” sce-
narios (e.g. TBM of 5HT1R using 5HT2R). However, given that
non-trivial modeling is required for the majority (> 80 %) of GPCRs,
according to Bender et al, we thought benchmarking against TBMs
built at such generic scenarios would be more informative to judge
its coverage in the entire GPCR family tree. We also tested whether
detailed AlphaFold parameters affect the AlphaFold model accu-
racy (e.g. 5 wt parameter set indices, number of recycles, AlphaFold
versus AlphaFold_multimer when modeling more than a single
chain, and so on), and found that changes in the parameters had
minimal effects (Supplementary Fig. S1). Therefore, these parame-
ters were fixed to default values (see Methods) throughout the
work.

Receptor model qualities were measured by two metrics: 1)
overall receptor TM-score [16] focusing on global model quality
and 2) binding site backbone RMSD (bbRMSD) focusing on local
model quality around the receptor-ligand interface. To support
the conclusion derived by using these metrics, different measures,
receptor global distance test (GDT) values [17], and binding site v
angle accuracy were also used, as presented in Supplementary
Fig. S2.

In Fig. 2, receptor modeling results are presented in the two
model quality metrics, and a few clear conclusions could be
derived from the results. First, DL structure prediction outper-
formed TBM in both global and interface accuracy (Fig. 2A and
2B). Note that only inactive state models are available in the
TBM database, therefore comparison is made only for inactive state
models. Also, because AlphaFold models used templates without a
sequence identity threshold, unlike TBMs, we further explored to
what extent the AlphaFold model differs with the choice of tem-
plates (i.e. the same condition as TBM). Shown in Supplementary
Fig. S3, we observe little difference in model quality with template
choices, indicating AF modeling is little affected by the template
quality as long as sequence identity is reasonable (> 20 %), consis-
tent observation with Heo et al [7]. Second, the active state model
accuracy depends quite a lot on the modeling strategies (for
instance, the difference in the active-state binding site accuracy
of ‘‘AF,as-is” and those of the rest AF strategies is about 20 %, dark
green bars in Fig. 2B); modeling together at the correct active-state
context (‘‘AF,G-pro”, ‘‘AF,Gɑ”, or ‘‘AF,bias”) equally outperformed
receptor modeling without any functional state consideration
(‘‘AF,as-is”). For the modeling of inactive states, this gap is smaller
but still, template-biasing (‘‘AF,bias”) is slightly better than non-
biasing (‘‘AF,as-is”).

One of the surprising receptor modeling differences found was
for class B1 (and a few other peptide-binding class A) GPCRs
known as peptide-binders. Unlike others, these receptors possess
large extracellular domains whose interfaces with the transmem-
brane domains often form binding sites for natural agonist pep-
tides (the leftmost panel in Fig. 2D). We observe that the
orientation of this domain could be modeled accurately only when
modeling was performed with the G-alpha subunit using
AlphaFold_multimer, in contrast to the failure observed when
modeling receptor-only using AlphaFold (the monomeric version)
[6]. By further analyzing 6 targets with bulky extracellular domains
(ECDs) (Supplementary Fig. S4 and Table S2), we observed no clear
dependence of ECD orientation on the templates provided as
inputs. Therefore, we speculate a more relevant origin for the dif-
ference might be the difference in the network training procedures
between AlphaFold and its multimer version (e.g. cropping size,
training data, etc), which is beyond what could be addressed in this
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Fig. 1. Dataset used in the study. A) The GPCR phylogenetic tree and 33 selected families, highlighted by blue texts. The figure is modified from the original figure in GPCRdb
(downloaded from https://gpcrdb.org/structure/statistics) [12]. B) Number of experimental methods and active versus inactive complexes in the dataset.

Fig. 2. Receptor model accuracy upon modeling strategies. Different modeling strategies considered are as follows: ‘‘TBM”, template-based modeling; ‘‘AF,as-is”, AlphaFold
without any tweak for the functional state, ‘‘AF,bias”; AlphaFold with a biased template set matching the functional state [7]; ‘‘AF,Gɑ”, AlphaFold_multimer modeling of
receptor + alpha unit of G-protein; ‘‘AF,Gpro”, AlphaFold_multimer modeling of receptor + whole G-protein. Modeling details are described in Methods. A) Global receptor
model accuracy measured by TM-score [16]. B) Binding site accuracy measured by the fraction of models with the binding site backbone RMSD < 0.5 Å and < 1.0 Å shown in
dark and light bars, respectively. Backbone RMSD refers to RMSD between the backbone atoms of the model and the corresponding atoms in the experimental structure.
Model accuracy measured by alternative metrics (GDT [17] and side-chain v angle accuracy) is reported in Supplementary Fig. S2. C) Distribution of binding site accuracy for
AlphaFold models (top), TBMs (middle), and experimental structures for the same proteins with no ligand or bound to other ligand molecules (‘‘cross”, bottom). The number
of receptors at each RMSD bin is shown on the y-axis. D) Examples of receptor models showing large differences, with the following color scheme: pink, experimental
structure; blue, best-practice AF model; gray, ‘‘AF,as-is” for the three left panels and TBM for the right-end panel; orange, native ligand structures. Major conformational
differences are highlighted by arrows. From left to right: GLR, PDBID 6wpw) The extracellular orientation was corrected when modeled with the G alpha subunit together.
OX2R, PDBID 7l1u) The best-practice AF model showed the correct TM6 orientation. AA2AR, PDBID 5nm4) AF,bias correctly modeled the extracellular loop alpha helix
fragment, which contains lysine interacting with the ligand, while AF,as-is failed with the unfolded loop. PE2R4, PDBID 5ywy) The TM helix I and II modeled by TBM intruded
into the ligand binding pocket, while the AF,bias model showed a structure similar to the native.
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work. Two other examples shown on the right panels of Fig. 2D
highlight the structural differences in small-molecule binding site
loops or helical orientations originating from variations in model-
ing strategies.

How is the expected docking performance for the best-practice
DL models compared to that for experimentally resolved receptor
structures? To address this question, we compared the distribution
of binding site accuracy statistics for the AlphaFold models versus
experimental structures in ‘‘cross-docking” scenarios, which may
correspond to the best possible receptor structures in real practice
drug design situations. Here, cross-docking refers to docking on
experimental structures determined at an unbound state or bound
state with other ligands. We find that the AlphaFold model accu-
racy judged by the binding site backbone RMSD is far better than
TBM, closely approaching the level of experimental structures for
‘‘cross-docking” (Fig. 2C).

To investigate if model accuracy depends on whether the target
receptor was included in the training process of AlphaFold, statis-
tics was examined separately by the deposited date of PDB entries.
We see no distinction in model accuracy distributions (Supplemen-
tary Fig. S5), indicating the modeling protocol is robust throughout
different GPCRs.

Best-practice protocol: In summary, we choose ‘‘AF,bias” as the
best practice receptor modeling protocol for small-molecule dock-
ing because of its modeling convenience among strategies consid-
ering activation states. For peptide docking, ‘‘AF,Gɑ” using
AlphaFold_multimer is chosen as the best practice protocol which
can optimally capture peptide binding sites.
4. Receptor modeling strategy and consideration of receptor
flexibility are critical for small-molecule docking and virtual
screening

From this point, we evaluate the overall docking performance
across various small-molecule and peptide docking protocols.
Details of docking protocols are reported in Methods. To reduce
the complexity of benchmarking, we ran docking simulations on
four selected types of receptor models: 1) TBM, 2) ‘‘AF,as-is”, 3)
‘‘AF,bias”, and 4) experimental structures. This setup would reveal
the benefit of using DL models over TBMs as well as the carefully
curated AlphaFold models over those naively modeled in docking
scenarios.

Looking at small-molecule docking results first, the receptor
modeling strategy largely determines the performances of all dock-
ing protocols (Fig. 3A). A successful prediction was defined as that
with ligand RMSD < 2.5 Å for the best of the top 5 (top N refers to N
top-scored ones) unless specified otherwise. While docking on
TBM shows high rates of failure, using the AlphaFold models gives
quite improved success rates over TBM by a maximum of 30 %
depending on the docking tools (Fig. 3A). Of the various AF receptor
models, docking on state-specific AF models (‘‘AF,bias”) led to
improved results over using the naive receptor models (‘‘AF,as-
is”), especially when measured by top 1 models (8 % difference).
Examples are shown in Fig. 3E in which inaccurate side-chain mod-
eling by TBM (on the left) or ‘‘AF,as-is” (on the right) resulted in
inaccurate docking results.

When the best-practice receptor models were used, the main
determinant of the docking performance was the implementation
of receptor flexibility in docking methods (Fig. 3B). GalaxyDock3
[19] was run with ligand flexibility but without receptor flexibility
(no such option on it); AutoDock Vina [18] and Rosetta GALigand-
Dock [20] can take into account receptor flexibility and both ver-
sions were run (detailed comparison of the tools in Methods).
The best success rate obtained was 47 % by GALigandDock with
receptor flexibility, compared to 24 % by AutoDock Vina (Vina.f,
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receptor flexible version) and 32 % by the GalaxyDock3. Large-
scale side-chain rotations were required (left panel in Fig. 3F)
sometimes, but in other cases, slight side-chain movements were
sufficient to let ligands move into the correct poses (right panel
in Fig. 3F). This discovery is further supported by comparing
against GALigandDock without receptor flexibility option (GALD.
r), as shown in Fig. 3B (the gap between red and purple bars), in
which docking performance significantly drops without receptor
flexibility. A reference ligand-guided docking method, CSAlign-
Dock [21], which uses the same machinery as GalaxyDock3 but dif-
fers in the additional guidance by structure alignment to a refer-
ence ligand pose, performed better than GalaxyDock3 but not
exceeded GALigandDock. This is likely because the information
on the binding pose of a reference ligand helps tolerate receptor
structure deviations, but to a limited degree due to the lack of
explicit consideration of receptor flexibility.

Although the best docking result obtained (47 %) on the best-
practice models outperforms that on TBM, the result is still far
off from the artificial self-docking case on co-crystallized receptor
structures (82 %). We sought to identify the factors that could have
potentially reduced this gap. The first is a more aggressive model-
ing of receptor flexibility during ligand docking. In Fig. 3D, the
dependence of docking results on binding site structure accuracy
is shown. The performance of GALigandDock approaches that of
self-docking when binding site RMSD is less than 0.5 Å but rapidly
drops as the difference gets larger. Note that here we call it ‘‘differ-
ence” not ‘‘error”, because this amount of difference can readily
occur even when experimental structures are used (i.e. in cross-
docking scenarios), and thus should be taken into account at the
docking stage than at the receptor modeling stage. One could insist
a full receptor backbone flexible docking could rescue these fail-
ures in principle; however, developing a robust but practically
affordable method (MD-based methods can be too expensive
[22]) remains another big challenge. A full receptor-flexible
method, Galaxy7TM [23], has shown promise in this direction,
but we observed worse performance than other tools when tested
in this dataset (Supplementary Fig. S7), primarily because
Galaxy7TM was developed in the TBM context. We expect similar
developmental efforts can be made that take more accurate
DL-based models as inputs. The second is regarding how to select
the docked models. When the selection criterion is further relieved
to include the top 20 structures, this adds in about 10 % of more
success (Fig. 3C), suggesting an extra model selection step can res-
cue a large portion of failures. Based on this finding, developing a
complex model selection or discrimination tool could be a useful
addition to the community.

Best-practice protocol: In summary, for small-molecule docking,
we designate GALigandDock (flexible-receptor mode) as the best-
practice protocol among the tools tested in this work. Other dock-
ing tools supporting robust receptor flexibility may be a good sub-
stituent. We expect that combining the reference ligand-guided
docking idea (used in CSAlign-Dock) with carefully curated recep-
tor flexible docking may push the accuracy limits.

Another important drug-discovery-related problem is virtual
screening, in which a huge library of compounds is screened
against a receptor to search for its potential hit binder compounds.
We performed virtual screening on 10 different GPCR targets with
3 different receptor conformations for each target (experimental,
AF, and TBM), leading to a total of 30 virtual screening tasks. For
each screening task, 3 docking tools (Vina, Vina-RF [24], and GALi-
gandDock) were compared. For 5 receptors (AA2AR, ADRB1,
ADRB2, CXCR4, DRD3), their binders, and non-binder ‘‘decoy” com-
pounds were brought from the DUD-E dataset [25]. For the rest
(AGTR1, CRFR1, GRM2, OPRD, S1PR1), binders were brought from
GPCRdb and decoys from the DUD-E web server
(https://dude.docking.org/generate). Because the majority of bin-

https://dude.docking.org/generate


Fig. 3. Small-molecule pose prediction benchmark on various receptor models using different docking methods. Success rates are shown using the criterion of the best of top
5 unless specified; top N refers to N top-ranked ones by the tool. Tested methods: ‘‘Vina”: AutoDock Vina (default) [18];”Vina.f”: AutoDock Vina with flexible side chain option
[20]; ‘‘GD3”: GalaxyDock3 [19]; ‘‘GALD”: Rosetta GALigandDock (default receptor-flexible mode); ‘‘GALD.r”: Rosetta GALigandDock with rigid side chain option; and ‘‘Align”:
CSAlign-Dock [21]. A) Docking performance by different receptor models, shown for the top 1 ligand pose (darker colors) or the best of top 5 (lighter colors) having ligand
RMSD < 2.5 Å. Here ‘‘exp” corresponds to self-docking, meaning an artificial docking case to the experimental receptor structure bound to the same ligand. Per-receptor model
type results for other tools (GD3 and Align) are reported in Supplementary Fig. S6. B) Docking results for various docking tools on the best-practice AlphaFold receptor models.
C) Conformational sampling performance of docking tools. D) Dependence of docking results on binding site accuracy. E-F) Examples highlighting differences originating from
receptor models or docking tools. Color schemes are shown in the inset. Incorrectly modeled side-chains are highlighted by dark gray colors. E) Examples showing the
importance of receptor modeling strategy, ADRB2 (PDBID 6 ps2) on the left and AA2AR (PDBID 5wf5) on the right. F) Examples showing the importance of receptor-flexible
docking, ACM1 (PDBID 6zfz) on the left and OPRD (PDBID 6pt3) on the right.
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ders in the set are inhibitors (antagonist or inverse agonists), we
simply employed ‘‘AF,as-is” for the AlphaFold models in virtual
screening tests. As shown in Fig. 4A-B, virtual screening on Alpha-
Fold models showed somewhat worse performance than that on
native experimental structures, but was superior to the results
on TBMs, consistently through the docking tools (per-target break-
down analyses in Supplementary Fig. S8). The results again prove
the improved performance of the DL-predicted receptor models
for drug discovery. Meanwhile, GALD consistently outperformed
Vina and Vina-RF throughout the receptor structure types and tar-
get receptors (full ROC curves in Supplementary Fig. S9), support-
ing successful pose prediction can be important for virtual
screening performance. Despite the GALD’s improved performance
over Vina and Vina-RF on GPCRs, the virtual screening result here
needs to be carefully taken until it is benchmarked on a broader set
of receptors along with many other docking tools.
5. Deep-learning-based protein-peptide complex modeling
outperforms previous peptide docking tools

Peptides are an important class of ligands for GPCRs. Class B1
GPCRs take peptides as their natural agonists, and also many class
A GPCRs adopt peptides either as agonists or antagonists. Here we
explore how we can benefit from using DL methods for GPCR-
peptide complex structure prediction.

One clear advantage of DL methods over many other peptide
docking tools is that they can predict the whole complex structure
at once. With this advantage, both receptor and peptide ligand
flexibility are naturally considered. Here, the AlphaFold_multimer
modeling strategy is compared against using three other available
peptide docking tools [26–28] to dock peptides on pre-generated
AlphaFold receptor models.
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In Fig. 5A, peptide docking benchmark results are presented. We
took the CAPRI [30] metric to measure success, considering a pre-
diction with ‘‘the best of top 5 ligand poses being at least at accept-
able accuracy” (measured by a combined evaluation of contacts
and orientations, details in Methods) as a success. As shown in
the figure, AlphaFold complex modeling outperformed all other
methods using peptide docking tools. Compared to the best pre-
DL scenario (applying the best pre-DL docking tool, i.e., MDock-
PeP2, on TBM), the performance difference is 60 %. This result is
consistent with the observation from small-molecule docking, that
the consideration of receptor flexibility is critical for success which
should be naturally captured during simultaneous modeling. In
Fig. 5D, examples of three peptide-binding complexes, two corre-
sponding to class A and one to class B1 are shown.

We also found that the DL method decreased the dependency of
the modeling performance on the peptide length. Interestingly,
AlphaFold multimer modeling was not influenced much by the size
of peptides (Fig. 5C) while other peptide docking tools showed a
strong dependency. When six large peptides (> 14 amino acids)
were tested, none of the flexible peptide docking tools was able
to recover the native poses while AlphaFold succeeded for four of
them. Enabling peptide docking to be independent of peptide
length can be regarded as one of the major triumphs achieved by
DL-based peptide complex modeling.

AlphaFold generates only a limited number of solutions, but
peptide docking tools can offer more diverse conformation samples
some of which are more accurate than the best AlphaFold models.
In Fig. 5B, sampling performances of a docking method MDockPeP2
are shown. While AlphaFold outperformed the rest at the top 1 or
the best of the top 5 metric, a non-DL tool, MDockPeP2 exceeded
AlphaFold in the self-docking scenario when 10 docked models
were considered. This reinforces the previous findings from the



Fig. 4. Virtual screening results. 3 receptor structures (native, TBM, and AF,as-is) for each of 10 GPCRs (AA2AR, ADRB1, ADRB2, CXCR4, DRD3, AGTR1, CRFR1, GRM2, OPRD,
S1PR1) are tested for virtual screening using 3 docking tools: Vina, Vina reranked with ML [24] (Vina-RF), and GALigandDock (GALD). Mean values over 10 targets are
reported. A) Mean AUC values from Receiver operator characteristics (ROC) analysis are shown. B) Enrichment ratios of active molecules at a false positive ratio of 1% are
shown. Detailed analyses can be found in Supplementary Figs. S8-9.

Fig. 5. Peptide docking benchmark on different receptor models using various docking methods. The success rate is measured by the fraction of predictions with CAPRI
accuracy of ‘‘acceptable” quality (see Methods). Tested docking tools: HPEPDOCK [26]; MDockPeP2 [27]; GalaxyPepDock [28]; AF_multimer, complex modeling by
AlphaFold_multimer [29]. A) Success rate of docking onto either TBM or AF receptor models compared against AlphaFold_multimer. B) Sampling performance of MDockPeP2
when docked on AF models, TBM models, and bound experimental structures, compared to the AlphaFold_multimer top5 (green). C) Dependence of docking tools on peptide
length. D) Examples of docking results for different methods. Peptide structures by modeling tools are colored by the scheme shown on the right bottom. Receptor type
(PDBID) from left: CCKAR (7ezm), NPY1R (7vgx), and GLR (6wpw).
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small-molecule complex benchmark, in that external docking tools
can be integrated for a ‘‘meta approach” to gain additional success
as suggested in a recent work [31].

Best-practice protocol: The best performing protocol was to run
AlphaFold_multimer for the complex modeling of the peptide
and receptor only (without G protein) with proper recycle steps
of 10 (parameter sweep reported in Supplementary Fig. S10).
Although including G protein was helpful for the modeling of the
receptor alone, it deteriorated the results when peptides were
added. We attribute this performance degradation to some
unknown artifact within AlphaFold multimer when more than
two chains (GPCR, G-protein, and peptide) are provided as input
altogether, however, there is a great chance that an improved pro-
tocol is developed.
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6. Modeling and docking confidences can be estimated from the
predicted receptor structure accuracy

It is very important in real practice to evaluate the reliability of
a predicted model structure and docked conformations. Here, we
propose a guideline to estimate the likelihood of successful dock-
ing given an AlphaFold receptor prediction. In Fig. 6, docking suc-
cess rates are binned by the predicted accuracy (p-lDDT) of
receptor binding site residues. For small-molecule complexes,
chances to get accurate docked poses become 70 % when the bind-
ing site p-lDDT is larger than 0.95 but drops to 0 % when it is smal-
ler than 0.85. Similarly for peptides, when the binding site p-lDDT
is larger than 0.85 predictions are always accurate, but when lower
than 0.85, the chance drops to 40 %. Because p-lDDT can be
obtained without any knowledge of the experimental structure,
these borderlines may help evaluate the prediction results.



Fig. 6. Dependence of the docking performance on the estimated binding site accuracy, measured by AlphaFold binding site p-lDDT [1,2]. Left) small-molecule complexes,
right) peptide complexes. p-lDDT ranges are shown on the x-axis. No peptide complex had a binding site p-lDDT above 0.95. The numbers on top of the bars represent the
number of samples in each bin.
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7. Discussion

In this work, we have shown the most up-to-date status of
GPCR docking coupled with recent DL-based protein structure pre-
dictions. We aimed to demonstrate realistic expectations in dock-
ing results to the researchers employing the recent DL modeling
and to provide the best-practice protocols to our knowledge. Quan-
titative analyses shown in this work revealed that the protocols
integrating DL-based modeling excel in docking or screening
GPCRs compared to the best pre-DL, TBM modeling. We also
showed that this advance can be maximally delivered to the pre-
diction results only if the modeling and docking options are chosen
appropriately. We encourage the readers to perceive the best prac-
tice guideline provided at the end of every section after under-
standing the different parameters that we have tested for the
benchmark studies. We also presented how to estimate the predic-
tion confidence, which will be valuable in practical docking scenar-
ios. Finally, we stressed that considering larger receptor flexibility
efficiently (binding site RMSD > 0.5 Å) during docking remains a
major challenge in GPCR docking.

A few limitations to this study have to be pointed out. First, our
guidelines can be temporary in this fast-changing era. There are
many ongoing types of research that can substantially improve
results over all the protocols tested in this study. This work would
still be valuable because the quantitative analysis we collected can
serve as a sound baseline for future research. Second, our guideli-
nes may not always provide reliable solutions to GPCR docking
practices. As it was insisted throughout the manuscript, the
expected performance of the best-practice protocol is far from per-
fect yet. We, therefore, suggest users carefully judge their complex
models based on the confidence estimation suggested in the last
section. We believe that subsequent efforts by many researchers
targeting more real-world problems, as demonstrated in the recent
GPCRDock 2021 challenge, may help fill this gap.
8. Methods & materials

8.1. Dataset curation

First, 33 receptor families having complex structures for both
agonists and antagonists were selected according to the informa-
tion from the GPCRdb website (https://gpcrdb.org) [12]. Because
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their ligands could be either small molecules or peptides or both,
counting peptide complexes separately resulted in 51 small-
molecule complexes and 19 peptide complexes in the end. The
total number of active and inactive state complexes is 38 and 32,
respectively. When more than one structure exists for a complex
type for a given complex (e.g. small-molecule complex in the active
state), the PDB entry with the highest resolution was chosen. Non-
canonical amino acids in peptide ligands were converted to their
counterpart canonical amino acids as closely as possible if the
modification was not judged to affect their interactions by human
inspection. Because AlphaFold can be only run with canonical
amino acids, those peptide ligands possessing at least one residue
that could not be converted to canonical amino acid were dropped
from the benchmark. Sequences for receptors and G-proteins were
taken from the UniProt database [32].
8.2. Receptor modeling

8.2.1. AlphaFold modeling
AlphaFold and AlphaFold_multimer version 2.2.4 was used

throughout the study [1,29]. Templates were searched from
PDB70 (version Apr 2020) using the HHsearch tool in HH-suite 3
[33], but only with the entries deposited before the query.
Sequences were searched against the UniRef90 (version 2022)
[34], BFD (version Mar 2019) [35], and Mgnify (version Dec 2018)
[36] metagenomics databases using jackhmmer (version 3.3.2) [37].

Various receptor modeling options were tested within Alpha-
Fold, and a default parameter set was chosen that consistently per-
forms near optimally (Supplementary Fig. S1). These default
parameters for the receptor modeling are: i) model_1 of 5 Alpha-
Fold parameter indices, ii) recycle steps of 3, and iii) AMBER force
field relaxation at the end. For any instance of modeling more than
a single chain (AF,Gpro, AF,Ga), raw MSAs for each protein (or pep-
tide) chain were combined to an unpaired MSA, and the
AlphaFold_multimer version was applied. Template-biased models
were downloaded from Heo et al. [7] if a model does not exist for
the receptor, otherwise, they were modeled using the script pro-
vided by the authors.

Receptor models with biased activation states include the mod-
eling chains as follows.

https://gpcrdb.org
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AF,Gpro: GPCR and whole chains in G-protein, no template-
biasing, AlphaFold_multimer
AF,Ga: GPCR and alpha chain in G-protein, no template-biasing,
AlphaFold_multimer
AF,bias: GPCR only, models directly brought from Heo et al. [7]

For the GPCR-peptide complex modeling, all 5 model indices
from AlphaFold_multimer at recycling steps of 10 were used for
evaluation.

8.2.2. Template-based models
Template-based models (TBMs) deposited in Bender et al. [13]

were generated only for inactive state conformations using Roset-
taCM [14], a method hybridizing multiple templates’ secondary
structure chunks along with fragment insertions at unaligned
regions. Models were relaxed by using the Rosetta energy function
at the end to ensure physical likeliness (e.g. no Ramachandran or
rotameric outliers, clash, etc.). Structures deposited as of June
2020 were used as templates (April 2020 for the AlphaFold_multi-
mer template database for comparison). In this work, multiple
templates with a sequence identity of less than 40 % were inten-
tionally selected as input templates to mimic medium-to-hard
homology modeling scenarios which correspond to the modeling
of >80 % GPCRs. They reported their protocol showed better perfor-
mance than I-Tasser, which is known as one of the best template-
based modeling protocols.

8.3. Evaluation metrics

Evaluationmetrics for protein structures and docked poses used
in this study follow the standards taken in the related works. The
binding site is defined for all receptor residues having at least
one atom closer than 6 Å to their native ligand. Small-molecule
docking accuracy is measured by ligand RMSD and considered suc-
cessful if the best of the top 5 values is less than 2.5 Å. Peptide
docking accuracy is measured by the CAPRI metric [30] (modified
following Ref. [38]) on the best of the top 5 models, and having
at least ‘‘acceptable” quality is considered a success. The CAPRI ‘‘ac-
ceptable” quality corresponds to contact accuracy (fnat) above 0.2
and either ligand RMSD below 4.0 or interface RMSD below 2.0.
Acceptable quality amounts to the cases in which the predictions
can be used to guide site-directed mutagenesis or other biochem-
ical experiments to identify the correct contacts.

8.4. Ligand preparation for small molecules

Ligand structures extracted from the PDB files were converted
to SMILES by OpenBabel (version 3.1.0) [39] and then reconverted
to 3D structures by CORINA (version 4.4.0) [40] to erase any exper-
imental information on the ligand structures. We do see almost no
difference in the results when docking simulations are run using
the experimental ligands instead (Supplementary Fig. S11).

For Rosetta GALigandDock, inputs were generated following the
input preparation guideline (https://www.rosettacommons.org/-
docs/latest/scripting_documentation/RosettaScripts/Movers/GALi-
gandDock); hydrogens were attached at pH 7 and partial charges
were assigned using the MMFF94 force field [41] by OpenBabel.
For input ligands of GalaxyDock3, CSAlign-Dock, Galaxy7TM, and
AutoDock Vina, Chimera [42] was used for protonation and Gastei-
ger partial charge [43] calculation.

8.5. Docking tools

For small-molecule docking, we tested various tools covering
different degrees of freedom (DOFs). DL-based docking tools were
not included in this study because their improvements were rather
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marginal. Moreover, the current dataset might have been included
in their training set, and most critically, the reported results were
not reproduced by our own runs. Below are comparisons of the
docking methods tested in this work, mainly focusing on their
receptor flexibility considerations (also summarized in Supple-
mentary Table S3).

AutoDock Vina [18] Ligand translation, rotation, and torsion
angles are varied.

AutoDock Vina with flexible sidechain [15] In addition to the
original DOFs considered in Vina, receptor sidechain torsions are
additionally varied (the method ‘‘Vina.f” in the manuscript). Flexi-
ble residues are assigned when two criteria are satisfied together:
1) any of the side-chain atoms are within 3 Å of any ligand atoms,
2) Any v angle is different from that of the experimental structure
by more than 40�. Two strategies are tested: 1) All side-chains with
the criteria, leading to 1 � 21 flexible sidechains, and 2) capping up
to two closest residues passing the criteria above [7]. The former
led to a better result and was reported in the manuscript.

GalaxyDock3 [19] In addition to the DOFs considered in Vina,
ligand ring flexibility is considered by discrete sampling within a
crystal ring structure library. Ligand bond angle and lengths are
also varied.

CSAlign-Dock [21] DOFs are identical to GalaxyDock3. A shape
score measuring the similarity of the query ligand to a reference
ligand is added to the docking score to guide docking. GalaxySite
[44] was used to search three reference molecules with the highest
Tanimoto coefficients.

Rosetta GALigandDock [20] Receptor flexibility is allowed for a
set of side-chains plus their backbones automatically detected
around the input ligand. On average 9.8 residues are detected as
flexible. Unlike other tools, the docking process is repeated 15
times following the guidelines for receptor-flexible docking for
increased convergence. For the rigid receptor option (‘‘GALD.r” in
the manuscript), no side-chain and backbone optimization is
performed.

Galaxy7TM [23] All residues’ backbones and side-chains are
fully allowed to move. The method first presamples receptor con-
formational ensemble and runs docking on the ensemble.

For peptide docking, three tools were tested including two glo-
bal docking tools, MDockPeP2, HPEPDOCK, and a template-based
docking tool, GalaxyPepDock.

HPEPDOCK [21] An ensemble of peptide conformations gener-
ated by MODPEP [45] is docked and selected by a hierarchical
search guided by a knowledge-based potential.

MDockPeP2 [22] Peptide conformations are searched on-the-fly
by assembling fragments collected from PDB along with global
rigid sampling and local flexible minimization. A hybrid scoring
function combining the Vina score and PC_score (physicochemical
similarity score) is applied for model ranking.

GalaxyPepDock [23] Initial peptide conformations are brought
from a template search based on protein structure similarity and
protein-peptide interaction similarity. Models are further refined
by the protein and peptide adjustment of the backbone and side-
chain inspired by GalaxyRefine [42] and GalaxyRefineComplex
[43].

8.6. Virtual screening

10 GPCRs were selected for the benchmark with a sufficient
number of known ligands considering protein family diversity.
The overview of the procedure is described in Supplementary
Fig. S12. Each receptor had a set of molecules to screen with at
least 49 binders and 40 times more decoys. The number of binders
and decoys is summarized in Supplementary Table S4.

For 5 receptors included in the DUD-E benchmark set (AA2AR,
ADRB1, ADRB2, CXCR4, and DRD3), 3D conformation files of

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/GALigandDock
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/GALigandDock
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/GALigandDock
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ligands and decoys in mol2 format were downloaded from the
website. If there were multiple protonated forms, we selected
one state for ligands of the same ChEMBL ID. For general compar-
ison with other results, original protonation states were preserved
except for CXCR4 ligands, in which an important key proton was
missing and remodeled using Chimera.

5 receptors (AGTR1, CRFR1, GRM2, OPRD, and S1PR1) were
selected additionally to cover broader classes of GPCRs (class A,
B1, and C). Ligands were collected from GPCRdb and curated with
the following steps: 1) filtered by the number of heavy atoms
(< 70) and experimental affinity higher than 10 nM; 2) removed
duplicates in SMILES and ChEMBL IDs; 3) clustered by scaffolds
and picked the highest affinity ligand as representative. Decoys
were generated from the DUD-E server (https://dude.docking.
org/generate). The generation method predicts the ligand’s proto-
nation states in pH 6 � 8 and then selects a set of molecules from
the ZINC database with identical molecular properties but different
scaffolds to ligands.

We used the AutoDock Vina, a random forest estimator using
Vina results [24], and finally, Rosetta GALigandDock (GALD) for
benchmarking virtual screening at its VSH mode (https://www.
rosettacommons.org/docs/latest/scripting_documentation/Roset-
taScripts/Movers/GALigandDock). Although its performance for
virtual screening has not been published yet, our in-house bench-
mark showed the GALD’s AUROC (area under receiver-operator
characteristics curve) of 0.79 on the original DUD set [46], superior
to many other docking tools (GLIDE, GOLD, GalaxyDock, Vina, etc.).
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